
 
Problem set -4 
11. Bound states and scattering states for an attractive square well.  
       This numerical exercise illustrates the relation between bound states and scattering 
resonances. Consider an attractive square well (depth -V0)  with width a=1. Use the notation 
from the class but we will set 1,1 == hm  and the attractive potential is in terms of 2λ =2V0. 
Define 222 kp += λ . Let )()( rrRruk = . Consider s-wave scattering, we can then write 

krBru sin)( =  for r<1 and )sin()( δ+= krru . We have derived the expression for the phase 
shift in the class.  
(a)  Show that  
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      The B2 measures the probability of finding the particle inside the potential well. Clearly the 
probability reaches a local maximum whenever cos p=0. This allows us to locate the resonances. 
 
(b) From the solution of the bound state equation, find the value of λ  (called 2λ ) where the 
potential well can accommodate two bound states. For whatever λ 2 you choose, identify the 
binding energy of the second state.  Now choose a value of  λ  which is slightly smaller than λ 2 

until that you have only one bound state. Calculate the phase shift and B2 for a range of 2k  from 
near zero till you pass the first resonance. This shows that as the potential becomes weaker the 
second bound state has been moved to become a resonance. Plot the phase shift near the 
resonance region, as well as B2 and the s-wave cross section in the same region to see if the 
width from the cross section and from B2 are very close to each other. 
 
(c)  For λ  slightly greater than 2λ  so that the second resonance is barely bound. Calculate the 

scattering length as and show that the position of the second bound state is given by E= 22
1
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(recall we use 1,1 == hm ).  Try another value of  λ , and show that this relation is correct.  
 
 

12. Scattering from a hard sphere.  

      In this exercise you will use partial wave expansion method to calculate the cross sections 
and differential cross sections. A hard sphere means that the potential is infinite for ar ≤  
and zero elsewhere. 

    (a) Low-energy limit. Calculate the phase shift for s-wave and  show that the cross section is 
given by 4π a2-- four times the classical value. 

    (b)  Calculate the phase shifts and plot the differential cross section for ka=5. Check how 
many partial waves you need to get reasonable convergence in the infinite sum. Note that 
classically the maximum angular momentum is 5.  You can use Mathematica or any other 
programs to extract the values of  spherical Bessel and Neuman functions. 



    (c) Go to the EM textbook and check out the expression for the diffraction of a disk of radius a 
by light and compare the diffraction pattern predicted there for the equivalent ka to the 
present one. 

13. Scattering by N scattering centers--like by a crystal lattice. 

       Consider N static identical spherically  symmetric scatters placed on a straight line such that 
the n-th scatterer is at the point (n-1)a.  Choose a  to be along the z-axis. Assume that the 
potential is weak and you can calculate the cross section using the Born approximation. 
Show that the differential cross section can be expressed as  
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         where the first term on the right is the Born cross section from a single scatterer and F(q) is 
called the structure factor.  Find the structure factor as well.  Sketch F(q)2 vs scattering 
angle for N=4.  (Note the similarity to radiation by antennas.) 

     14. Normalization of continuum wave functions. 

            Assume that the radial wave function R(r)=u(r)/r, the normalization for the bound state 
wave function is well understood. In this exercise we will walk through the procedure to 
normalize the continuum wavefunctions. In the asymptotic region, the continuum wave 
function can be written as  
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          if we have a short range potential. If there is a Coulomb potential at large distance then 
you need to add a logarithmic term in the phase plus a Coulomb phase. 

                 We say that the continuum wave function kR is normalized per unit momentum k if  

                                )'()()( '
0

kkdrruru kk −=∫
∞

δ                                                    (2) 

                 Similarly we say that the continuum wave function ER is normalized per unit energy 
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                 We want to derive what A should be if the wave functions are normalized to either 
scheme. 

             The expression (2) is equivalent to  
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                   We will use (4) to find out what A should be in (1). 

            Start with the Schrodinger equation for ku  and 'ku  and do integration by parts to 
construct expression like (4) except by setting  the upper limit in r to a large number a. 
You can then use (1) for the u's at  r=a. You will need the integral  
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                   which you can prove by using contour integration. From this procedure prove that  

                                                             
π
2

=A  

                   if the wave function is normalized in the k-scale and  
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                  if the wave function is normalized  per unit energy as in equation (3).  

                  Note that different normalization will give you different expressions for the density of 
states. If the wave function is normalized per unit energy, then the density of states 

1)( =Eρ . If the wave function is normalized per unit in k-space, then the density of state 
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              Note that according to  Fermi Golden rule (later) the transition rate is proportional to 
)(|||0| 2 EfT TT ρ><  where f is the final state continuum wave function, 0 stands for the 

initial state and T is some transition operator. Clearly this exercise shows that the 
transition rate does not depend on how you normalize the continuum wave function. 

15. In this exercise we learn  how to Construct approximate electronic wave functions of  the 
H2

+ molecule. 
      To understand the structure of atoms, you need to start with the hydrogen atom. To 
understand diatomic molecules, we start with H2

+. In this exercise we will go over the procedure 
of getting the molecular orbitals and molecular potential energies qualitatively and derive the 
quantum numbers. The two protons are assumed to be fixed in space with separation R, and we 
want to know what are the eigenstates of the electron as R is varied.  



   (a) Recall Prob. 6 you worked out the wave function of an electron in an attractive delta 
potential and the case of two delta potentials separated by R. In the later case, the first solution of 
the wavefunction is symmetric and the second solution is antisymmetric. We will use gerade (g) 
and ungerade (u) to describe each, respectively. Clearly at large distance R, the two 
wavefunctions can be written approximately as f(x-R/2) +f(x+R/2) and the second solution as 
f(x-R/2)-f(x+R/2), the gerade and ungerade states.  The gerade state is lower in energy and has 
larger density in the region between the two centers. They should look like 

                                   
 
(b) We will use this concept to construct the "correlation diagram" of H2

+. The electron can 
associate with one or the other protons. We will use the internuclear axis as the quantization axis 
and use σ  for m=0, π  for |m|=1 and δ for |m|=2.  For large R, the two 1sσ  orbital from each 
center can form gerade and ungerade combinations. Thus write the two states as gσ 1s and uσ 1s, 
respectively. Sketch the wavefunctions for these two states in a plane containing the 
internuclear axis, indicate regions of + and - of the total wavefunction. 
 
(c) Next you can construct the similar combination from 2s, and clearly you can get  gσ 2s and 

uσ 2s, and again you know the gerade state is lower than the ungerade state. The next that you 
can do is to start from 2p. You can start with 2p0 from which you can obtain gσ 2p and uσ 2p. 
From 2p1 and 2p-1 first you can construct 2px and 2py for each atom. Of course they are 
degenerate with 2p0 or 2pz  since we use z as the quantization axis. Now try to combine 2px from 
each center to form gπ 2p and uπ 2p states. Sketch the wavefunction of these four states. 
Based on the relative magnitude of the density between the two centers justify that the relative 
energies should be ugug σππσ <<<  for orbitals constructed from 2p. Note that the gπ 2p and 

uπ 2p are doubly degenerate since they can be constructed from either  2px or from 2py.  
 
(d) Now consider the other limit when the two protons are on top of each other (R 0→ ), you 
would have hydrogen-like system, and you can label the states by hydrogenic quantum numbers. 
Assume that 2s is slightly below 2p. If you shift one of the proton slightly, you add an electric 
field and it will splits 2pz and 2px (or 2py). Which one will have lower energies? Follow this 
procedure, you can order the energy levels of  H2

+ when the two protons are near each other (the 
united atom limit). In part (c) you have worked out the relative energies of H2

+ in the separated 
atom limit. Now you need to connect the two regions, keeping in mind that the good quantum 
numbers are good for the whole curve. By doing so, you get the correlation diagram of H2

+.  
 
 



                                              
 
 More precise calculation will give you the real curves, but you see how the curves can be 
labelled. You can use united atom labels such as  2p uσ  from the united-atom limit or  gσ 2p 
from the separated atom limit.    
 
Here is the actual potential curves for H2

+. 
                                 

                                  



                                


