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We study theoretically the electron wave packet generated by an attosecond pulse train (APT) which is probed
with a time-delayed infrared (IR) laser pulse. The APT creates an excited state and a continuum electron wave
packet. By ionizing the excited state with an IR, a delayed new continuum electron wave packet is created.
The interference of the wave packets from the two paths, as reflected in angle-resolved photoelectron spectra, is
analyzed analytically. Using the analytical expressions, we examine the possibility of retrieving information on
the electron wave packet generated by the APT.
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I. INTRODUCTION

In recent years attosecond pulse trains (APT) in the extreme
ultraviolet (XUV) region have been produced in the process
of high-order harmonic generation (HHG) by exposing rare
gas atoms to intense femtosecond infrared (IR) laser pulses.
These APTs can span a broad spectrum of harmonics, each
with a relatively narrow bandwidth, and in the time domain,
a series of attosecond bursts of radiation. Thus APT is
suitable for initiating a dynamical atomic or molecular system
which evolves nontrivially in time, while retaining spectral
sensitivity [1,2]. To probe a wave packet created by an APT
in the laboratory, the most accessible tools are IR pulses that
were employed to generate the APT, or the second or third
harmonics of the IR. Such experiments have the advantage that
the time delay between the APT and the IR can be controlled
with high precision at the level of attoseconds. Attoseconds
is also the timescale needed in order to probe the electron
wave packet dynamics generated by the APT. The technology
for producing APT or single attosecond pulses (SAP) is still
in its infancy. Thus, today only a handful of laboratories are
capable of performing APT + IR or SAP + IR experiments.
Ideally, the goal of a pump-probe experiment is to unravel the
dynamic system after the pump. Since the dynamic system
evolves in time, the probe pulse has to be applied at different
time delays. While it may be of interest to observe how the
results of the probe change with time delay, a more interesting
and challenging question is to use the results of the probe
pulses to retrieve information on the dynamic system after
the pump pulse. In this paper we set out to address this
question.

In quantum mechanics, each measurement is a projection
of the dynamic system. Clearly, not all the probe pulses are
equally effective in probing the wave packet generated by
the pump. To retrieve the wave packet, equally important
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is that there should be a well-established simple theory for
describing the pump-probe measurements. In this paper we
study the wave packet generated by an APT using the helium
atom as the target. An IR will be used to probe the resulting
wave packet. Such experiments have been carried out already
in [3–7], in which the emphasis was on electron wave packet
interference where the APT and IR overlap in the time domain.
In the APT and IR overlapping region, it is difficult in
principle to separate the role of APT and IR in the creation of
the electron wave packet. In other words, the IR is not used
to probe the wave packet generated by the APT directly.
Similar experiment has been reported using single attosecond
pulses to excite and ionize H2 molecules and probed with the
IR [8]. Due to the complexity of the excitation pathways in
H2, theoretical analysis of the experimental results is quite a
challenge.

For the ultimate goal of retrieving the details of the wave
packet created by the APT, in this paper we will consider
the helium atom excited and ionized by an APT. After the
APT pulse is over, the evolution of the helium atom will be
probed by an IR at different delay times and angle-resolved
photoelectrons can be determined. Theoretically such a simple
system can be solved “exactly” from the numerical solution
of the time-dependent Schrödinger equation (TDSE) [9] in
the single active electron model [10]. On the other hand, we
will show that the electron spectra for such a pump-probe
system can be calculated semianalytically. The results from
such calculations are compared to the “experimental data”
from the numerical TDSE calculation to test the validity of the
semianalytical theory we developed in this paper. The theory
is described in Sec. II. In Sec. III, angle-resolved electron
spectra generated from solving TDSE and from the model will
be compared. And, based on the simple model, dependence of
angular distribution on the time delay will be investigated.
Using the analytical theory we show how partial retrieval
of the electron wave packets generated from the APT can
be obtained. We finish the paper with a short summary in
Sec. IV.
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II. TWO-PATH INTERFERENCE MODEL FOR
PUMP-PROBE EXPERIMENTS

A schematic “experiment” is indicated in Fig. 1(a). We
assume the APT is synthesized from the harmonics of a
Ti:sapphire laser with a wavelength around 800 nm. A filter
is used to select only the harmonics of order 11th–19th. The
frequencies of the harmonics can be slightly tuned by changing
the gas pressure, laser intensity, and laser frequency [11]. We
assume that, by exposing a helium atom to such an APT, the
1s3p 1P state (excitation energy is 23.09 eV) is populated
prominently among the excited states since we can make the
15th harmonics to be resonant with this level by using the
tuning technique mentioned above. In the meanwhile, the 17th
and 19th harmonics will ionize the He atom directly to the
continuum, generating photoelectrons with mean energy at
around 1.55 and 4.55 eV, respectively. Clearly the efficiency
of populating the 3p state (abbreviated for 1s3p) and the width
of the photoelectron spectra depend on the pulse duration
of the APT. After the pulse is over, the 800-nm probe
laser is applied to the target atom again. The 3p state can
be ionized by this probe pulse. The electron wave packet
produced through two-photon (four-photon) absorption from
the 3p state interferes with the wave packet generated directly
from the 17th (19th) harmonics. The electron spectra are
expected to show interference due to the two paths taken
for the electron to reach the same kinetic energy after the
probe.

Figure 1 depicts such an experiment. For clarity, we define
t = 0 to be at the center of the APT pulse. The time difference
between the APT and the IR is defined as the time delay, τ . The
various parameters of the APT and the IR are clearly defined in
Fig. 1(b). For such a dynamic system, the Hamiltonian, written
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FIG. 1. (Color online) Schematic of two-path interference in
API + IR experiment. (a) The energy levels and continuum states
involved. (b) Parameters of pump and probe pulses used.

in the dipole approximation, is

H (t) = H0 + zEX(t) + zEL(t − τ ), (1)

where H0 is the field-free atomic Hamiltonian, EX(t) and
EL(t − τ ) are, respectively, the APT pump field and the
delayed IR laser field. Here we assumed that all the external
fields were polarized along the z axis. Atomic units are
used throughout this article unless explicitly stated. For each
time delay τ , the time-dependent Schrödinger equation can
be solved numerically and the electron momentum spectra
are obtained. For each new time delay, the TDSE is solved once
again. This way angle-resolved electron spectra versus the
time delay can be obtained. Such “exact” numerical solutions,
however, do not address the interference of the two pathways
described earlier directly. Instead, here we develop a model
where the time delay dependence is given analytically.

Considering only the situation in which the pump and probe
pulses do not overlap, we can write the total evolution operator
for the whole pump-probe cycle as

Utotal = U

[
τ + τL

2
,τ − τL

2
; EL(t − τ )

]
U

(
τ − τL

2
,
τX

2
; 0

)

×U

[
τX

2
, − τX

2
; EX(t)

]
,

where U [t2,t1; F (t)] represents the evolution operator of the
system under an external field F (t) during a time interval
from t1 to t2. F (t) = 0 means the evolution in a free field. For
convenience, we define the propagators:

UX ≡ U

[
τX

2
, − τX

2
; EX(t)

]
, (2)

UL ≡ U

[
τ + τL

2
,τ − τL

2
; EL(t − τ )

]
, (3)

such that

Utotal = ULe−i(τ−τL/2−τX/2)H0UX. (4)

Representing the atomic evolution operator exp[−i(τ −
τL/2 − τX/2)H0] in terms of the bound and continuum
eigenstates |n〉 and eigenenergies εn of H0,

e−i(τ−τL/2−τX/2)H0 =
∑

n

|n〉e−i(τ−τL/2−τX/2)εn〈n|, (5)

we can write the probability amplitude as a function of the
time delay τ for transition from initial bound state |i〉 to an
ionized state with photoelectron momentum p as

Mpi(τ ) =
∑

n

e−i(τ−τL/2−τX/2)εnM (L)
pn M

(X)
ni , (6)

where M
(X)
ni and M

(L)
pn are probability amplitudes for transitions

induced by XUV and IR pulses, respectively,

M
(X)
ni = 〈n|UX|i〉

(7)
M (L)

pn = 〈p|UL|n〉.
Here (and throughout this article) |p〉 does not denote a plane
wave but a scattering wave which is an eigenstate of H0 with
incoming boundary conditions [12]. From the expression (6)
we can interpret the ionization process under the pump probe
as a coherent sum of paths represented by the intermediate
states n.
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Using the identity,

UL≡U

(
τ + τL

2
,τ − τL

2
; EL(t − τ )

)
= U

(
τL

2
,− τL

2
; EL(t)

)
,

we note that the ionization amplitudes M
(L)
pn from the inter-

mediate state |n〉 by the probe pulse is independent of the
time delay τ . This means Mpi depends on the time delay τ

only through the factor e−iτεn in Eq. (6). Once τ -independent
factors M

(L)
pn and M

(X)
ni are obtained, then we can generate the

pump-probe interferogram |Mpi(τ )|2 as a function of τ for a
given momentum p by using Eq. (6).

For a helium atom in the ground state exposed to the APT
introduced previously, the transition amplitude M

(X)
ni for bound

states other than n = 3p is negligible. Thus, Mpi(τ ) can be
approximately written as

Mpi(τ ) = e−i(τ−τL/2−τX/2)ε3pM
(L)
p,3pM

(X)
3p,i

+
∫

d3p′e−i(τ−τL/2−τX/2)εp′ M
(L)
pp′ M

(X)
p′i , (8)

where the second term on the right-hand side represents the
contribution from the intermediate scattering states |p′〉. Since
energy and momentum of a free electron are not changed by a
laser field, the IR introduces a Volkov phase [13] only. Thus,
we employ an approximation,

M
(L)
pp′ ≈ δ(p − p′) exp

{
− i

2

∫ τL/2

−τL/2
[p + A(t)]2 dt

}
, (9)

where A is the vector potential describing the IR probe laser
pulse.

Using this approximation, Mpi can be written as a coherent
sum of contributions from the two paths,

Mpi(τ ) = e−i(τ−τL/2−τX/2)ε3pM
(L)
p,3pM

(X)
3p,i

+ e−i(τ−τL/2−τX/2)εpe−i(τLεp+α·p+β)M
(X)
pi , (10)

where

α =
∫ τL/2

−τL/2
A(t) dt and β = 1

2

∫ τL/2

−τL/2
A2(t) dt. (11)

Here the transition amplitudes M
(L)
p,3p, M

(X)
3p,i , and M

(X)
pi can

be, respectively, obtained, for example, by solving the corre-
sponding time-dependent Schrödinger equations. Introducing
their magnitudes and phases such that

M
(X)
pi = ape

iϕp , M
(X)
3p,i = a3peiϕ3p , and

(12)
M

(L)
p,3p = bp,3peiφp,3p ,

the ionization probability density is expressed as

|Mpi(τ )|2 = a2
p + b2

p,3pa2
3p + 2apbp,3pa3p

× cos[�p,3p − (εp − ε3p)τ ], (13)

with

�p,3p = ϕp − (εpτL + p · α + β) − (ϕ3p + φp,3p)

+ (εp − ε3p)(τX + τL)/2. (14)

Note that in Eq. (13), the first term gives the probability for
producing an electron with momentum p by the APT. The
second term is the probability for the APT to excite helium

to 3p and for the IR to ionize the helium from the 3p to the
continuum state with the same final momentum p. The last term
is due to the interference of the two paths, where the time delay
dependence is explicitly expressed. Note that the phase �p,3p

includes the phase of the excitation and ionization amplitudes
by the APT, as well as those from 3p to the continuum by the
IR. It does not depend on the time delay.

III. ANGLE-RESOLVED PHOTOELECTRON SPECTRA

A. The two-path interference model and the TDSE

To illustrate the two-path interference model, we consider
a situation where an APT consists of odd harmonics from 11th
to 19th as mentioned in the previous section. The amplitude of
each harmonic is assumed to be equal. A sine square pulse is
used, with full width of half-maximumn (FWHM) of 4.5 fs, and
peak intensity of 2 × 1013W/cm2. Using helium as the target,
we obtained energy spectra of photoelectrons in the direction
along the polarization of the pump laser. Photoelectrons
generated directly by the 17th and 19th harmonics of the
APT are shown as a dash-dotted line in Fig. 2(a). The APT
also generate the 3p state of helium by the 15th harmonic.
Using a delayed IR to ionize helium from 3p, the photoelectron
spectrum is shown as a dotted line in Fig. 2(a). The IR used
in this example has wavelength at 819 nm, 5-fs FWHM, peak
intensity of 1013W/cm2, and carrier-envelop phase of π/2.
Note the presence of above-threshold ionization (ATI) peaks,
where the first ATI peak is partially visible only. Due to the
short duration, the ATI peaks are not very sharp. The two
spectra overlap mostly in the region of the second ATI peak.
In obtaining these two electron spectra, TDSE calculations
were performed separately for the APT, and the IR. Thus,
M

(X)
3p,i , M

(X)
pi , and M

(L)
p,3p are obtained. With these amplitudes,

the two-path interference model, Eq. (13) allows us to obtain
the electron spectra if the IR is applied following by a time
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FIG. 2. (Color online) (a) Photoelectron energy spectrum
|Mpi(τ )|2 (denoted by a red solid line) obtained by using the two-path
interference model (13) for a specific momentum direction θp ≈ π

and time delay τ = 5T0, where T0 is the period of single oscillation
of the IR laser. Dotted and dash-dotted lines are, respectively,
|M (L)

p,3pM
(X)
3p,i |2 and |M (X)

pi |2. (b) Comparison with the “exact” TDSE
calculational result (a dotted line).
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delay τ after the APT. The photoelectron spectra, shown
in Fig. 2(a) as a (red) full line, for τ = 5T0, demonstrated
the consequence of two-path interference. Here, T0 is the
period of single oscillation of the IR laser. To show that
the analytical model of Eq. (13) is correct, we also obtain
the electron spectra from solving the TDSE directly for the
whole APT + IR pulse, so-called the “exact” TDSE, with the
same time delay τ = 5T0. The resulting photoelectron spectra,
shown in Fig. 2(b) as a dotted line, show good agreement
with the one from the two-path interference model. It further
confirms that interference occurs only in the energy region
where photoelectrons can be reached by the two paths.

B. Interferences in angular distributions

Equation (13) allows us to predict how the angular
distributions for a given electron energy depends on the
time delay. Consider the 4th ATI peak, at photoelectron
energy of ε = 0.166 a.u.= 4.52 eV, (εp − ε3p) ≈ 4ω0. From
Eq. (13), the interference term repeats at every τ ≈ T0/4. Here,
ω0 = 2π/T0 is the photon energy of the IR laser. This result
is illustrated in Fig. 3, where the angular distributions are
plotted for four different time delays τ = 4.75T0, 4.875T0,
5.0T0, and 5.125T0. On each curve, there are two data sets
where time delays differ by T0/4. For the angular distributions
for electron energy near the second ATI peak, it would repeat
at every τ ≈ T0/2 as can be easily seen from Eq. (13).

C. Controlling asymmetry of photoelectron emission by
pump-probe time delay

In the pump-probe experiments, the two-path interference
can produce much larger asymmetry in the angular distribution
of the photoelectron even if the separate contributions of
the two paths have negligible asymmetries. To effectively
demonstrate this, we use the second harmonic of the IR
employed to generate the APT as a probe pulse. The FWHM
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FIG. 3. (Color online) Angular distributions of photoelectron
with a fixed energy εp = 0.166 a.u. for four different time delays
τ = 4.75T0 (red solid line), 4.875T0 (dotted), 5.0T0 (+), and
5.125T0(×). The distributions are identical to each other if the two
time delays differ by T0/4. The spectra are for electrons where
(εp − ε3p) ≈ 4ω0; see text.
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FIG. 4. (Color online) (a) Angular distributions of photoelectron,
for a fixed energy εp = 0.0566 a.u., directly generated by absorption
of the 17th harmonics (red solid line) and produced through
single-photon absorption of the second harmonics from 3p state
(blue dotted line). (b) Asymmetry A(ε), as a function of the time delay
for εp = 0.0566 a.u., in the angular distribution of photoelectron
produced in the pump-probe experiment using the second harmonics
as a probe. (c) Angular distributions of photoelectron corresponding
to the time delays τ = 4.825T0 (red solid line) and 5.075T0 (blue
dotted line) in (b).

and peak intensity is, respectively, chosen to be 5 fs and
3 × 1012 W/cm2. Figure 4(a) shows the angular distributions
of the photoelectrons produced separately by the two paths
(i.e., a2

p and b2
p,3pa2

3p for ε = 0.0566 a.u. = 1.54 eV); they are
almost symmetric, and their magnitude and shape are similar to
each other. In fact, at the intensities used here, photoionization
from the ground state by APT is a one-photon process, thus
the electrons’s angular momentum is l = 1. The ionization
pathway from 3p is also a single photon absorption of the
second harmonic, and the electron’s angular momentum will
be either l = 0 or 2. By changing the time delay between the
two paths, the odd angular function from the direct path and
the even angular function from the indirect path can be added
constructively on one side of the electron ejection and destruc-
tively on the other side, thus creating strong asymmetry in the
angular emission of the photoelectrons, as shown in Fig. 4(c).

The sensitivity of angular distributions on the time delay
can be conveniently described by the range of variation of the
asymmetry parameter A(ε) which is defined as the difference
in signal between the top and bottom half of the momentum
distribution at a particular photoelectron energy ε,

A(ε) = nup − ndown

nup + ndown
. (15)

Using such a definition we can show the asymmetry of
up-down electrons versus time delay. Figure 4(b) shows the
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FIG. 5. (Color online) Interferogram I (εp,τ ), that is, photoelec-
tron two-dimensional spectrum in τ -εp space for a specific momentum
direction θp ≈ π . The data were obtained by using the “exact” TDSE
calculation for each time delay.

large asymmetry of the directional electron emission. Thus,
using two-path interference, it offers an efficient means of
generating strong directional continuum electrons, simply just
by tuning the time delay between the pump-probe pulses.
To our knowledge, this is a much more efficient way for
creating electrons in preferential directions by photons than
using few-cycle pulses [14–16].

D. Two-path interfering electron spectra versus time delay
at a fixed emission angle

From Fig. 3 we note that the angular distribution tends to
peak along the polarization axis. Thus it is pertinent to examine
the electron spectra at a fixed angle near 0 or π and display
the energy-τ spectra (i.e., |Mpi(τ )|2), at the fixed angle, which
will be denoted by I (ε,τ ). Figure 5 shows the spectra at an
angle near π . Clear interference fringes can be seen for each
narrow energy range around the second and fourth ATI peaks.
Based on the two-path interference model, these fringes can be
understood easily. Clearly from Eq. (13), for a fixed emission
angle, the peak of the spectra occurs when

�p,3p − (εp − ε3p)τ = 2nπ, (16)

where n is a positive or negative integer. Within a narrow
energy region, say near the second or the fourth ATI peak,
from Eq. (14), we expect �p,3p be approximated by a constant
(unless there are resonances within the energy region). Under
this approximation, the fringe will be a hyperbola in the I (ε,τ )
plot. Such I (ε,τ ) is similar to the interferogram in optics. The
density of the fringe, from Eq. (13), depends on the value of
(ε − ε3p). For the band near the fourth ATI peak, its value is
about twice that of the band near the second ATI peak. Thus the
fringe repeats at about twice the rate for the former compared
to the latter band for the same range of τ . For each band, the
density of the fringe increases for larger τ . Each fringe is tilted
toward smaller τ with increasing electron energy. All of these
features can be easily understood from Eq. (16). We comment
that if �p,3p is a strict constant, then the hyperbola in the fourth
ATI peak region should connect smoothly with the hyperbola
in the second ATI peak region. This is not the case since
�p,3p is expected to be different over a larger energy region.

We comment that similar analysis of I (ε,τ ) has been done
earlier [17,18] without the benefit of the analytical expression
Eq. (13).

IV. PARTIAL RETRIEVAL OF ELECTRON WAVE PACKET

After identifying that the function I (ε,τ ) is similar to the
interferogram in optics, we can follow optics to use its Fourier
integral transform, defined by

F (ε,ε′) = 1

τf − τi

∫ τf

τi

dτI (ε,τ )eiε′τ , (17)

to retrieve information about the composition of the wave
packet. Writing I (ε,τ ) [See Eq. (13)] in the form of

I (ε,τ ) = Ibg(ε) + 2Ios(ε) cos[�p,3p − (ε − ε3p)τ ], (18)

with

Ibg(ε) = a2
p + b2

p,3pa2
3p, (19)

Ios(ε) = apbp,3pa3p, (20)

we can easily obtain

F (ε,ε′) = Ibg(ε)eiε′(τf +τi )/2sinc[ε′(τf − τi)/2]

+ Ios(ε){ei�p,3p e−i(ε−ε3p−ε′)(τf +τi )/2

× sinc [(ε − ε3p − ε′)(τf − τi)/2]

+ e−i�p,3p ei(ε−ε3p+ε′)(τf +τi )/2

× sinc [(ε − ε3p + ε′)(τf − τi)/2]}. (21)

Here (τf − τi) is the range of pump-probe time delay measured
in the experiment, and sinc(x) = sin(x)/x. Recall that sinc(x)
is a damped oscillating function peaked at x = 0 and the
width of the peak of sinc[ε(τf − τi)/2] in ε space decreases as
(τf − τi) increases such that

sinc [ε(τf − τi)/2] → 0 for ε �= 0 as (τf − τi) → ∞.

(22)

Thus, as the range of time delay increases, the magnitude of
F (ε,ε′) can be large only on the three straight lines: ε′ = 0
from the first term, ε − ε3p − ε′ = 0 from the second term,
and ε − ε3p + ε′ = 0 from the last term of the right-hand side
in Eq. (21). A plot of |F (ε,ε′)| in the (ε′,ε) plane is presented
in Fig. 6, where we can clearly see the peaks along the vertical
line ε′ = 0 and those on a straight line with an inclination angle
π/4. The latter line is considered to be described by ε = ε′ +
ε3p in accordance with the peak positions of the second term in
Eq. (21). The value of ε3p can be retrieved from this figure by
fitting the line to the equation ε − ε3p − ε′ = 0 such that ε3p =
−0.0568 a.u., which is the same as the exact value obtained by
solving the time-independent Schrödinger equation for bound
states. Note that the line ε − ε3p + ε′ = 0 lies out of the energy
region considered in this figure.

In addition to the bound state energy ε3p, we can retrieve
the incoherent background amplitude Ibg(ε) and the amplitude
of the oscillation Ios(ε) from |F (ε,ε′)|. To demonstrate this, we
show a plot of |F (ε,ε′)| as a function of ε′ at a given ε = 0.166
a.u. in Fig. 7(a). The peak value read from this figure at ε′ =
0 is 4.459, compared to the calculated value Ibg(ε) = 4.459
using Eq. (19), while the peak value read at ε′ = ε − ε3p =
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FIG. 6. (Color online) Magnitude of the Fourier integral trans-
form F (ε,ε ′) of the interferogram I (εp,τ ) at a fixed direction θ ≈ π .
Peaks can be clearly seen along two lines; one is the vertical line at
ε ′ = 0 and the other is a straight line (indicated by white segments)
with an inclination angle π/4.

0.166 + 0.0569 = 0.2228 is 1.384 and the theoretical value
from Eq. (20) is Ios = 1.391. The small difference is due to
the fact that the range of τ , (τf − τi), in Eq. (17) covered in
Fig. 5, is about 700 a.u. only. Thus sinc[ε(τf − τi)/2] does
not approach the asymptotic limit as in Eq. (22) yet. Such
finite range τ integration in Eq. (17) also reflects the minor
interference structures observed in Fig. 6 between the lines
ε′ = 0 and ε = ε′ + ε3p. We comment that similar analysis
have been used previously for SAP + IR experiments on He
[17,18] and on H2 [8].

From Eq. (21), we note that the phase of F (ε,ε′) can be
used to obtain the phase �p,3p. In Fig. 7(b) we show the phase
of F (ε,ε′) as a function of ε′ at a given energy ε = 0.166 a.u..
As can be seen from the phase factors in the second term in
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FIG. 7. (Color online) (a) A cut of |F (ε,ε ′)| at a given ε =
0.166 a.u., as a function of ε ′. The peaks at ε ′ = 0 and 0.2228 are
denoted by circles. (b) A cut of phase of F (ε,ε ′) at the same ε as
in (a). The data point corresponding to the phase at ε ′ = 0.2228 is
denoted by a circle.

Eq. (21), �p,3p at ε = 0.166 a.u. can be retrieved by reading
the phase of F (ε = 0.166,ε′) at ε′ = ε − ε3p = 0.2228 a.u..
The value read from Fig. 7(b) is −0.88π , in good agreement
with the value calculated from using Eq. (14).

Based on the above discussion, from the Fourier integral
transform of the interferogram I (ε,τ ) measured at a given
angle, one can only obtain partial information such as ap,
bp,3pa3p, �p,3p, and ε3p. It is not possible to retrieve the
full information of the wave packet generated by the pump
beam (i.e., ap, a3p, and ϕp − ϕ3p). If the interaction of the
probe beam with the target is weak such that perturbation
theory will work and thus all terms in Eq. (14) involving
the probe pulse are known, then knowledge of �p,3p would
allow the determination of ϕp − ϕ3p [see Eq. (14)]. Under
this ideal condition, then, from the time-delayed pump-probe
measurements, the electron wave packet generated by the APT
can be reconstructed from the measured interferogram I (ε,τ ).
If the probe is not a perturbation, any measurement would
introduce additional unknowns. While partial information on
the electronic wave packet can be obtained using a probe pulse,
full characterization of the wave packet generated by a pump
beam will be extremely challenging.

Before closing, we mention that angle-resolved photoelec-
tron spectra in APT + IR experiments are still very few. Spectra
similar to Fig. 6 have been shown in [17]. Experiments using
SAP instead of APT and probed by IR have also been reported
recently using H2 target [8] as well as He target [18]. Clearly
the present theory can be extended to SAP + IR experiments.
A large bandwidth of a SAP leads to the excitation of a broad
coherent superposition of states. It is remarkable that Eqs. (6)
and (9) remain intact for these experiments if only the pulses
do not overlap. Applying these equations and following the
steps similar to Eqs. (10)–(14), one can easily understand
the two-path interference signals in the Fourier transform of
the angle-resolved photoelectron spectrum; in addition to the
peaks along straight lines with an inclination angle π/4 as
in the present APT + IR experiment, the interference between
two paths passing through different excited states |n〉 and |m〉
gives rise to peaks along a vertical line at ε′ = |εn − εm|. The
vertical lines in the insets of Fig. 3 in Ref. [8] and those denoted
by “QB” in Fig. 2(b) in Ref. [18] show this type of two-path
interference. It is noted that there is no peak along a straight
line with an inclination of π/4 in the inset of Fig. 3 in Ref. [8]
because the SAP in that experiment creates only a coherent
superposition of vibrational states of H+

2 without molecular
dissociation.

V. SUMMARY

In this paper we introduce a simple theory which treats the
free evolution of the quantum mechanical system analytically
in a typical pump-probe experiment employing nonoverlap-
ping pulses. The validity of the theory was confirmed by
comparing to angle-resolved photoelectron energy spectra
calculated from solving TDSE. The analytic theory illustrates
the interference of the different pathways for the electron
emission directly. From the evolution of the angle-resolved
electron spectra versus the time delay, we show that partial
information of the wave packet generated by the pump beam
can be extracted. However, to retrieve the whole wave packet
even for the simplified system treated here proves to be rather
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difficult. On the other hand, we show that the directional
photoelectron emission can be nicely controlled using the
two-path interference method, by simply tuning the time delay
between the pump and probe pulses. This may lead to a
powerful coherent control of the electron wave packet [19].
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