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Abstract. Two mechanisms leading to the emission of electrons during the scattering of
ions from a metal surface at grazing incidence are investigated. Emission probabilities
are derived within a semiclassical approximation starting from first principles. For the
capture of target electrons to the projectile continuum, first numerical results show three
dominant features in the emitted electron spectrum. In addition to the Coulomb-cusp
at zero relative velocity of electron and projectile, two structures with widths refated to
the Fermi energy of the metal conduction tand are identified. They correspond to slow
‘soft-collision’ electrons and binary-encounter electrons, where the latter are most likely
emitted at twice the projectile speed.

1. Introduction

During collisions with isolated atoms, passage through foils, or interactions with solid
surfaces, energetic ions lead to the emission of electrons (Datz et al 1975, Berry et
al 1985, Ferrariis and Baragiola 1986, Sdnchez ef al 1989, Winter et al 1989). The
electron spectra show a peak where the velocity of the emitted electrons equals the
projectile velocity. Mechanisms which lead to the emission of these electrons (usually
referred to as cusp or convoy electrons) have been discussed by several authors
(Macek 1970, Dettmann et @/ 1974, Belki¢ and Gayet 1975, Briggs and Day 1980,
Jakubassa-Amundsen 1983, BurgdGrfer 1986).

For gascous targets, two mechanisms leading to cusp-electrons can be distin-
guished. For bare or nearly bare projectile ions, cusp-clectrons result from the cap-
ture of target electrons into low-lying projectiie continuum states, a process called
electron capture to the continuum (ECC). The ECC cusp only occurs at small pro-
jectile scattering angles and is asymmetric with higher inténsitics on the low encrgy
side. While the energy position and approximate form of the cusp is reproduced
in the Born approximation {using Coulomb waves for the continuum states), the ex-
planation of its asymmetry requires the inclusion of higher tcrms in the Born series
(Shakeshaft and Spruch 1978, Macek ef af 1981). The sccond mechanism, electron
loss to the continuum (ELC), occurs if the projectile carries loosely bound electrons,
As in the case of ECC, the position and approximate shape of the cusp for ELC are
given in lowest-order perturbation theory, whercas its asymmetry only shows up in a
higher-order description.
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For solid targets, the mechanisms responsible for the emission of convoy electrons
are not understood in detail (Sdnchez et al 1989). In general, many charge exchange
processes occur during the passage of the projectile through a foil. The convoy-
electron yield depends sensitively on the foil thickness, the composition of the exit
surface and the charge state and velocity of the projectile. According to Koschar et af
{1987), the ELC process dominates during the passage of protons through carbon foils.
Similarly, according to Schiwietz et a/ (1990), the ELC process possibly enhanced by a
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collective transport mechanism, was found to dominate the convoy-electron yield dur-

ing the passage of fast highly charged neon ions through thin carbon foils. Yamazaki
and Oda (1984) argue that electrons set in motion inside the foil propagate indepen-
dently of the projectile towards the exit surface. Subsequently, under the influence
of the surface potential, these nearly free electrons are captured into projectile con-
tinuum states. The surface dependence of the convoy-clectron yield in beam—foil
experiments has been confirmed by Sinchez er al (1989). The electron yield from
the collision of 60 keV protons with sodium-covered aluminium foils shows a strong
dependence on the degree of the sodium coverage.

The strong dependence on the exit surface motivates the investigation of electron
emission during grazing incident beam-surface collisions, which probe the surface
dependence in pure form. In such experiments with 40-340 keV protons colliding
with aluminium and copper surfaces, convoy-electron peaks have been measured (Fer-
rariis and Baragiola 1986, Strohmeier 1986, Winter ef al 1989) which are significantly
broader than in jon-atom and ion—foil geometries. In first calculations (Winter e
al 1989), this broadening was traced to the non-Coulomb-like modification of the
final-state interaction due to a dipole field produced by the projectile and its image
charge.

In this paper, we derive analytical expressions for the ECC and ELC scattering
amplitudes and electron emission probabilities for the scattering of fast ions at metal
surfaces at grazing incidence. In the case of ECC, we discuss qualitative features
of the numerically calculated differential emission probability and relate the resulis
to corresponding phenomena in ion-atom collisions. In both cases the theoretical
procedures are semiclassical and closely related to the well known impact parameter
method used in the description of ion-atom collisions (Briggs 1977). The processes
of EcC and FLC are considered annrntFlu in sections 2 and 3. Section 4 contain
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summary and conclusions. Atomic units are used throughout.

2. Electron capture to the continuum

In formulating the scattering amplitude we assume that the projectile ion moves on
a prescribed classical trajectory IR{t) with velocity »(¢) with respect to an arbitrary
origin located in the electronic surface. A formal derivation of first- and higher-order
approximations to the cxact semiclassical scattering amplitude has been given before
(Thumm and Briggs 1989b). In Jowest-order perturbation theory the amplitude for
an initial state |®, (7)) and a final state |® (1)) is

£ o
f(k,q):—ij_ dt (P (O|V,(1)[De(L)). )]

In contrast to ion—atom scattering, the target and laboratory frame of reference are
identical here. In this frame the Galilei-shifted Coulomb-continuum state of the
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projectile reads

D(t) = dg(r)expliv-(R4r)—i(e+ %vz)i}

. . @)
bg(r) = F(q)exp{ig-r}  Fy[ia, 1;igr —ig - 7]
with the Sommerfeld parameter and normalization factor given by
Z 1 o
=P F = —— — 1 e 3
o= . (q)= (2‘”)3/21"(1 ia) exp {wz}. &)

The exponential factors in (2} contain the translational momentum g + » and kinetic
energy € + 3v? of an electron moving with the projectile. The electron’s coordinate
vector, momentum and energy with respect to the projectile’s centre of mass are¢ r,

o and ¢. The choice of a fixed frame of reference for the tarret makes the nrojectile
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potential in (1) tlme-dependent. For an assumed structureless incident ion of charge
Z,, it is given by
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where rp is the electron’s coordinate vector in the target frame. We emphasize
that in our model only the final-state interaction due to the projectile’s Coulomb
potential is included. This potential dominates at large electron-surface distances
and its long-range behaviour is the origin of the ECC cusp.

To perform the time integral in (1) analytically we need to specify the ion trajec-
tory. The most convenient choice is a broken straight line trajectory (ﬁgure 1}. Such
a LlajeCLGl"y' is assumed to be a auuu.lcnuy tealistic lGPlL\LlIldLlUll of the SpeCﬁ}af
reflection of an ion at grazing incidence and no fundamentally new cffects would be
expected from a more exact description of the classical motion. For a coordinate
system with the xz—y plane in the surface, the positive z-axis along the surface normal
towards the vacuum and the positive x-axis along the projected projectile motion in
the surface plane, this trajectory is parameterized by

R(t)=bé, + vt
4

v(t)=vyé kv é, =ivy

such that v = v_ = (v,0,—v,) on the incident half of the trajectory {7 < 0),

and v = v, = {v),0,v,) on the outgoing half (2 > 0). The distance b of closest
approach to the electronic surface (ie. the ‘jellium edge’ located at z = Q) depends
on v, and is considered as a parameter of the theory. [t is intuitively clear that
quantitative predictions of a lowest-order theory strongly depend on b and the form
of the trajectory. Qualitative results have been found to be insensitive to variations
of b within a reasonablc range.

In an attempt to estimate the distance b, of closest approach to the uppermost
layer of the lattice points we assumed large neutralization probabilities for the incident
protons at the considered small v, and calculated b, by averaging different inter-
atomic potentials over a string (continuum-string model) or plane {continuum-plane
model) of surface atoms (Lindhard 1965, Gemmel 1974). Both continuum-string and
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Figure 1. Coordinate system and model trajectory for b > 0 (special case where the
projectile does not penetrate the electronic surface located at z = 0). The projectile
velocity on the incoming and outgoing straight line segment is v— and vy, respectively.

Thble 1. The distance bo of closest approach to the uppermost layer of lattice points
(in au) as a function of v, £, or the angle of incidence (as obtained for v =2)
for hydrogen atoms incident on tungsten. Different interatomic potentials were used
within the continuum-string and the continuum-plane model: screened Coulomb (5¢),
Thomas-Fermi (TF), Thomas-Fermi~-Moliére (TFM), Lindhard (L), and Biersack-Ziegler
(BZ). Within the continuum~plane model the atoms are predicted to penetrate the solid at
vy = 0.1. For the Biersack-Ziegler potential, incident protons and the continuum-plane
model (BZ-p) no penetration is predicted at v; = 0.1,

v By o Continuum—string modef Continuum-plane model
@) (V)

sC TF TFM TFM L BZ BZ-p
¢.1 249.8 29° 022 0.34 0.35 — — — 0.32
005 624 1.4° 0.44 0.79 0.80 0.25 024 064 270
002 100 6.6° 0.77 2.3 1.94 137 206 256 671
001 25 0.3° 1.03 412 2.82 227 818 362 997

continuum-~plane potentials decrease monotonically with increasing distance from the
surface. For a given energy £, = { M v} perpendicular to the surface of a projectile
of mass M, b, is given by the distance where this (asymptotic) energy is completely
transformed into potential energy in the field of the string or plane. It is related o b
by b = b, — d/2, where d is the Jattice constant. The results for b, in table 1 show
a strong dependence on the model (string or plane) and the underlying internuciear
potential (screened Coulomb (with a screening constant given by the inverse of the
Thomas-Fermi screening radius), Thomas-Fermi-Moli¢re, Lindhard (as defined in
Gemmell 1974) or Biersack-Ziegler (Biersack and Ziegler 1982, Ziegler ef al 1985)).
The hetero-nuclear Biersack-Ziegler potential was obtained by applying the geometric
mean rule to the two homonuclear potentials V| and V, according to

Vip = sign(Vi V))/|V| Val.

For v, = 0.1 the perpendicular energy £, = 249.8 eV clearly exceeds the critical
energy for hydrogen penetration into the tungsten surface. The representation of this
feature was found to be qualitatively correct only in the continuum-plane model. For
the Biersack-Ziegler potential we further calculated H; assuming no neutralization of
the protons before being reflected at the surface (column BZ-p in table 1). As one
would expect, the absence of the screening hydrogen electron results in a stronger
repulsive potential and larger values for by,



Theory of fast ion-surface collisions 425

In table 2 we show critical perpendicular velocities and energies for the pene-
tration of hydrogen atoms and protons into a tungsten surface calculated within the
continuum-plane model and different interatomic potentials. As in table 1, for the
Biersack-Ziegler potential, we compare the two limiting cases, neutralization (BZ)
and no peutralization (BZ-p), and find higher critical values for the latter.

Table 2. Critical perpendicular velocities and energies for the penctration of hydrogen
atoms inlo & tungsten surface for different interatomic potentials {as explained in table 1)
within the continuum-plane model, as well as results For incident protons (BZ-p).

[

TFM L BZ BZ-p

vy (aw)  0.068 0069 0090 012
EL (eV) 1183 1205 2016 3355

For the broken line trajectory (5} we can perform the time integration separately
for the incident and outgoing trajectory. To puarantee the correct scattering boundary
conditions we include the convergence factor exp(—§|t|}, § — 0t in (1). The result
can be written as

f(kyq) = i(27)2 2, F(q) [ Ap F(P) I (p, ., k) explip - b}

I(pastsk) = I-(PSQs”_ak) + I+(p,q,'v+,k)

A% (p, g+ vy) exp{Fiv, b} (6)
p-vi+e—-,}v2—6k:l:i6

Ii(psqavi,k) = :F
. . 1 .
Ai(p,q%— vy) EfdrlFl[—ia,l; —igr4+iq- r];exp{l(p— g-—v4) 7}

Using an integral representation of the confluent hypergeometric function
(Abramowitz and Stegun 1970)

VB [-le, 1 —igr +ig - r] = [[(=1c)T(1 + ia)]™!

1
% lim j dr 77 (] )T exp {—i(gr — g+ 7)7) )
Q

S

and the convergence factor exp(—pr), p — 01, we obtain a representation of A% in

e an rwan Tt

terms of an one-dimensional integ
l .
. . - . a1 -
At = [F (=) (1 +ia)]7! ]1m+/ dr poiesI¥u(] — pye-n
n—0 0

1 .
x litg1+/(lr exp{i{p-vy + [7 - 1]q) T}J— exp{—igrr — pr}
p—

. a7 /l dn T—icr—l—{—n(l _r)ia—r;
= Lt [Tt T Fia)p - ve — g2 Sy 14 Btr

8
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where

(p—vy—q)-
BEf=2 .
(p—vy—9q)

At this point the initial states [®,) are not yet specified and the scattering amplitude
is expressed in terms of an integration over the initial state momentum distribution in
(6) and the r-integral in (8). Under the assumption that large momentum components
of the initial state yield negligible contributions to (1) (as is true for the jellium initial
state discussed later) in the high parallel velocity limit |B|' < 1 holds and (Erdélyi
1953)

A* = (;}=”:|: — q}z 2F1[1,—i0‘§ 1; —Bi]
47 .
- ]. + _B:b IG. 9
(;p—vi—q)2( ) (9)

The r-integral in (8) expresses the interaction of the projectile charge with the
emitted electron in the continuum. This is easily seen by replacing the Coulomb wave
in (1) by a plane wave describing the free motion of the emitted electron. In this
case A% is simply given by the Fourier transform of the Coulomb operator 1/,

49

Af =
(p~q—vy)?

(10)

and the normalization factor F(q) in (6) i8 replaced by (27)~3/2,

2.1. Specification of initial states

Electron distributions inside a metal have been described self-consistently within the
local density functional approximation (Lang and Kohn 1970, Lang 1973). In this
model the ion cores are represented as a constant, ‘smeared out’ positive ‘background
charge’. The electronic many-body problem is reduced to the iterative solution of
a one-electron Schrodinger equation with an effective potential. Apart from details
(Friedel oscillations, formation of a surface dipole layer) the dominant features of this
potential are translational invariance within the surface plane and a step-like increase
along the positive z-axis. In the jellium model this effective potential is further
appr0x1mated by a step potent;al The conduction-band electrons are considered
{0 be essentlauy fiee inside the meta. however, uu'._y are bound to the metal half
space by the potential step V; = ¢ + W. At zero temperature all states up to the
Fermi level ep are occupied. An electron at ep needs the energy W (work function)
to be released. Jellium states are conveniently labelled by the momentum k. At
zero temperature they lie within a sphere of radius kg = /2ep in k-space with
a density of states p = V/4x? corresponding to a free electron gas and including
a factor two for the spin degrees of freedom. The quantization volume V' of the
metal electrons is assumed to tend to infinity and none of the final expressions (the
neutralization probabilities) depends on it. Even though the jellium model gives a
poor description of the metal surface, it is adequate for our purpose since any detailed
surface structure is averaged out in fast grazing incidence collisions due to the large
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collision time (small v, ) during which the projectile passes over many surface atoms
(large v).

The momentum distribution of the jellium electrons is given by (Thumm and
Briggs 1989b)

d(p) = 6@k, —Ppliy, (p,)
SRR - f SN O S I G
O R VAL (P Yy oy Sy WIS T Sy o

v= VIV, -k

The reflection and transmission coeflicients are

where

RE——k“_i‘Y TE—QkZ .
kz + iy k, +iv
The convergence factor § accounts for the infinite extension of the target along the
negative z-axis.
We consider fast ion-surface collisions at grazing incidence for which vy is larger
than kp such that (9) holds. With (9) and the initial states given by (11) the scattering
amplitude can be summarized as

Fk,q) = i(2m) "3/ 2, F*(q) / dp, ity (p.)(I7 + I*) exp{ip,b)

A:|:
[+ = | -
TEp0, L P F R ol + Vo +eEid exp{Fiv b}
E¥a ]
A*f = 1+ By« (12)
(k“’__,q“)2+(pzq:vi~_qz)2( )

(Rjp = ap)-gy + (. F vy - ¢,)a,
(R — >+ (p.F vy —q,)°
ki = &y — vy

Bt =2

The three terms in (11) describe the incident, reflected and transmitted parts of the
metal-electron wavefunction. The corresponding probability densities are well local-
ized in p-space such that all the momentum components in (12) are practically limited
to finite values. Thus, for large v, B* behaves as 1 /vy Therefore, emphasizing
the qualitative aspects of the capture process while kecping the numerical effort rea-
sonably small, we replace the factor with the exponent iex by 1. This replacement is
equivalent to an approximation made in the projectile final state (2). However, we
want to emphasize that our calculation still includes the main physical effect of the
projectile’s Coulomb potentiat on the active clectron, ie. the Coulomb cusp, through
the normalization constant & in (12). In this high paralle) velocity approximation
the p,-integration can be performed analytically by contour integration. The con-
tributions f~ and f* to the scattering amplitude from the incoming and outgoing
trajectories are treated separatcly and the two cases of & > 0 (the ion does not
penetrate the electronic surface defined by the jellium edge) and b < 0 (penetration)
are distinguished.
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2.2. Non-penetrating ions

For b > 0 the contour is closed in the upper p, half plane, where f~ and f* each
have two simple poles. The result of the p, integration can be written as

FE(k,g) = 2miC{Res(iv) + Res(a* + id)} exp{Fiv, b} (13)
with the residues (up to a constant) of the integral in (12) given by
Res(iv) = ~i T 2w exp{—~b}

V((v-a®)?+ {7t A/v,)

exp[(iat — d)b]
2id(a* +id+ Afv,)

Res{a* + id) = 7, (a¥ +id)

and
c=22 g
=25-1)
aizqz:i:vJ_
d = k) — g
A=Vyt+e— 3k + k] +v}).

Regarded as a function of b the amplitude has a bi-exponentially decaying form
also found in the description of radiative ion-surface collisions (Thumm and Briggs
1989a),

S(k,q) = ay exp{—db} + agexp{-~b}.
The term with the decay constant d reflects the momentum matching condition ki" =

q for the parallel motion of the active electron in the initial and final states. The
second term reflects the exponentially decreasing jellium electron density outside the
surface.

2.3. Penetrating ions

For b < 0 the ions may still be reflected at the topmost lattice plane situated half a
lattice constant below the jellium edge. The integration contour has o be closed in
the lower half plane, where /= and f* each have four simple poles. In anafogy to
(13) we obtain

fE(k,q) = —27iC{Res(k, — i8) + Res(—k, —i8)

+ Res(a® —id) 4+ Res(:A /v, —i8)} exp{Fiv, b} (14)
where
L een . f2T exp{ik,b}
Res(k: —10) = W 5 -~y { @0k, T A Joy)
2 exp{—ik, b}

Res(—k; —16) =\ R\ 7 0 ¥ e + @Ik, £ A70,)

exp[(ie® + d)b]
2d{at —id: Afv))

exp[FiA /v, b]
(e £ Afv, )+ d?

Res(ut —id) = iﬂk:((f.i —id)

Res(FA /v, —i6) = @iy, (FA/vy)
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The amplitude becomes singular with respect to g for perfect parallel momentum
matching of initial and final state. The position of these singularities depends on k
such that they are smeared out after an integration over all conduction-band states.
In contrast to these singularities the ‘Coulomb singularity’ produced by the factor F
in C is not influenced by the integration over the initial states.

24. Limiting case of a straight-line wrajectory parallel to the surface

For v, — 0, the principal contributions to /- and I (equation (6)) cancel and

lim f(k,q)= —iZp F*(q)b6(ky - v+ e 2P~ €p)
vyp—0
x [ dp. i, (0. Ak 230+ ) explin.b). (15)

The & distribution is singular for certain ¢ = J¢% For small v, # 0 these singularities
are collisionally ‘broadened’ to peaks due to the projectile motion perpendicular to the
surface. The width of these peaks increases with v, in agreement with an uncertainty
relation for collision time and the energy 1+ of the perpendicular motion. For
g, > 0 the peaks arc known as binary-encounter peaks in the electron spectra
of ion-atom collisions. The ntjakq nrndur‘Pd for o < 0 correspond to verv slow
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emitted electrons which will be refcrred to as ‘soft-collision electrons’ and require
small momentum transfers or larger impact parameters.

2.5. Emission probabilities

Figure 2 shows the emission probability differential with respect to initial and finai
state

d*P

m = P|f(st)32

as a function of the emitted electron’s momentum component ¢, along o, for the
system p+ W at grazing incidence (v = 2, v, = 0.02). The momentum components
perpendicuiar to the scattering plane of the active ¢iectron in the initiai and finai state
are k, =0, k, = 0.5 and q, = g, = 0, respectively (note that & is defined in the
laboratory frame and ¢ in the projectile frame). The distance of closest approach has
been determined within the continuum-plane model, in connection with the Lindhard
interatomic potential. For the given system and perpendicular velocity this yields a
distance of closest approach to the top layer of b, = 2.06 or b = —0.94 (table 1,
the lattice constant for W is ¢ = 6). Since b is negative, the proton is supposed to
penetrate the electronic surface before it is reflected at the uppermost layer of lattice
points.

The three curves in figure 2 correspond to initial states with different &, ie. to
conduction-band e¢lectrons with different velocity .components along vy. The peaks
at g, =~ 1.6, 1.9 and 2.3 corrcspond to binary-encounter electrons which are emit-
ted in the forward direction of the projectile. Their spced in the laboratory frame
is approximately 2v, which has a simple physical explanation in terms of an clas-
tic reflection of metal electrons from the projectile as the projectile dives into the
electronic surface. The soft-collision electrons are cmitted with larger probabilities
than the binary-encounter clectrons. Their peaks arc located at paralle] momenta
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Figure 2. ECC emission spectrum differential in k and ¢ for protons colliding with a
tungsten surface at vy = 2, vy = 0.02 as a function of the emitted electron paralle!
momentum ¢ (defined in the projectile frame) with g, = ¢; = 0. Three different
jellium initial states corresponding to conduction-band electrons moving in the scatteting
plane with different paralle! momentum components are considered: &y = G, &; = 0.5

and k; = —0.3 (full curve); 0 (chain curve); 0.3 (broken curve). Every curve shows the
secondary electron peak (left), the binary-encounter peak (right) and the Coulomb-cusp
(at g = 0).

g, ~ —2.3, —2 and —1.7. The positions of these peaks and of the binary-encounter
peaks are given as zeros of the argument of the 6 function in (15). The soft-collision
electrons are emitted at low velocities and are therefore expected to experience strong
post-collisional interactions which are not included in the present model. It might
be sufficient to include these interactions as image-charge effects, i.e. interactions of
the active electron with its own and the projectile image charge. The third feature
in figure 2 does not depend on the initial state. The location and form of the peak
at g, = 0 are given by the normalization factor F(q) of the Coulomb final state
(equation (2)). This factor is related to the long-range behaviour of the projectile’s
Coulomb potential. The 1/¢ singularity in this factor expresses the ability of the
Coulomb potential to attract probability density from an infinite volume towards the
projectile nucleus, [t vanishes as soon as the potential is cut off at a fixed but
arbitrarily large radius.

The differential emission probabilitics in figure 2 show the physics incorporated
in our first-order model in a qualitative way. No absolute values are given since
quantitative results depend strongly on the distance b, which is, iself, sensitive to
such model assumptions as the choice of an internuclear potential (cf table 1) and
a broken straight-line projectile trajectory. In addition, especially for the emission
of soft-collision clectrons, we would not cxpect more than an order of magnitude
estimate due to the limitation to first-order perturbation theory.

Alter integration over all initial states at zcro tcmperature the emission probabil-
ity, differential with respect to the momentum of the ¢mitted clectron, rcads

drP

CLIg / Ak f (e, I (16)
dq kgke

Without actually carrying out the integration over the initial conduction-band states
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numerically, we can infer, from the k-dependence of d P/dk dg shown by the three
curves in figure 2, that the main effect of this integration would result in a broadening
of the soft-collision and binary-encounter peaks to structures of an approximate width
of 2ky, whereas the Coulomb cusp at ¢ = 0 is left unchanged.

3. Electron loss to the continuum

In describing the process of electron loss to the continuum we assume that a metal
electron has been captured on the incoming part of the trajectory into a bound
state of the projectile at a relatively large ion-surface distance. While the projectile
is specularly reflected at the surface, the supposed hydrogenic projectile loses its
electron to a continuum state of projectile and target. Due to the slow projectile
motion perpendicular to the surface (grazing incidence), the target strongly influences
the active electron, even at high projectile energies. Unilke the situation in fast
ion-atom collisions the description of the final state as a Coulomb state, ie. the
neglect of the target’s influence, is not appropriate here. We therefore include target
interactions due to an image charge induced by the projectile nucleus. The total
final-state interaction is then due to a dipole formed by the projectile nucleus and
its image charge. The different threshold behaviour of dipole and Coulomb states is
finally responsible for the larger width of the dipole cusp as was observed in recent
experiments (Ferrariis and Baragiola 1986, Winter et a/ 1989) and discussed before
by Winter et al (1989). In this section we outline a perturbative theory for ELC. As
in section 2, the projectile is assumed to move along a classical trajectory.
The initial and final asymptotic states belong to different channel Hamiltonians
H; and H;. The initial asymptotic state |®;{¢)) is a bound eigenstate of the projectile
Hamiltonian H, = K + V;, where i and V} denote the kinetic energy operator
and the projectile-nucleus Coulomb potential. The final asymptotic state is the dipole
state W ;. (1)) which is an eigenstate of the final channel Hamiltonian H, = K4V,
The dipole potential is the sum of V, and the image potential V™ of the projectile
nucleus,
‘/;“p = VP + yvim

nue*®
The total Hamiltonian is
H= Hi +Vi=H;+ V;
= K + Vp + ‘/J + Vim + ‘/;Jlm

nuc
where V) is the surface potential assumed to be a simple potential step of height
V; at the electronic surface (jellinm model), The perturbative potential in the initial
channel is

V; — VJ + Vim + im

nue el

where V.M is the image potential of the active electron. In the final channel the

el

perturbative potential V; includes V; and VM. It is assumed to be steady, such that

-V, z
Vi ={

{3

0

i
el

VoA

L

<0
l |

‘/im — N
el — ~0

4z 4V,
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el 1
potentials at small z. At small z, however, V™ as defined here loses its meaning

as a description of the collective response of the metal-¢lectron gas to the external
clectron.

The dipole potential induces a local enhancement of the electron probability den-
sity in the final channe] within a cone that stands perpendicularly on the surface (such
that the projectile lies on its symmetry axis) and opens towards the vacuum. The the-
ory of final-state interaction (Gillespie 1964, Taylor 1972) describes this redistribution
through an ‘enhancement factor’ equal to the reciprocal value of the Jost function.
For the spherically symmetric, asymptotic potential

- {-2R(t)/r2 r> 7
WTL-2RW/TE <

The steady connection of V; and V™ strictly speaking requires a modification of the

the Jost function to the ith partial wave reads

2
Flq, R(I)) =1+ FI/() (lrh}"(qr)Vdip(r)cp,(q, ). (17)
The asymptotic behaviour of the Ricatti-Hankel function is

Zlerolo fz?"(z) =exp{iz —ilm/2}.

The normalization of the regular solution ¢, to the radial equation is given by
lrl__{% wi(g,r) = 5,(qr).

The Ricatti-Bessel function behaves for small arguments as

41

~

Close to threshold (small g) scattering is dominated by s-wave contributions. For
constant dipole potential strength the dipole wavefunction can then be separated
(Taylor 1972) into the enhancement factor and a plane wave as

9 i (1)) mmm). (18)

In fact, for grazing incidence collisions, the potential strength varies slowly in ¢ due
to the perpendicular motion of the projectile. In an adiabatic approximation we
therefore replacc R by R(t) in (18).

To first order in V; the semiclassical transition amplitude is

f=-1 [ anwaon@em). (19)
With (18) it becomes

I 1
fa) ~ _lfw(u T AT OO (0. (20)
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Since both the potential and the overlap of the wavefunctions in (19) vanish quickly
for increasing R, the loss process predominantly occurs close to the surface. Intro-
ducing the effective loss distance R;, (20) can be further approximated by

fla) = T—O({Efm(q) @1

whera Bl ic the
where 5 is the
final state |g). The amplitude fB! can be expressed in terms of exponential integral
functions and incompicte I' functions. The Jost function in (21) can be calculated
analytically (Gailitis 1962, O’Malley 1965, Domcke and Cederbaum 1980, Estrada and
Domcke 1984). The resulting expressions, however, are very unwicldy. Alternatively
the integral in (17) and ¢; can be calculated numerically (the latter efficiently by
using the Numerov method},

The threshold behaviour of the [ = 0 dipole and Coulomb Jost function are
identical. Equations (20) and (21) are therefore not suitable to describe the observed
broadened cusp. They are, however, useful for an order-of-magnitude estimate of
ELC emission probabilities. In order to describe not only the magnitude, but the
‘wings' of the cusp as well, i.e. its width, higher angular momenta must be taken into
account. Their threshold behaviour is given by

'
1

1
|Fi{q, R}|?

b1y =24/(I+1)?2-D

where the argument of the root is supposed to be positive, [} is the dipole potential
strength and the coefficient a(!) gives the relative contribution of the /th partial wave,
The emission probability may be parametrized as

= a(l)q'”b(”

1

P=—
|Folg, BL)I?

IFBH )P (1 + Aq®) (22)

where the parameters A and B > 0 inciude the averaged contribution of partial
waves with [ # 0. After folding P with the detector resolution, R, A and B can be
determined by fitting the result to measured spectra.

4, Summary and conclusions

We have outlined a semiclassical theory for electron emission in fast grazing incidence
jon-surface collisions which is closely related to the impact parameter method, well
known from the theory of fast ion-atom collisions. Modifications are due to the
different symmetry and electronic structurc of the target. While for ionic or atomic
targets the initial states are bound, ie. localized, we consider delocalized states of
a metal conduction band and describe them as jellium states in a simp[c model.
Furthermore, the classical projectile path is represented by one broken straight-line
trajectory as opposed to a bundle of straight-linc trajectorics, cach specified by an
impact parameter, used in the case of gascous targets. In the limiting case of zero
perpendicular velocity the projcctile moves along a straight line parallel to the surface
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and the analytical expressions for the scattering amplitude become formally identical
to the corresponding expressions for ion-atom collisions. The theory is Galilei-
invariant and therefore includes kinematic level shifts in a natural way. It has been
applied to two processes Jeading to the emission of delocalized metal electrons.

For electrons emitted from jellium states (ECC) we provide analytical expressions
for the scattering amplitude in lowest-order perturbation theory. While the initial state
resolved spectra show three peaks of different physical origin (soft-collision, cusp and
binary-encounter electrons), two of these peaks, corresponding to soft-collision and
binary-encounter electrons, are expected to broaden to structures of approximately
twice the conduction-band width. The third peak (cusp electrons) is only related to
the final state. Its shape, therefore, remains unchanged.

Within the same semiclassical framework we have outlined the theory for the emis-
sion of electrons (ELC) bound to the projectile, e.g. after being resonantly captured
by the incident ion at large distances from the surface. The combined effect of the
projectile nucleus and its induced image charge on the emitted electron is included
in the form of a asymptotic dipole final-state interaction. Finally, approximations
have been suggested which lead to the factorization of the scattering amplitude into
a dipole-enhancement factor and the first-order amplitude for a free final state.

Measured ECC spectra are expected to show additional structures in the broad-
ened soft-collision and binary-cncounter peaks. These structures should be mainly
related 1o the metal density of states and, to a much smaller extent, to the detailed
structure of the metal electronic states (which are subject to average processes dur-
ing the calculation of scattering amplitudes). The jellivm model does not include this
structure. However it could be accounted for by replacing in (16) the constant jellium
density of states (in k-spacc) by a more realistic density-of-states function, derived
either from surface electronic structure calculations or measurements (€.g. measured
Auger spectra).

Recently, Miskovi¢ and Janev (198%) published a paper on the emission of
conduction-band electrons due to Auger neutralization at grazing incidence proton-
surface collisions. The calculated emitted electron energy distribution was shown
to experience a strong increase in the peak position and width, with simultaneous
decrease in the peak value, as the parallel velocity increased. For the highest consid-
ered paraliel velocity of v, ~ 1.9, which i comparable to the value of vy = 2 we
supposed in figure 2, the distribution of Auger electrons was found to cover a wide
range of emitted electron energies. This range appears to be larger than the range
of approximately 2kp predicted in this paper for the distributions of soft-collision
and binary-encounter electrons, such that for fast grazing incidence collisions, the
emitted electron distributions corresponding to different emission mechanisms might
be distinguished by their widths,
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