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The experiment used a black body approach to experimentally measure Planck’s 

reduced constant, ћ by using the Planck Radiation Law, which relates the intensity 

and wavelength of light to the temperature of the emitting black body. The 

measurement was accomplished by using a simplified detection system involving a 

photodiode and diffraction grating to measure the intensity of emitted light as a 

function of the wavelength. From the experiment it was found that the value of ћ 

was 2.8±1.5x10
-35

 Js. 

 

1 Introduction 

1.1 Background 

The purpose of the experiment was to measure Planck’s 

reduced constant, ћ, through the observation of black 

body radiation. Planck’s constant is a fundamental 

constant that describes the scales of quantum mechanical 

systems. Planck first derived the constant during his 

formulation of black-body radiation by considering that 

light itself is quantized in what is now known as photons
1
.  

There are many different methods to measure Planck’s 

constant as much of atomic physics is founded upon the 

quantum theory and therefore Planck’s constant. Such 

classic experiments, such as the measurement of Compton 

scattering, the photoelectric effect, the measurement of 

the emission lines of hydrogen as well as black body 

radiation all have working model’s that contain a method 

in which to experimentally validate the value of ћ. In the 

experiment performed, black-body radiation was used to 

measure ћ as it only requires minimal available equipment 

to measure ћ and calculate its value
2
.  However, the 

simplicity of experimental design comes at the cost of 
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reduced precision, which will be addressed later in the 

paper. 

1.2 Theory 

The working theory behind the experiment involves the 

treatment quantization of light together with the 

understanding of statistical physics.  According to 

Planck’s law, an object will radiate a spectrum of light 

dependent on the temperature of the object. The Planck 

theory proposed that the energy carried away from the 

object in the form of photons with an energy given by: 

E = ℏω                                 (1) 

Where ℏ  is Planck’s reduced constant and ω  is the 

angular frequency of the photon emitted. If emitted 

photons are treated as a photon gas, one can use a 

statistical approach to derive the ‘Planck radiation law’3, 

which is given as follows: 

I = ℏ��

	
����� ℏ�
������

                      (2) 

Where I is the intensity of the emitted light, T is the 

temperature of the black body emitter, � is the frequency 

of the photon and ��  is Boltzmann’s constant. It is 

important to note that Equation 2 represents the intensity 

as a function of frequency, and therefore by relation the 
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wavelength, of the light. Furthermore the dependence 

upon the temperature of the black body implies that the 

number of photons a black body emits at a specific 

frequency is determined by the temperature of the black 

body. It is this relationship that is exploited in order to 

experimentally determine Planck’s constant.  

Consider the ratio of two separate intensities measured at 

the same frequency, I1 and I2. From Equation 2, this ratio 

is given as: 

I�
I�

=
Exp � ℏω

k�T�
� − 1

Exp � ℏω
k�T�

� − 1
≈

Exp � ℏω
k�T�

�
Exp � ℏω

k�T�
�

 (3) 

 

The approximation of the formula is valid in the regime in 

which ω > 6.5 × 10�� T  where ω  is given in units of 

Hertz and T in units of Kelvin
4
. For the visible spectrum 

of light as well as the near infrared spectrum, these 

conditions are well satisfied. Consequently, Equation 3 

can be expressed to give Planck’s reduced constant: 

ℏ =  k�
ω ) 1

T�
− 1

T�
*

Ln �I�
I�

� 

 

(4) 

From Equation 4, ℏ can be experimentally determined by 

the ratio of intensities of a black body at two separate 

temperatures. However in the case of the experiment, it is 

more useful to collect a multitude of data relating the 

intensity to multiple values of temperature for a specific 

wavelength of light. In this scenario, it is more precise to 

use the method of least-squares to extract the value of 

Planck’s constant. In linear form, Equation 4 becomes: 

1
T = - k�

ℏω Ln.I/0 + 1
T/

2 + −k�
ℏω Ln.I0 

 

(5) 

Where 
�
3 is the dependent variable and Ln.I0 acts as the 

independent variable. Using this form, a least-squares 

analysis will yield ℏ  in relationship to the selected 

frequency at a given temperature. 
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2 Experimental Methods 

For the experiment, a tungsten filament light bulb was 

used as the emitting source. The filament, in conjunction 

with an apparatus that could record the relative intensity 

of light at various frequencies, Equation 5 could be used 

to relate the frequencies, intensities and temperatures to 

determine Planck’s reduced constant. The apparatus used 

contained a tungsten filament light as the black body 

emitter, a diffraction grating to separate the various 

wavelengths of light and a photodiode to detect relative 

intensities of incident light. A diagram of the apparatus is 

given below in Figure 1: 

 

Figure 1 - Diagram of the apparatus used 

The light from the black-body source is put through a 

system of apertures in order to focus the light beam. The 

first aperture is a 1 cm circular hole in a box the 

completely surrounds the light source. This reduces a 

large amount of background light as well as focuses a 

narrower beam of light towards the diffraction grating. 

Next a 15 cm long tube with a 2.5cm by 2.5cm aperture 

was placed next to the first aperture so as to black out 

more background light and ensured only beams of light 

from the source on a near parallel path with the optical 

axis were passed through to the diffraction grating. The 

beam of light is then passed through a diffraction grating 

and lens system that causes the different wavelengths of 

light to separate with an angular dependence given by:  

mλ = d.Sinθ: − Sinθ;0                    (6) 
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Where d is the width of a line in the diffraction grating, θ: 

is the angle from the optical axis that the photodetector is 

placed, θ;  is the angle of the incident beam upon the 

diffraction grating and m is the order of diffraction which 

in the case of the experiment is 1. The detector is setup on 

a pivot so that its angular location with respect to the 

diffraction grating can be easily measured and Equation 6 

applied. Note for the experiment performed, the value of 

d was determined using a Helium-Neon laser with a 

633nm wavelength as a calibrated source and measuring 

the variance on the angle caused by the diffraction grating. 

From the measurements, it was found that d = 1870±30 

nm. It was also assumed that θ;  = 0°±2° to account for 

any small variances due to the diffraction grating not 

being perfectly perpendicular to the optical axis.  

The temperature of the filament in the light bulb was 

controlled by the voltage setting on a variable AC voltage 

source. For temperatures of approximately 2500K 5 , 

tungsten obeys a linear relation between the resistance of 

the filament and its temperature, given as: 

R.T0 = R/=1 + α.T − T/0?               (7) 

Where R0 represents the resistance at a temperature T0 

and α  is the temperature coefficient for tungsten. The 

tabulated value of α for tungsten is 0.0045Ω KB  , however 

due to material impurities the actual value for the filament 

could be different for the tabulated value, thus an 

uncertainty of 0.0005Ω KB  was considered for α as such a 

deviation allows α to fall within range of other common 

conducting metals such as copper, aluminum, nickel and 

silver. Thus if there were any other metals contained 

within the wire, the uncertainty in the value of α includes 

such factors.  

The photodiode used was connected in the following 

circuit as to measure the relative intensities: 
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Figure 2 - Diagram of the photodiode detection circuit. The Op Amp 

was powered by ±12V leads 

The op amp and resistor combination helped to increase 

the voltage measured from the photodiode so that was 

within the range of the voltmeters used. An important 

aspect of the photodiode used is that it follows a 

responsivity curve, meaning that the amount of current 

that is produced per photon on the photodiode is 

dependent on the wavelength. To account for this, the 

photodiode has been calibrated for a responsivity curve 

that relates the relative intensity to wavelength. Thus in 

the case of the experiment the measured voltage acts as 

measurement of intensity6. Taking into account of the 

responsivity as a voltage gain, the intensity voltage is 

given as
7
: 

V;DE = R.λ0VFGHI.                          (8) 

Where V;DE , VFGHI.  are the weighted and unweighted 

measurements of the voltage respectively. To simplify 

calculations, the function R(λ) can be approximated from 

data points in the following table
8
: 
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Figure 3 - Responsivity of the FDS100 Photodiode. From the response 

curve it can be seen the diode has a limited range of wavelengths it 

can detect adequately    

For the experiment, there were a variety of uncertainties 

that were involved that directly affect the results. Below 

in Table 1 is a summary of the uncertainty values of 

various experimental parameters as well as any constants 

measured for the experiment: 

Table 1 - Experimental parameters and error values 

Quantity Value/Error 

Input Voltage 0.2 V 

Input Current 0.01 A 

Photodiode Voltage 10 mV 

θλ, Detector Angle 1.7 Degrees 

R0, Init. Resis. 45 ± 1 Ohms 

α, Temp. Coeff. 0.0045 ± 0.005 ΩK
-1

 

T0, Room Temp. 293 ± 1 K 

 
Note that the error in the detector angle is caused by the 

width of the photo detector primarily, as its width of 5.8 

mm at a distance of 19.5 cm has a corresponding angle of 

1.7 DEGREE. This angular uncertainty is an order of 

magnitude greater than that of the uncertainty cause by 

diffraction grating, thus it is used as the uncertainty for 

the angle measurement. The error of the voltmeters and 

ammeters covers the average fluctuations of the 

experimental value during measurement. These values are 

used with equations 5, 6, 7 and 8 along with their error 

propagation counterparts to determine the intensity as a 

function of temperature and wavelength and their 

associated error
9
. 

3 Experimental Observations 

3.1 Black Body Curves 

For the data set, the points of data relating the intensity 

incident upon the photodiode and the angle of the 

photodiode with respect to the diffraction grating were 

measured. The following is a summary plot of the results: 

 

Figure 4 - Plot the intensity versus the wavelength of incident light. 

The highest peak and successive lowering of peaks represent black 

bodies at 3300K, 3250K, 3200K, 3100K, and 3050K respectively. 

Note that the intensity plotted is voltage produced by the 

photodiode as well taking into account as the 

corresponding responsivity to each wavelength.  From 

these curves it is apparent that the data visually 

corresponds to the spectral output intensity as predicted 

by Planck’s law in Equation 2. It is important to note that 

entire black body curves in the near infrared regimes 

cannot mapped very easily due to the photodiode used. 

The responsivity curve of the photodiode only has non-

zero values between approximately 300 to 1100 nm which 

prohibits measurements of wavelengths not in the range. 

Secondly from Equation 6 for the diffraction angle, it can 

be found for the experimental setup that the second order 

diffractions of the light begin to occur around 25 degrees 
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(approximately 800nm in the first order) which causes 

errors in the intensity readings in the higher first order 

measurements.  

3.2 Planck’s Constant 

In order to experimentally measure Planck’s constant, 

three specific wavelengths of study were chosen. These 

wavelengths were chosen to correspond to the 15, 20 and 

25 degree angles between the photodiode and the 

diffraction grating. These wavelengths represent a blue, a 

red and a near infrared color, and each lies at a different 

portion of the black body power spectrum curve. The 

multiplicity of wavelengths studied allowed a more varied 

approach to determining ћ. For each wavelength, the 

voltage of the light bulb, therefore the temperature from 

Equation 7 was gradually increased in five volt 

increments. At each temperature change, the relative 

intensity of the light as reported from the photodiode was 

recorded for each of the three wavelengths.  A summary 

of the data collected is displayed below in Table 3: 

Table 2 - Data comparing the input AC voltage (in V), Temperature (in 

K) to the recorded intensities at the photodiode at three separate 

wavelengths. Equation 7 was used to calculate the temperature at 

each voltage setting 

  

λ (nm) 

    

Voltage 

(V, 

σ=0.5) 

Temp (K) 480 ± 83  640 ± 81  790 ± 78  

    

Intensity 

(mV) 
    

70 2400 ± 100  140 ± 52  250 ± 50  420 ± 77  

75 2400 ± 100  150 ± 55  280 ± 57  490 ± 89  

80 2400 ± 100  150 ± 57  320 ± 65  520 ± 95  

85 2500 ± 100  160 ± 61  360 ± 73  600 ± 110  

90 2500 ± 100  170 ± 64  400 ± 82  670 ± 120  

95 2600 ± 100  180 ± 67  460 ± 94  760 ± 140  

100 2700 ± 100  190 ± 71  510 ± 100  830 ± 150  

105 2700 ± 100  210 ± 79  530 ± 110  940 ± 170  

110 2800 ± 110  230 ± 85  630 ± 130  1000 ± 190  

115 2800 ± 110  240 ± 88  700 ± 140  1100 ± 210  

120 2900 ± 110  250 ± 92  760 ± 150  1200 ± 220  

125 2900 ± 110  250 ± 95  820 ± 170  1300 ± 240  

 

By performing linear least-squares fit of 1/Z  versus 

[\.M0 in Equation 5, it can be seen by comparison that for 

a linear fit of ] = ^_ + ` that the corresponding values of 

a and b are: 

` = ab
ℏc [\.M/0 + �

de
                        (9) 

b = �g�
ℏ�                                 (10) 

Where it was taken that I/ and T/ were the values of the 

lowest temperature, in this case the data for when the 

voltage was set to 70 volts. Therefore solving Equations 9 

and 10 will give the experimentally measured values of ћ. 

The following are the linear plots of 1/T versus Ln.I0: 

 

Figure 5- Plot of 1\T vs. Ln(I) for the three wavelengths with 

corresponding linear fits. From left to right: 480nm data, 640nm data, 

790nm data    

The plots in Figure 5 show a linear relationship, 

suggesting that Equation 5 satisfies the approximations 

made during the theory. 

The following data gives the values of the least squares 

fits for a and b and the corresponding values for ћ as 

derived from Equations 9 and 10.  
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Table 3 – Data for the linear fit of results of Table 2 and the plots of 

Figure 5. The a and b values correspond to those listed in Equation 9 

and 10 respectively. The calculated values of each ћ by solving 

equations 9 and 10 are also listed. 

λ (nm) 

a (1/K 10-

4) 

b (1/K 10-

5) ћa (Js 10
-35

) ћb (Js 10
-35

) 

480 ± 

11  10 ± 3.0  -13 ± 6.5 2.8±1.6 2.8±1.5 

640 ± 

12  7.9 ± 2.1 -6.7 ± 3.4 6.9±4.0 7.0±3.6 

790 ± 

14  8.4 ± 2.4 -6.9 ± 3.5 8.3±4.7 8.4±4.3 

 
4 Discussion 

4.1 Results 

From Table 3, the calculated values of ћ found in section 

3.2 were found to be only accurate up to an order of 

magnitude at best compared to the standardized value of 

1.0545x10-34 Js 
10

. The result is nothing less than 

depressing as no true precision can be assigned to the 

value of ћ beyond its order of magnitude of 10�WRhi . 

There are many factors that could have caused the result 

to have been heavy in error. First of all, the temperature 

dependence of the resistance in Equation 7 was assumed 

to be linear. As stated, this approximation is valid up to 

around 2500K. However, in Table 2 it can be seen for 

most data points, the temperature of the wire exceeds 

2500K, by as much as 400K. Thus this would change the 

result significantly as the value of ћ is derived from data 

involving T, specifically 1/T. 

Another interesting source of error that is shown is the 

detection of the photodiode at higher wavelengths, 

specifically in the near infrared range. As mentioned, at 

around 800nm, the second order diffractions of the light 

begin to overlap with the first order diffractions, causing a 

false reading of the intensity measured. Notice that this 

error shows itself in the results; the calculated values of ћ 

in Table 3 become less precise and less accurate as the 

wavelength is increased. A priori it was assumed that the 

high wavelength values would result in more accurate 

values of ћ because the intensity was larger, thus making 

the measurement upon the photodiode more precise the 
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photodiode responded better at such frequencies. 

However due to the second order effect and other error, 

the low intensity, short wavelength light yielded more 

accurate results. 

4.2 Conclusion 

The measurement of Planck’s reduced constant by 

observing the light emitted from a black body was found 

to have large uncertainties due to multiple error 

propagations in the experiment. No doubt with a more 

precise setup, such as a smaller photodetector area or 

more precise voltmeters, the uncertainty would be 

reduced. However, calculations show that reducing all 

uncertainties by two orders of magnitude only yield a 

single order of magnitude decrease in the uncertainty of ћ. 

Thus a method to directly measure the value of ћ, such as 

the photoelectric effect with a single working equation, 

would provide a much more direct method of 

experimental measurement because it has less factors for 

error.   

 

Within a similar experiment
11

, color filters were used 

instead of a diffraction grating to select specific 

wavelengths of the emitted light for measurements. By 

using such methods, as well as using an optical pyrometer 

to measure the temperature of the filament and a vacuum 

photocell to measure the intensity. With the more 

complex set, values of ћ accurate up to 2% were obtained. 

Therefore it is possible to measure ћ through black-body 

methods, however it requires a more complex setup than 

was employed in the experiment performed. 
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