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Based on the full quantal recollision model and field-free electron impact ionization theory, we
calculate the correlated momentum spectra of the two outgoing electrons in strong field nonsequential
double ionization (NSDI) of helium to compare with recent experiments. By analyzing the relative
strength of binary versus recoil collisions exhibited in the photoelectron spectra, we confirm that the
observed fingerlike structure in the experiment is a consequence of the Coulomb interaction between the
two emitted electrons. Our result supports the recollision mechanism of strong field NSDI at the most

fundamental level.
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Nonsequential double ionization (NSDI) of atoms by
intense linearly polarized laser fields has continued to
draw considerable theoretical and experimental interest
in the last two decades. Its attractiveness owes much to
the fact that both the coupling between electrons with the
laser field and the electron-electron interaction cannot be
treated as perturbations. Qualitatively NSDI experiments
are understood based on the semiclassical “recollision”
model [1,2], where an electron first released from the atom
by the laser field is driven back to recollide with the target
ion and liberate another electron, in a process analogous to
electron impact ionization, or the (e, 2e) process. Many
experiments have been performed, from the total double
ionization yield vs laser intensity [3], ion momentum dis-
tributions along the direction of laser polarization, to mo-
mentum correlation between the two outgoing electrons
[4-9]. In the meantime, there is no shortage of efforts on
the theory side. A complete theoretical understanding of
NSDI should permit quantitative explanation of the mea-
sured two-electron momentum spectra. Such attempts in-
clude direct numerical solution of the two-electron time-
dependent Schrodinger equation [10,11] and classical
equation of motion [12]. These pure numerical calculations
do not employ the rescattering concept directly.
Calculations employing the rescattering concept include
the S-matrix theory [13,14] where the (e, 2¢) is solved by
first-order perturbation, and semiclassical theory [15,16]
where the (e, 2e) is calculated using classical mechanics.
In this Letter we employ a full quantum formulation of the
rescattering model and quantum scattering theories for the
(e, 2e) process to calculate the momentum spectra of the
two outgoing photoelectrons. Our aim is to interpret the
experimental results reported in Staudte ef al. [11] and in
Rudenko er al. [17], where the two-electron momentum
distributions along the laser polarization axis exhibit pro-
nounced V-shaped, or fingerlike structure.
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The starting point of our approach is the quantitative
rescattering (QRS) theory [18] which has been applied to
other rescattering processes such as high-order harmonic
generation [19] and high-energy above-threshold ioniza-
tion (HATI) electrons [20]. According to QRS, after the
initial tunneling ionization, there will be an electron wave
packet W(k,) that returns at time ¢, to recollide with the
target ion. We can obtain this wave packet from the HATI
momentum spectra or from experiment [20]. By weighting
the (e, 2e) differential cross sections with the returning
electron momentum distribution W(k,), the yield for the
emission of the two outgoing electrons can be calculated.
However, in NSDI ionization occurs in the laser field. For
(e, 2e) process that occurs at time ¢, when the vector
potential of the laser field is A(z,) = A, after the collision,
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FIG. 1 (color online). (a) Schematic of laser-free (e, 2¢) colli-
sions. Index 1 for the scattered electron and 2 for the ejected
electron. For electron 2, both the binary collisions (black arrow)
and recoil collisions (red arrow) are indicated. (b) Same as (a)
but electrons 1 and 2 are interchanged. (c) Kinematically al-
lowed region of the momentum components parallel to the laser
polarization axis for the two outgoing electrons in the recolli-
sional (e, 2¢) process.
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each electron is still under the influence of the laser field.
From ¢, to the end of the laser pulse (where the vector
potential is zero) each electron will gain an additional
momentum —A, in the direction of laser polarization
(atomic units are used). Thus, the measured photoelectron
momentum is given by

pl=—a +&.  pt =i (1)

or p= —A, + k,. According to the QRS, it was further
established that k, = 1.26|A,|. Note that for each optical
cycle, as the laser field oscillates there are two wave
packets returning to the target ion, one from the “right”
and another from the “left.”” We will consider long pulses
where the left and right wave packets are equivalent.

We first analyze the constraints on the momenta for the
field-free (e, 2e) process. Let k, = k(, where k is the
momentum of the incident electron. After collision, we use
k; for the momentum of the scattered particle and k, for
the ejected particle. Figure 1(a) depicts such a collision.
For a given kj, when k; is fixed, it is known from (e, 2¢)
that there are two favored scattering angles for k,. The first
one is called binary collision, where ky = ki-. The second
one is called recoil collision where electron 2 is ejected
after it is further backscattered from the nucleus. As illus-
trated in Fig. 1(a), for binary collisions (k! >0, kI > 0)
and for recoil collisions (kll| >0, kg < 0). Since the two
outgoing electrons are indistinguishable, an exchange ef-
fect should be considered. In Fig. 1(b) we consider k, for
the scattered electron and k; for the ejected electron. The
binary peak and the recoil peak are also shown.

In all two-electron momentum measurements, only the
momentum component of each electron along the polar-
ization axis has been reported. For each incident energy
Ey = k3/2, energy conservation requires E,— 1, =

P
k3/2 + k3/2 where I, = 54.4 eV is the ionization poten-

tial of He™. In Fig. 1(c), we depict the bound of (k”, kg) ina

2D plot of (plll, pg) for each value of E,. The (e, 2¢)
collisions depicted in Figs. 1(a) and 1(b) have spectra
located in the third quadrant. For “incident” electrons
from the opposite direction, the spectra are located in the
first quadrant. The center of each circle is shifted from the
origin by an amount |A,| along each axis and the circle
shrinks to a point at the ionization threshold. In Fig. 1(c),
for the highest incident energy, we further indicate the
regions for the binary collisions and recoil collisions,
respectively. This analysis relates the phase space of the
momenta of the two outgoing electrons measured in the
laboratory to the contributions of binary collisions vs recoil
collisions in the laser field.

We next show in Fig. 2(a) the experimental correlated
momentum spectra from Staudte et al. [11]. It shows that

there are counts covering regions in ( plll, pg) that are not

allowed in Fig. 1(c), in particular, in the second and fourth
quadrants. These events are due to indirect processes in
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FIG. 2 (color online). (a) Experimental correlated momentum
spectra along the polarization direction for double ionization of
helium at 800 nm, 4.5 X 10'* W/cm?2. (b) Same as (a) in the first
quadrant, only the (e, 2e¢) portion is retained, see text. The
original data are from Staudte et al. [11].

NSDI where an electron in the target ion is first excited by
the returning electron, followed by tunneling ionization of
the excited electron by the laser. These excitation-
tunneling events are symmetric with respect to the two
momentum axes [9]. Using the original data of [11], we
take the average of the corresponding data points in the
second and fourth quadrants. By subtracting this average
from the corresponding data points in the first quadrant, we
obtain the true experimental correlated momentum spectra
from the direct (e, 2¢) processes. The results are shown in
Fig. 2(b). An identical true (e, 2¢) spectra is obtained for
the third quadrant.

After having analyzed the kinematics of the two out-
going electrons, we next employ the laser-free (e, 2e)
scattering theory to calculate the differential cross sections
and use Fig. 1(c) to translate the results to compare with the
measured photoelectron spectra.

The laser-free (e, 2e) scattering amplitude is given by

Sk, kp) = (W Vil ). (2

The final-state wave function Wy \ ~for two continuum
electrons in the potential from the nucleus should be the
“exact” solution of the two-electron Hamiltonian with the
incoming wave boundary condition. Since no exact solu-
tions are available, various approximations will be used
below. Based on Eq. (2), clearly the two-electron momen-
tum correlation spectra in (e, 2¢) depend most sensitively
on the final-state wave function Wy ~A commonly used
approximate wave function in (e, 2¢) for two electrons in
the continuum is the so-called BBK model of Brauner,
Briggs, and Klar [21]

‘I’;l‘kz(rl, rz) = (27T)73 exp(ik] . r])exp(ikz . l‘2)
X C(ay, ki, 11)C(ay, ky, 1))
X C(alz, ki), 1'12)y 3)

where the Coulomb function is
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FIG. 3 (color online). Wave packets against the momentum of
the recolliding electron (the bottom horizontal axis) for 15 fs
(FWHM) laser pulses at peak intensities of 4.0, 4.5, and 5.0 X
10'* W/cm? with wavelength of 800 nm. The arrow indicates
the minimum momentum of the recolliding electron to ionize the
parent ion He™. The returning electron energy is marked on the
top horizontal axis.

C(a, k, r) = exp(—7a/2)I'(1 — ia)
X Filia; 15 —i(kr + k - 1)] %)
and
kip = (k) — ky)/2, rp =1r — Iy
ay = —Zy/ki, ay = —Zy/ky, @ = 1/2ky,.
®)

Equation (3) is a product of Coulomb functions between
each pair of charged particles. The perturbation V; in
Eq. (2) is

Vizl/"lz_ZN/”l — U(r), (6)

where Z,y = 2 is the charge of the nucleus.
The initial two-electron wave function is taken to be

Wy, (ry, 1p) = @ (1) e (1), @)

where ¢y (r;) describes the incident electron in potential
U,(r) and ¢p.+(r;) is the ground state wave function of
He". For the initial state, if we set U;(r) = 0 for the
incident electron, then U;(r) =0 is a plane wave. We
will use P-CCC to denote transition amplitudes calculated
with the incident electron described by a plane wave and
the final-state wave function given by the BBK, since in
BBK the final-state wave function is the product of three
Coulomb functions. Note that one can drop the last C
function in Eq. (3) by setting a;, = 0 in Eq. (5). This
represents that electron-electron repulsion between the
two electrons in the final state has been neglected. We
use P-CC to denote this approximation.

To account for the fact that the two electrons are indis-
tinguishable, the triple differential cross section (TDCS)
for electron impact ionization process is given by

Lo kk[3 .
m_(z”) Ko [1|f(k1ykz) g(ky, ko)l
1
417k ko) + g(k,, kzlz]’ (8)

where (6, ¢,) and ,(6,, ¢p,) are the solid angles of k |
and k,, and g(k;, k,) is the exchange amplitude with
gk, k,) = f(ky, k). Finally, to compare with experi-
mental measurements for a given incident energy E,, we
have to integrate the TDCS over unobserved degrees of
freedom,

1 (Ens 2 Bo
Y, (kI k) =—f dEf dpy—— |
EO( 2 k1k2 0 2 0 q’)delszdE2 ¢1=0

€))

where E,« = Eg — I,. In Eq. (9), we set ¢»; = 0 due to
the cylindrical symmetry.

To generate correlated parallel electron momentum
spectra from NSDI to compare with experimental data,
two more levels of integration have to be carried out.
First, in a laser experiment, the returning energy of the
wave packet for each peak intensity has a distribution
W(k,). Second, peak laser intensity is not uniform within
the laser focus volume from which the electrons are col-
lected. As shown elsewhere [20], using the QRS, the result
of including volume integration is to replace W(k,) by a
volume integrated wave packet Wy (I, k) which depends
on the peak intensity [ at the laser focus. In Fig. 3 we show
Wy 1y, k,) for three peak intensities at I, = 4.0, 4.5, and
5.0 X 10'* W/cm?. The arrow indicates the minimum re-
turning electron momentum needed for (e, 2¢) to be ener-
getically possible. In Figs. 4(a) and 4(b) we show the cal-
culated parallel momentum distributions using the P-CC
and P-CCC models, respectively, for laser intensity of
4.5 X 10" W/cm? from Staudte et al. [11]. (Only the first
quadrant is shown since the spectra in the third quadrant
can be obtained by inversion.) Comparing to Fig. 2(b), it
clearly shows that the P-CCC predictions are much closer
to the experimental data while the P-CC model fails
completely.

Despite of its success, the P-CCC still is a very simple
theory. The maximum returning energy of the electron in
the measurement is only 31 eV above the ionization thresh-
old. For such low energy collisions, the P-CCC model is
not expected to be very accurate. First, the interaction
between two charged particles in BBK is not screened by
the presence of the third charge; thus, Coulomb repulsion
between the two electrons is too large and the recoil peak is
overemphasized. This deficiency is corrected by introduc-
ing an effective Sommerfeld parameter for each pair of
charges [22]. Such modifications incorporate dynamic
screening (DS) among the three pairs of Coulomb inter-
actions and hence are called DS3C. The spectra of DS3C
are shown in Fig. 4(d). Compared to P-CCC model, one
can see an increase of the yield in the binary collision
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FIG. 4 (color online). Momentum spectra of the two outgoing
electrons in the recollisional (e, 2¢) process on Het at 800 nm,
and peak intensity of 4.5 X 10" W/cm? at the laser focus.
Shown are the momentum components along the polarization
axis for each electron. The theoretical models used are (a) P-CC,
(b) P-CCC, (c) C-CC, and (d) DS3C, respectively.

region and thus in better agreement with Fig. 2(b). Another
improvement is to use Coulomb wave for the incident
electron. Using Coulomb waves, however, the scattering
amplitude can only be conveniently calculated for the
C-CC model. The results from the C-CC model are shown
in Fig. 4(c). Comparing to Fig. 4(a), the binary peak is
enhanced with the use of incident Coulomb waves.
Generalizing from this, we anticipate that replacing plane
wave by Coulomb wave for the initial state but using DS3C
for the final state would give a stronger binary peak and a
weaker recoil peak than in Fig. 4(d). Based on these re-
sults, we can conclude that electron-electron interaction
between the two electrons is responsible for the appearance
of a fingerlike structure in the correlated momentum
correlation.

There are other more advanced (e, 2¢) theories that have
been applied to electron impact ionization of neutral
atoms. These include the convergent close coupling theory
[23], R-matrix theory [24], the exterior complex scaling
method [25], and the direct integration of the time-
dependent Schrodinger equation method [26]. These cal-
culations are rather time consuming but can be carried out.
Using the QRS model, these (e, 2¢) theories can be used to
obtain more accurate two-electron momentum spectra for
the NSDI processes.

We comment that not every NSDI experiment need be
interpreted with sophisticated (e, 2¢) collision theories. For
example, we found that longitudinal ion momentum dis-
tributions calculated using P-CC and P-CCC are nearly
identical in shape. Such ion momentum distributions de-
pend more critically on the returning electron momentum

distributions. Thus for short pulses they are sensitive to the
carrier-envelope phase of the laser [27].

In summary, we demonstrated that the fingerlike struc-
ture in the correlated two-electron momentum spectra
observed in the recent nonsequential double ionization of
helium [11,17] can be quantitatively predicted based on a
full quantum mechanical recollision model and field-free
(e, 2e) collision theory. Coulomb repulsion between the
two outgoing electrons has been found to be responsible
for the observed fingerlike structure. These results support
the interpretation of recollision mechanism for strong field
nonsequential double ionization of atoms at the most basic
level.
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