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Hyperspherical close-coupling calculations for charge-transfer cross sections
in He2¿¿H„1s… collisions at low energies
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A theory for ion-atom collisions at low energies based on the hyperspherical close-coupling~HSCC! method
is presented. In hyperspherical coordinates the wave function is expanded in analogy to the Born-Oppenheimer
approximation where the adiabatic channel functions are calculated withB-spline basis functions while the
coupled hyperradial equations are solved by a combination ofR-matrix propagation and the slow/smooth
variable discretization method. The HSCC method is applied to calculate charge-transfer cross sections for
He211H(1s)→He1(n52)1H1 reactions at center-of-mass energies from 10 eV to 4 keV. The results are
shown to be in general good agreement with calculations based on the molecular orbital~MO! expansion
method where electron translation factors~ETF’s! or switching functions have been incorporated in each MO.
However, discrepancies were found at very low energies. It is shown that the HSCC method can be used to
study low-energy ion-atom collisions without the need to introduce thead hocETF’s, and the results are free
from ambiguities associated with the traditional MO expansion approach.
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I. INTRODUCTION

Charge-transfer processes in slow ion-atom collisions
examples of rearrangement collisions that are difficult
treat theoretically. One of the main difficulties stems fro
the fact that there is not a single coordinate system tha
suitable for describing all the different arrangements of
constituent particles. At low collision velocities, the electr
is expected to be shared between the two slowly mov
nuclei such that the collision complex can be approxima
as a transient molecule. Therefore, molecular orbitals~MO’s!
are the natural representation for describing slow ion-a
collisions. At low energies, a full quantum mechanical tre
ment for both the electronic and the nuclear motion is a
required. The well-known perturbed stationary state~PSS!
approximation, introduced by Massey and Smith@1# more
than half a century ago, is based on the MO expansion, or
adiabatic Born-Oppenheimer~BO! approximation. In the
PSS model, electronic transitions occur via nonadiab
couplings between different molecular orbitals. However,
adiabatic BO approximation is known to have severe d
ciencies, originating from the fact that the molecular orbit
do not satisfy the correct asymptotic boundary conditio
The fundamental defects associated with the PSS model
been well documented, including incorrect dissociat
thresholds, nonvanishing asymptotic couplings and n
Galilean-invariant calculated cross sections@2–5#. Although
these problems have been well known for decades, the r
edies are less obvious@6,7#. Approaches based on the s
called reaction coordinates~RC’s! have been proposed@8,9#,
but very few calculations have been carried out@10–13#.
Even within the RC method, there still exists some arbitra
ness in the choice of reaction coordinates.

Most of the low-energy ion-atom collision calculation
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beyond the PSS model have been calculated by introdu
modifications through electron translation factors~ETF’s!
@14,15#. The ETF’s were first adopted in the semiclassic
treatment of ion-atom collisions at higher energies where
internuclear motion is treated classically@16,3#. In the PSS
model, the asymptotic limit of each molecular orbital is r
duced to an atomic orbital. For an atom-atom or ion-at
collision, each atomic electron is supposedly moving w
one or the other atom with a well-defined velocity in th
asymptotic region. This translational motion is represen
by attaching a plane wave ETF to each atomic orbital. S
a procedure does not specify how the translational mo
should be accounted for at finite internuclear separatio
thus different types of switching functions~or ETF’s! have
been proposed and used in actual calculations@17,18#. Such
approaches are widely used in the literature and we will
scribe them as MO-ETF models in this paper. The introd
tion of ETF’s in MO-ETF models means that the basis fun
tions do satisfy the correct asymptotic boundary conditio
and the calculated cross sections are Galilean invari
However, thesead hoc ETF’s are semiclassical in nature
even though the same formulation has been applied to q
tum mechanical formulations as well@15,14#.

In spite of these limitations, a large number of calcu
tions based on the MO-ETF models have been carried ou
low-energy ion-atom collisions, and the results often co
pare reasonably well with experiments. On the other ha
ion-atom collision experiments at low energies are very d
ficult and experiments often can determine total char
transfer cross sections only. Thus the validity of the M
ETF-type calculations has not been fully tested at the hi
precision level. In this paper we present a theoreti
approach for ion-atom collisions at low energies. Our goa
to provide results for elementary ion-atom collision syste
so that they can be used to evaluate the validity of ot
©2003 The American Physical Society05-1
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methods such as the MO-ETF-type models. As a numer
implementation of this theory, charge transfer cross sect
in He211H collisions are presented.

The simplest ion-atom collision system consists of t
heavy nuclei and one electron. They belong to a special c
of Coulomb three-body systems. In recent decades, the
perspherical close-coupling~HSCC! approach has bee
shown to provide a powerful framework for obtaining stru
ture parameters and scattering cross sections involving t
particles @19#. The method has been used to study heli
atoms@20#, positron-atom collisions@21# ~two light particles
and one heavy!, atom-diatom collisions@22,23#, muonic
molecules@24#, and three-body recombinations@25# ~three
particles of identical or nearly identical masses!. It was em-
phasized earlier by Fano and co-workers@26# that the funda-
mental difficulties of the PSS model can be avoided if o
formulates ion-atom collisions within the hyperspheric
framework. However, few actual calculations have be
done. For ion-atom collisions, even at thermal energies,
number of partial waves needed to reach a converged
cross section calculation easily runs into hundreds or th
sands. In the standard HSCC method, unlike the PSS
proach, each partial wave is an independent calculation;
the hyperspherical approach would require huge comp
tional resources. However, it has been shown recently
Igarashi and Lin@27# that simplifications similar to those o
the PSS model can be applied to ion-atom collisions wit
the hyperspherical approach. Using a simple two-chan
model, charge transfer cross sections in D11H(1s) colli-
sions@27# and inm11H(1s) collisions @28# have been ob-
tained, but only for energies up to a few eV. To general
these earlier studies to many-channel problems and to
advantage of simplifications similar to the PSS model,
detailed below, the hyperspherical approach has to be for
lated in the body frame of the three-body system, and a n
ber of numerical difficulties have to be overcome if it is to
extended to the tens of keV region.

In this paper we present a full account of the hypersph
cal close-coupling method for ion-atom collisions. The fo
mulation is similar to the PSS model except that the hyp
radius is used as the adiabatic parameter. Computation
we adopted the following techniques. First, the total wa
function is expanded in the body-fixed frame, with the int
nuclear axis chosen to be the body-frame quantization a
The adiabatic hyperspherical channel functions are ca
lated using B-spline basis functions. Second, the slo
smooth variable discretization~SVD! method@29#, combined
with theR-matrix propagation method of Kato and Watana
@30#, is used to solve the coupled hyperradial equations.
latter method allows us to avoid calculating nonadiaba
coupling matrix elements. Third, theR matrix from the inner
region and the asymptotic solutions are matched at a la
hyperradius to obtain theK matrix and then the scatterin
cross sections. Simplifications and modifications of the p
cedures used by Kato and Watanabe@30# needed for ion-
atom collision systems are also explained.

For a pilot calculation, we studied the charge transfer p
cess in slow He211H(1s) collisions at center-of-mass ene
gies from 10 eV to 4.0 keV. The results are compared w
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other calculations. At higher energies the present results
in general agreement with other calculations and exp
ments. However, we found significant discrepancy with
MO-ETF calculations@15# at low energies. In the low-energ
region, our results are in good agreement with those obta
from the distorted atomic orbital method@31#, despite the
fact that the latter has never been fully developed into
practical computational tool because of its mathemat
complexity. In Sec. II, we describe the hyperspherical clo
coupling method. The details of the computational pro
dures and tests are described in Sec. III. In Sec. IV,
present our calculated charge-transfer cross sections
He211H(1s) collisions and compare them with other the
retical calculations. The last section gives a summary
conclusions.

II. HYPERSPHERICAL METHOD
FOR ION-ATOM COLLISIONS

In this section we describe the theoretical methods and
computational techniques used in the hyperspherical me
for treating ion-atom collisions. A detailed description of h
perspherical coordinates for arbitrary three-body system
given in the review by Lin@19#. Here we give only the basic
equations and the computational methods used in the pre
work.

A. Elements of the hyperspherical close-coupling method

For collisions such as He211H, we describe the collision
process in the center-of-mass frame. Using atomic units,
designate the mass of each of the three particles bym1 , m2,
andm3, respectively. Three sets of Jacobi coordinates can
used to describe the relative motion of the particles~see Fig.
1!. In the ‘‘molecular’’ frame, or thea set of coordinates, the
first Jacobi vectorr1 is from He21 to H1, with reduced mass
m1; and the second Jacobi vectorr2 is from the center of

FIG. 1. Three sets of Jacobi coordinates.
5-2
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mass of He21 and H1 to the electron, with reduced massm2.
The hyperradiusR and hyperanglef are defined by

R5Am1

m
r1

21
m2

m
r2

2, ~1!

tanf5Am2

m1

r2

r1
. ~2!

Note thatm is arbitrary. Another angleu, defined to be the
angle between the two Jacobi vectors, will also be used la
The range off is from 0 top/2 andu ranges from 0 top.
Clearly, one can also define the two other sets of coordin
in Fig. 1. In theb-set coordinates, the first Jacobi vector
from He21 to the electron, and the second Jacobi vecto
from the center of mass of (He21,e2) to H1. This set is
used to describe the scattering of the proton with the bo
He1 ion. Similar g-set Jacobi coordinates can be defined
describe He21 and the (H1,e2) system. For each Jacob
coordinate system, a set of new mass-weighted hypersp
cal coordinates similar to Eqs.~1! and ~2! can be defined. A
special notable feature is that the hyperradius thus define
identical for the three sets of Jacobi coordinates. In the
lowing we will express the equations using thea set of co-
ordinates. When quantities are expressed inb- or g-set co-
ordinates, superscripts ofb or g will be used. In thea-set
coordinates the formulation of the hyperspherical clo
coupling method is very similar to the PSS model. We w
choosem to be the reduced mass of the two heavy nuc
The hyperradiusR then becomes very close to the intern
clear distance. From Eq.~1!, the difference is of the order o
Am2 /m1, which is roughly the square root of the mass of t
electron over the reduced mass of the two heavy particle

We first introduce the rescaled wave function

C~R,V,v̂ !5cR3/2sinf cosf; ~3!

then the Scho¨dinger equation is of the form

S 2
1

2

]

]R
R2

]

]R
1

15

8
1Had~R;V!2mR2EDC~R,V,v̂ !50,

~4!

where V[$f,u%, and v̂ denotes the three Euler angle
$v1 ,v2 ,v3% of the body-frame axes with respect to th
space-fixed frame.Had is the adiabatic Hamiltonian,

Had~R;V,v̂ !5
L2

2
1mRC~V!, ~5!

whereL2 is the square of the grand angular momentum
erator andC/R is the total Coulomb interaction among th
three charges. Equation~4! can be solved in a manner simila
to the Born-Oppenheimer approximation withR being
treated as a slow variable.

We solved the wave function in the body frame, where
z8 axis is chosen to be alongr1 and the three particles are o
the x8z8 plane. The rescaled wave function is expanded
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terms of the normalized and symmetrized rotation functio
D̃ @32# and the body-frame adiabatic basis functio
FmI(R;V):

C~R,V,v̂ !5(
m

(
I

FmI~R!FmI~R;V!D̃IM J

J ~v1 ,v2 ,v3!,

~6!

wherem is the channel index,J is the total angular momen
tum, I is the absolute value of the projection ofJ along thez8
axis, andMJ is the projection ofJ along the space-fixedz
axis.

In the body frame, theL2 operator takes the form

L25T01T11T221/4, ~7!

where

T052
]2

]f2 2
1

sin2f cos2f sinu

]

]u S sinu
]

]u D , ~8!

~D̃IM J

J uT1uD̃I 8MJ

J
!5F I 2S 1

sin2f cos2f sin2u
2

2

cos2f D
1J~J11!S 1

cos2f D Gd II 8 , ~9!

~D̃IM J

J uT2uD̃I 8MJ

J
!5g II 11

J hII 11d I 8I 111g II 21
J hII 21d I 8I 21

5T̄2 , ~10!

with

hII 615
1

cos2f S 6
]

]u
1~ I 61!cotu D , ~11!

g II 11
J 52@11~A221!d I0#@~J1I 11!~J2I !#1/2, ~12!

g II 21
J 52@11~A221!d I0#@~J2I 11!~J1I !#1/2. ~13!

Note that the brackets (uu) denote an integration overv̂.
Only T2 couples the internal motion to the external rotatio
While both matrix elements ofT0 and T1 are diagonal in
I , T2 couples adjacentI ’s.

In order to efficiently treat a large number of parti
waves,L2 is separated into two parts, each of which depen
only on I andJ, respectively,

~D̃IM J

J uT1uD̃IM J

J !5I 2T1a1J~J11!T1b . ~14!

The adiabatic basis functionsFmI(R;V) are chosen to sat
isfy

@T01I 2T1a12mCR#FmI~R;V!52mR2Um
I ~R!FmI~R;V!.

~15!

The FmI are obtained by solving the eigenvalue proble
with a large two-dimensional (u and f)B-spline basis set
@33#, thus determining adiabatic potential curvesUm

I (R) for
5-3
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each I and a set of orthonormal adiabatic basis functio
FmI(R;f,u) that depend parametrically onR. Specifically,
the channel functions are expanded onto a direct produc
fifth-order B splines inf andu; the details are described i
the next section. Note thatFmI is not an eigenfunction of the
adiabatic HamiltonianHad in Eq. ~5!. The eigenfunctions of
the adiabatic Hamiltonian can be obtained by diagonaliz
the tridiagonal block matrix constructed by

S AI 50 B1 . . .

B2 AI 51 . . .

A A �

D , ~16!

where

Amn
I ~R!52mR2Um

I dmn1J~J11!^FmI uT1buFnI&, ~17!

B6~R!5^FmI uT̄2uFnI 61&5g II 61
J ^FmI uhII 61uFnI 61&.

~18!

Note that the bracketŝuu& denote integration overV.
The advantage of this partition is that these basis fu

tionsF need to be calculated only once for all theJ’s. So do
the matrix elementŝFmI uT1buFnI& and^FmI uhII 61uFnI 61&,
which are required in constructing matricesA and B. As a
result, constructing the adiabatic Hamiltonian for a givenJ
involves only fast algebraic operations within a givenI sub-
space. Such an efficient approach is critical since hundred
thousands of partial waves need to be included in orde
obtain a converged cross section even for collisions at t
mal energies and above.

B. R-matrix propagation with SVD method

The standard method of solving the Schro¨dinger equation
@cf. Eq. ~4!# with the expansion of Eq.~6! is to project out
the adiabatic basis functions, resulting in a set of coup
differential equations for the hyperradial functionsFmI . It is
well known that such coupled differential equations are d
ficult to solve accurately since the coupling matrix eleme
change rapidly in the avoided crossing regions. Two w
known procedures have been used to address such num
difficulties. The first is the ‘‘diabatization’’ of the subset o
adiabatic functions, commonly employed in ion-atom a
ion-molecule collision calculations within the PSS
MO-ETF model@14,34–36#. Before the diabatization proce
dure, one needs to obtain nonadiabatic coupling matrix
ments accurately, and this has to be done very carefull
the region of an avoided crossing. The second method, w
was designed to bypass the calculation of nonadiabatic
pling matrix elements, is the so-called diabatic-by-sec
method @20,37#. This method was used in earlier hype
spherical close-coupling calculations and in atom-diatom
active scattering calculations@22,23,38#. In this approach,
the hyperradius is divided into many small sectors and wit
each sector the channel functions are fixed and chosen t
the adiabatic channel functions at the midpoint within t
sector. The diabatic-by-sector method simplifies the calc
tion but the method in principle is not mathematically co
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plete even if the sector size is reduced to zero@39#. In prac-
tice, this means slower convergence in the calculation.

Here we adopt yet another efficient method to solve
hyperradial equations. It is a combination of theR-matrix
propagation method@40#, which propagates theR matrix
from one sector to the next, and the SVD method@29# within
each sector, where the Hamiltonian is a smoothly vary
function of R. This method was adopted by Kato and W
tanabe@30# for solving the two-electron atomic Schro¨dinger
equation and by Tolstikhin and Nakamura@41# for atom-
diatom collisions. The key elements of the method and mo
fications that are needed for the present ion-atom collis
problems are presented below.

TheR-matrix propagation method is a stable and efficie
way to solve a set of coupled differential equations@40#. In
this approach, the hyperradius is divided into many sm
finite intervals. Solutions within each interval are calculat
and propagated with respect to the hyperradius.

We start with the Schro¨dinger equation, Eq.~4!. Solutions
within an interval@a,b# can be formally written in terms o
the Green’s function defined within the interval

C~R,V!5E
a

b

dR8E dV8G~R,V;R8,V8!L~R8!C~R8,V8!,

~19!

whereL is the Bloch operator defined as

L~R!5R2Fd~R2b!
]

]R
2d~R2a!

]

]RG . ~20!

A spectral resolution of the Green’s function can be writt
as

G~R,V;R8,V8!5(
k

uk~R,V!uk~R8,V8!

m~Ek2E!
, ~21!

where $uk(R,V),Ek% are the solutions of the eigenvalu
problem

F2
1

2

]

]R
R2

]

]R
1

15

8
1Had~R;V!1L2R2mEkGuk~R,V!

50. ~22!

This equation is to be solved using the SVD method dev
oped by Tolstikhin et al. @29#. The method treats the
Schrödinger equation in the discrete-variable representa
~DVR! @42# with respect toR. A set of DVR basis functions
are constructed using orthonormal basis functions based
Jacobi polynomials of degrees up toM21 within the inter-
val @a,b#. The solutionuk then is expanded in terms o
pointwise DVR basis functions p j (R) within an
M-dimensional subspace,

uk~R,V!5(
j 51

M

p j~R!Q jk~V!. ~23!
5-4
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Note that DVR basis functions have the important prope
that p j (Rj 8)5k j

21d j j 8 , where k is a weight constant de
pending on the indices of the Jacobi polynomials. Then,
~22! is transformed into a set of coupled differential equ
tions with respect to the coefficientsQ jk(V),

Had~Rj ,V!Q jk~V!1 (
j 851

M

@K j j 82r j j 8mEk#Q j 8k~V!50,

~24!

where

K j j 85E
a

b

p j~R!S 2
1

2

]

]R
R2

]

]R
1

15

8
1L~R! Dp j 8~R!dR,

~25!

r j j 85E
a

b

p j~R!R2p j 8~R!dR. ~26!

These coefficients can be expanded in terms of the adiab
channel functionsFn ,

Q jk~V!5(
n

Fn~Rj ,V!cn jk , ~27!

wheren5$mI % and theRj ’s are the quadrature abscissas
the Jacobi polynomial of degreeM within the interval@a,b#.
The set of coupled differential equations~24! is then trans-
formed into an algebraic generalized eigenvalue problem

(
n8

F Ūnn8~Rj !cn8 jk1 (
j 851

M

@K j j 82r j j 8mEk#On j ,n8 j 8cn8 j 8kG
50, ~28!

where

Ūnn8~Rj !5^Fn~Rj !uHaduFn8~Rj !&, ~29!

On j ,n8 j 85^Fn~Rj !uFn8~Rj 8!&. ~30!

The M-point Gauss quadrature is used to evaluate the i
gration overR in Eqs. ~28!, ~29!, and ~30!. Therefore, we
need to solve the eigenvalue problem Eq.~15! only at the
values ofR corresponding to the quadrature abscissas of
Jacobi polynomials of degreeM within each interval.

Using the SVD method, there is no need to calcul
nonadiabatic coupling matrix elements; their effects are
plicitly incorporated by the overlap matrix elements of t
adiabatic channels at different hyperradiiR. Note that the
calculation of the overlap matrix elements at different valu
of the hyperradius is time consuming. However, these ov
lapping matrix elements need to be calculated only on
since the adiabatic channels@cf. Eq. ~15!# are independent o
the total angular momentumJ.

Once the basis functionsuk are obtained, the solution
C(R,V) can be readily constructed:
05270
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C~R,V!5(
k

uk~R,V!

m~Ek2E! Fb2K ukU]C

]R L
R5b

2a2K ukU]C

]R L
R5a

G . ~31!

The R matrix with respect to the adiabatic channels is d
fined at the boundaries of the interval as

^FnuC&5(
m

Rnm~R!K FmU]C

]R L . ~32!

The propagation formula for theR matrix is in the form

Rnm~b!5Gnm
bb 2(

l
(
l 8

Gnl
ba@Gaa1R~a!# l l 8

21Gl 8m
ab ,

~33!

where

Gnm
R1R25R1R2(

k

^Fn~R1!uuk~R1!&^uk~R2!uFm~R2!&
m~Ek2E!

.

~34!

TheR matrix is set to zero atR50. Solutions are calcu-
lated and propagated to largeR in order to obtain theR
matrix at an asymptotic hyperradius, where the hypersph
cal channels converge to various atomic target states andFmI
can be matched to asymptotic solutions. The advantag
the R-matrix propagation is its stability. Unlike the wav
function itself, there are no exponentially decreasing or
creasing functions in the propagation. Also, the basis fu
tions used in constructing the propagators are energy in
pendent, making it efficient to obtain wave functions f
different energies. Further details of the methods can
found in Refs.@29,30#.

C. Matching to the asymptotic solutions

The R-matrix propagation method can be continued up
a large hyperspherical radiusR0 beyond which one particle is
far away from the other pair of particles. In this work we d
not consider the three-body breakup process; thus
asymptotic wave functionCl

as(R0) of the dissociated system
is represented by

Cl
as~r1 ,r2!5(

i 51

N

@ f i~ki tr2
t !d il

2gi~ki tr2
t !Kil#w i~r1

t !Yl
1
t l

2
tJMJ

~ r̂1
t ,r̂2

t !/r1
tr2

t ,

~35!

where the wave function is expressed in the laboratory-fi
frame and the base functions are given int5b- or g-set
coordinates. For the present Coulomb three-body systemw i
is a hydrogenic radial wavefunction with angular momentu
l 1, and the relative angular momentum between the hyd
genlike atom and the heavy particle isl 2, coupled to form a
total angular momentum functionYl 1l 2JMJ

, with total angular
5-5
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momentumJ and its projection with respect to the laborato
fixed quantization axis,MJ . f and g are the regular and ir
regular asymptotic functions. For the He211H asymptotic
limit, they are Bessel functions and Neumann functions,
spectively. For the H11He1 asymptotic limit, they are regu
lar and irregular Coulomb functions, respectively. Note t
the wave vectork depends on the Jacobi coordinates us
They are related to the kinetic energy for each channel b

1

2m1
a

ka
25

1

2m2
b

kb
25

1

2m2
g

kg
25E2Un~`!. ~36!

The general asymptotic solution~35! is matched to the inne
solution obtained from theR-matrix propagation,

1

R0
5/2sinf cosf

(
s51

N

HslCs~R0!5Cl
as~r1 ,r2!uR5R0

,

~37!

where the inner solution is expressed ina-set coordinates
and the matching is to be carried out atR5R0. Such a
matching procedure was discussed and employed by Z
and Lin@21# for e11H(1s) collisions previously. It involves
transforming theb- andg-set wave functions into thea-set
coordinates, from where integration over all the angular
ordinates atR5R0 is carried out. In practice, this requires
two-dimensional numerical integration involving (f,u) and
the procedure is called two-dimensional matching. From
resultingK matrix, the partial cross sections are obtained

s i j 5
4p~2J11!

ki
2 U K

12 iKU
i j

2

. ~38!

Since the wave functions beyondR0 are represented in eithe
the b- or g-set Jacobi coordinates depending on the dis
ciation channels, there is no spurious coupling between
channels.

Calculation of theK matrix using the two-dimensiona
matching method is often used for calculations at higher p
cision and at low collision energies. For ion-atom collisio
where the matching has to be carried out for each pa
wave, it is desirable to simplify the calculation. Consider t
Bessel and Coulomb functions, which are written asf (ktr2

t)
and g(ktr2

t) in Eq. ~35!; the argument has been written
terms of Jacobi coordinates. Let the masses of each of
three particles bem1 , m2, and 1.0, where the last is the ma
of the electron. The hyperspherical radius is related tor1 and
r2 for each Jacobi sett by

R5Am1
a

m
Ar1a

2 1
m2

a

m1
a r2a

2 5Am2
b

m
Ar2b

2 1
m1

b

m2
b r1b

2

5Am2
g

m
Ar2g

2 1
m1

g

m2
g r1g

2 . ~39!

At the matching radiusR0 , r1 is of the same order asr2 for
the a set, butr2 is much larger thanr1 for the two other
sets. Since the ratios of the reduced masses within the sq
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roots of Eq.~39! are all roughly equal to the ratio of the ma
of the electron to the mass of the heavy particle for any se
Jacobi coordinates, atR0 we can approximate

R05Am1
a

m
r1a5Am2

b

m
r2b5Am2

g

m
r2g . ~40!

By settingm5m1
a , the argument of the Bessel and/or Co

lomb function in theb-set coordinates,kbr2
b , from Eqs.~36!

and~40!, is equal tokaR0. The same is true for the argume
in the g-set coordinates. In other words, the argument in
Bessel and/or Coulomb functions for each channel calcula
from the a-set coordinates does agree with the argum
calculated in theb-set andg-set coordinates. Since the adi
batic energies calculated in hyperspherical coordinates
approach the correct asymptotic energies in the dissocia
limit, at least to order of 1/R2 @43#, it is possible to skip the
two-dimensional matching all together, and obtain theK ma-
trix directly within thea-set coordinates. This is called one
dimensional matching. We have tested our calculations us
one-dimensional and two-dimensional matching methods
changing the matching radius, and concluded that o
dimensional matching is adequate in general except at v
low energies.

For the present He211H collision system, there is one
additional complication which we need to address. For
charge transfer to He1(2s) or He1(2p) states, the
asymptotic limits are degenerate. The adiabatic channel fu
tions from the inside region are correlated with the dipo
states@44,45# with noninteger or even complex angular m
mentum for each partial waveJ. We do not consider this
complication in the matching procedure in the present wo
However, we established that theJ-dependent charge transfe
cross sections to 2s plus 2p states thus obtained are n
dependent on the matching radius. Thus we do not cons
charge-transfer cross sections to individual 2s or 2p states in
this work. We comment that cross sections to such individ
degenerate hydrogenic final states can be calculated dire
using the two-dimensional matching procedure, or in a o
dimensional matching procedure if dipole states are used
stead of Coulomb functions@44,45#.

III. NUMERICAL DETAILS

In applying the hyperspherical close-coupling method
ion-atom collisions, special care is needed in two areas in
numerical implementation. We usedB-spline basis functions
to obtain adiabatic channel functions, but the choice of
grid distributions has to be tailored to the nature of the ch
nel functions that are concentrated in the region of smallf.
This is clearly seen from Eq.~2!, which shows that the rang
of f is of the order of the square root of the mass of t
electron with respect to the mass of the nuclei. Furtherm
attractive Coulomb singularities occur at smallf ’s, at f1
55.2531023 andf252.0831022 rad, respectively, for the
present He211H system. Thef grids were chosen such tha
they are concentrated in the small-f region. Specifically, we
divided f5@0,p/2# into four intervals, withN1 points in
@0,f1#, N2 points in @f1 ,(f11f2)/2#, N3 points in
5-6
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@(f11f2)/2,f2#, andN4 points in @f2 ,p/2#. Within each
interval @fa ,fb#, an exponential sequence of grid points
chosen according to

f i5fa1~fb2fa!
eg( i 21)21

eg(N21)21
~41!

for i 51, . . . ,N. In the present calculation we choseg
50.3, N1514, N25N3516, andN4534 such that there ar
80 points inf. Only ten points were used for the interv
f5@0.1,p/2# in this grid distribution. For theu grids, we
used 61 points in the range@0,p#. The grids are distributed
symmetrically aboutu5p/2, in an exponential sequence a
cording to Eq.~41!, with g50.075. The parameters in th
grid distributions were varied to reach at least six-digit ac
racy in the eigenvalues for the range ofR of interest. Differ-
ent grid distributions can be used in different ranges ofR in
the method, but in the present calculation this particular
of grid points was used in the final calculation.

In the SVD method the channel functions are to be cal
lated at the hyperradial points dictated by the grid distrib
tions chosen for theR-matrix propagation, following the pro
cedure of Sec. II B. Thus the range@0,R0# is divided into
many intervals. Within each interval, the hyperradial g
points are determined by the orderM of the Jacobi polyno-
mials used in the DVR representation of the hyperrad
functions. Ideally one would like to have about ten points p
wavelength in the hyperradial function. Such a prescript
was used by Kato and Watanabe@30#, who applied this
method to electron-atom collisions. A straightforward app
cation of their procedure to ion-atom collisions is not pra
tical. Due to the large reduced mass, the momentum
enters Eq.~4!, as given byA2m(E2U), becomes quite large
even at thermal energies. For example, for the pres
He211H system at center-of-mass energy of, say, 500
we would need about 10 000 points within the interval ofR
5@0,40# if we wish to have about ten points per waveleng
in the hyperradial function. Since the calculation of the ch
nel function is the most time-consuming part, this is clea
not desirable. On the other hand, while the radial wave fu
tions oscillate rapidly, all the matrix elements entering t
SVD method are slow-varying functions of the hyperradi
Thus, instead of calculating all the matrices needed in
SVD method, we obtained these matrix elements by inter
lation.

Specifically, instead of calculating the matrix elements

^FmI~Ri ;u,f!uT1buFnI~Ri ;u,f!&,

^FmI~Ri ;u,f!uhII 61uFnI 61~Ri ;u,f!&,

and the overlapŝFmI(Ri ;u,f)uFnI(Rj ;u,f)& at all hyper-
radial grid points required for SVD andR-matrix propaga-
tion, we calculated them at a much smaller number of po
and then use interpolations to obtain the required matrix
ements. In practice, we used cubic~bicubic for two-
dimensional interpolation of the overlaps! splines. In the
present calculation we chose to interpolate only in the reg
where the overlaps, as functions of the hyperradius,
05270
-

et

-
-

l
r
n

-
-
at

nt
,

-
y
-

e
.
e

o-

ts
l-

n
re

smooth, although in principle one can interpolate near
avoided crossing region as well if more points are initia
calculated in the region.

In Table I we compare partial wave cross sections (J de-
pendence! for charge transfer into the He1(n52) states ob-

FIG. 2. Hyperspherical potential curvesUm
I @cf. Eq. ~15!# for

HeH21. ThreeI 50 channels and oneI 51 channel are shown by
solid and dashed lines, respectively.

TABLE I. Comparison of the partial wave charge transfer cro
sections~in a.u.! obtained by using exact and interpolated mat
elements. The number in square brackets denotes the power o
See the text for more detail.

Ec.m.5210 eV Ec.m.5510 eV
J capture cross section capture cross secti

1 ‘‘exact’’ 0.25213@24# 0.10101@23#

interp1 0.25213@24# 0.10101@23#

interp2 0.24324@24# 0.11399@23#

10 ‘‘exact’’ 0.15530@22# 0.11910@22#

interp1 0.15530@22# 0.11910@22#

interp2 0.15368@22# 0.11896@22#

100 ‘‘exact’’ 0.35516@22# 0.72555@22#

interp1 0.35516@22# 0.72548@22#

interp2 0.35484@22# 0.71972@22#

500 ‘‘exact’’ 0.17987@23# 0.32464@23#

interp1 0.17986@23# 0.32465@23#

interp2 0.17693@23# 0.32129@23#

1000 ‘‘exact’’ 0.96640@24# 0.21897@22#

interp1 0.96640@24# 0.21896@22#

interp2 0.93522@24# 0.21724@22#

2000 ‘‘exact’’ 0.22715@26# 0.80453@23#

interp1 0.22717@26# 0.80452@23#

interp2 0.25344@26# 0.80061@23#
5-7
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tained with the interpolation procedure at center-of-mass
ergies of 210 and 510 eV. All the calculations were carr
out using the four channels shown in Fig. 2 and the pro
gation in R was carried out fromR50 to R532.32 a.u. In
the ‘‘exact’’ calculation we employed the straightforwa
SVD method within each sector where all the relevant ma
elements were calculated directly from the adiabatic chan
functions. At 510 eV~210 eV! this would require us to cal
culate channel functions and all the relevant matrix eleme
at about 10 000~6000! hyperradial grid points. For the two
interpolation procedures, Interp1 and Interp2, we calcula
adiabatic channel functions only at 2520 and 630 hyperra
grid points, respectively, from which we obtained the SV
matrix elements at the same grid points as in the ‘‘exa
calculation. In the present work, we did not perform interp
lation in the intervalR5@0,0.5#, where the channel function
vary rapidly with R, and the intervals@1.5,2# and @3.5,4#,
where they are near the avoided crossings atR51.65 a.u.
and 3.62 a.u., respectively. In these intervals we simply
culate channel functions at denser grid points.

In Table I, we note that the results from the Interp1 c
culation are essentially identical to the ‘‘exact’’ calculation
The errors introduced in the Interp2 calculation are with
1% for most of the partial waves. In particular, the relati
errors are smaller for partial waves where the cross sect
are larger. We thus conclude that the interpolation proced
works adequately.

From Eqs.~14! and ~17!, the matrix elements ofT1b , or
of 1/cos2f, with respect to the adiabatic channel functio
have to be evaluated. The channel functions are sharply
calized nearf50.0, the more so at largerR. From Eq.~14!,
we note that we need to addJ(J11)T1b to obtain the matrix
elementT1. For largeJ, in particular, forJ.103, any small
numerical error fromT1b is greatly enhanced in compariso
with T1a . For largeJ, we found that it is preferable to re
place the matrix element ofT1b by 1.0 instead. In fact, this
replacement does not affect the result for smallJ either. We
note that this is the same approximation employed in the P
calculation.

IV. RESULTS

In this paper we applied the HSCC method to calcul
charge-transfer cross sections for He211H(1s) collisions at
center-of-mass energies from 10 eV up to 4 keV, or for re
tive collision velocityv from 0.0223 a.u. to 0.447 a.u.. Th
dominant reaction channels are charge transfer to then52
excited states of He1. Thus we include only four channels i
the present calculation: the initial channel He211H(1s),
and the three final channels He1(n52)1H1. In Fig. 2 the
four adiabatic hyperspherical potential curves correspond
to these four dissociation channels are shown: three cu
for I 50 and one forI 51, for R up to 30 a.u. The inciden
channel is identified with the lowest curve of Fig. 2 and t
three charge transfer channels are associated with the
upper curves.

The potential curves in Fig. 2 are very close to the B
potential curves in the standard PSS approach. This is
surprising since with the choice ofm5m1 @cf. Eq. ~1!#, the
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hyperradiusR is approximately equal to the internuclear di
tance as long asR is not very small. But there are sma
differences. We found that, except forR,1.5 a.u., the dif-
ferences between the hyperspherical potential curves and
BO potential curves are less than 1%. Also, the BO poten
curves do not converge to correct thresholds, whereas
hyperspherical potentials do, although the energy differe
at R→` is very small, about 331024 a.u., owing to the fact
that in the BO approximation the mass of the nucleus
assumed to be infinity, but in the HSCC the correct mass
the nucleus is included. In the present HSCC calculation,
used one-dimensional matching atR0532.32 a.u. forEc.m.
greater than 200 eV andR0580.79 a.u. at lower energies.

In Fig. 3, total electron-transfer cross sections to H1

states are presented from 10 eV to 4 keV. Note that the
culated charge-transfer cross section decreases rapidly a
collision energy is decreased. From 4 keV to 200 eV, it dro
by a factor of 50~see inset!, but from 200 eV to 10 eV, it
drops by 12 orders of magnitude. The small cross section
the low energies are calculated to compare with other ex
ing calculations. Note that at low energies radiative char
transfer cross sections are much larger. The latter was ca
lated to be about 1023 a.u. atE510 eV @46#. Unlike that for
the nonradiative process, the cross section for the radia
charge transfer increases with decreasing collision energ

How do the results obtained here compare to existing
perimental data and other calculations? For energies be
200 eV, there are no experimental data available. There
two previous theoretical calculations where the motion of
heavy particles was treated quantum mechanically. One
by van Hemertet al. @15# and the other by Fukuda and Ish
hara@31#. The former performed calculations using molec
lar orbitals with common translational factor basis function
From Fig. 3 it is clear that our results are significantly d
ferent from theirs below 200 eV. In fact, by comparing wi
the actual numbers, as shown in Table II, we note that th

FIG. 3. Charge-transfer cross sections for the process H21

1H(1s)→He11p. Solid line: present results;s: van Hemertet
al. @15#; 1: Fukuda and Ishihara@31#; n: Winter and Hatton@49#;
,: Erreaet al. @50#; L: Grozdanov and Solov’ev@51#.
5-8
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results are larger than ours by a factor of 50 at 20 eV,
theirs are smaller by a factor of 2, 3, and 2, respectively
50, 100, and 200 eV. Interestingly, in this energy region
results are in perfect agreement with the calculation
Fukuda and Ishihara@31#. They used the so-called distorte
atomic orbital~DAO! method and carried out the calculatio
up to 200 eV. This method introduces adiabatic distor
atomic orbitals, defined not with respect to the internucl
separation, but with respect to the relative coordinates
each arrangement channel~or r2 of b-set andg-set coordi-
nates!. In other words, they used basis functions from t
b-set and from theg-set coordinates. In the DAO metho
the wave function is expanded using correct relative coo
nates such that there are no spurious asymptotic coupli
From Fig. 3, we note that their results agree with ours qu
well. This agreement is even more clearly seen in Table

From comparing the three calculations in the low-ene
region, we may conclude that the results of van Hemertet al.
@15# are less reliable. At present, the origin of the differen
is not clear. The cross sections are quite small in the lo
energy region. The discrepancy could be due to the so
what arbitrary character of the common electron translatio
factors used in their model, or possibly due to insufficie
numerical accuracy in the calculation. Understanding the
gin of this discrepancy is essential, however, since their M
ETF approach is the most widely used method for treat
low-energy ion-atom collisions@10,12,14#. On the other
hand, to trace the origin of the discrepancy, a compariso
the level of partial wave cross sections should be carried
in the future. The comparison also appears to establish
validity of the DAO approach. Since two sets of Jacobi c
ordinates were used in this formulation, the result is a se
coupled integro-differential equations which can be solv
only with special numerical techniques. The DAO meth
has been applied only to the present collision system an
muonic collisions@47# so far. It has not been further explore
due to its numerical complications.

We next compare the present results with other calc
tions at higher energies where more calculations and s
experimental data are available. The results for center
mass energy from 200 eV to 4 keV are shown more clea
in the inset of Fig. 3. The numerical values are also co

TABLE II. Charge-transfer cross sections in units of 10216 cm2.
The numbers in square brackets are powers of 10. WH: Winter
Hatton @49#, CTF: Erreaet al. @50#, DMO-ETF: van Hemertet al.
@15#, DAO: Fukuda and Ishihara@31#, HSCC: present results.

E(eV) WH CTF DMO-ETF DAO HSCC

20 3.4@27# 7.1@29# 7.1@29#

50 4.6@25# 7.9@25# 8.0@25#

100 1.1@22# 3.3@22# 3.4@22#

200 2.7@21# 1.3@21# 2.4@21# 2.4@21#

600 1.49 1.56 1.74
1000 3.78 2.69 4.42
1600 6.30 6.62 7.56
2000 8.07 5.73 9.86
4000 12.2 12.8 16.2
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pared at a few energy points in Table II. Except for v
Hemertet al. at 200 eV, all the other calculations were ca
ried out using the semiclassical method where the inter
clear motion is treated classically. All these calculations a
used the molecular orbital expansion method@14,48,49,51#.
The difference is mainly in the number of channels and
different form of electron translational factors used, exc
for Grozdanov and Solov’ev@51# where the calculation was
based on the hidden crossing theory. From Fig. 3, we n
that most of the theoretical results agree with each ot
However, all of these other calculations essentially used
same method and agreement among themselves is not
prising. Comparing with available experimental data in th
energy region, all the results are within the experimental
rors. Our results appear to be slightly higher than these
culations. In the future we need to increase the numbe
channels in the higher-energy region to test the converge
of the present results.

We next show charge-transfer cross sections vs pa
wavesJ at a few energy points. In Fig. 4~a!, the results for
E510 eV are shown. It takes about 100 partial waves to
the converged total cross section. At 30 eV, as shown in F
4~b!, we need to sum over about 250 partial waves to get
total charge-transfer cross section, but a large portion of
contributed by partial waves less than 20. Note the se
orders of magnitude difference in the partial cross section
these two energies. In Fig. 5 we show our calculated pa
wave cross sections for 200 eV and compare the results
those presented by Fukuda and Ishihara@31# for J between
150 and 950. Our results agree quite well with theirs, wh
in turn have been shown to agree well with the semiclass
calculation of Winter and Hatton@49#. Interestingly, these
two groups did not present results at small partial waves
small impact parameters, even though the total cha

d

FIG. 4. Charge transfer partial cross section forEc.m.510 eV~a!
andEc.m.530 eV ~b!.
5-9
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LIU et al. PHYSICAL REVIEW A 67, 052705 ~2003!
transfer cross section comes primarily fromJ less than 150.
Since the total cross sections from these three calculat
are in good agreement we assume that the partial cross
tions at smallJ are also identical. In comparing the parti
wave cross sections from the quantum calculation with
transition probabilities from the semiclassical calculation,
employ this relation:

sJ5
2pbP~b!

k
, ~42!

FIG. 5. Same as Fig. 4 but forEc.m.5200 eV. The dashed line
in the inset is taken from Fukuda and Ishihara@31#.

FIG. 6. Probability of charge transfer times impact parameter
Ec.m.5600 eV ~a! and Ec.m.51.6 keV ~b!. Solid lines: present re-
sults; dashed lines: Hattonet al. @48# and Winter and Hatton@49#
for 600 eV and 1.6 keV, respectively.
05270
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with J5kb, wherek is the momentum. In Fig. 6 we compar
the impact parameter dependence of the calculated cha
transfer probabilities with those calculated by Hattonet al.
@48# at 600 eV and by Winter and Hatton@49# at 1.6 keV.
One can observe that there is a general agreement of
results with theirs, in terms of the impact parameters, wh
the weighted probabilities are at the maxima or minima,
our probabilities are somewhat higher at the peaks, resul
in our cross sections being somewhat higher compare
others. Since we used only four channels in the present
culation as compared to 10 channels in their calculations,
discrepancy can be better understood after we have
formed calculations with a larger number of channels. T
comparison illustrates that the present HSCC method ca
extended to higher collision energies where semiclass
methods are valid.

V. SUMMARY AND CONCLUSIONS

In this paper we presented the hyperspherical clo
coupling method for treating direct and charge-transfer re
tions in ion-atom collisions at low energies. As stated in t
Introduction the HSCC method has been used in many a
of three-body problems in atomic, molecular, and nucl
physics. The present implementation is targeted at syst
with two heavy particles and a light one. This class of pro
lems is characterized by the large momentum of the collis
partners, and thus special care and approximations shou
adopted before the HSCC method is used to obtain reac
cross sections at energies of interest.

In implementing the HSCC method for ion-atom col
sions, we also adopted numerical technologies that have
come available in the last two decades. We used theB-spline
functions to solve the two-dimensional adiabatic hyp
spherical channel functions. We also adopted the sl
smooth variable discretization technique andR-matrix propa-
gation method to solve the hyperradial equation. Due to
rapid oscillations of the hyperradial wave functions, w
modified the latter method with an interpolation procedu
such that the number of hyperradial grid points where ch
nel functions need to be calculated does not increase
collision energies. We also took advantage of the spe
properties of ion-atom collision systems such that the ch
nel functions for the thousands ofJ’s needed are calculate
only once. These implementations make it possible to e
ploy the HSCC method to treat ion-atom collisions over
broad range of energies.

We applied the HSCC method to obtain charge-trans
cross sections for the process He211H(1s)→He1(n52)
1H1 at center-of-mass energies below 4 keV. We presen
our calculated charge-transfer cross sections. In the ce
of-mass energy range between 10 and 200 eV, the total n
radiative charge-transfer cross section drops very rap
with decreasing energies and our results agree with th
from the distorted atomic orbital method of Fukuda and Is
hara@31#, but not with the quantum molecular orbital calc
lations of van Hemertet al. At 200 eV, we showed that ou
partial wave cross sections also agree with the results
Fukuda and Ishihara.

r
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We have extended the calculations to higher collision
ergies so that we can compare our results with those obta
using the semiclassical approximation and with experime
Our results are slightly higher than the semiclassical ca
lations of Winter and Hatton@49#, but both are within the
experimental errors. We also compared our partial w
cross sections with their impact parameter dependent p
abilities and there is a general agreement.

Our results clearly demonstrate that it is possible to e
ploy the HSCC method to obtain cross sections for ion-at
collisions that have been traditionally treated using the
called molecular orbital expansion method, but without
need to introducead hoc~or physically motivated! electron
translational factors or switching functions. Further inves
gation of the HSCC method for other ion-atom collision sy
tems is under way and extension to include more chan
and at higher energies would allow us to probe the utility
this method. Careful comparison with molecular calculatio
based on reaction coordinates and/or switching functions
a number of collision systems is desirable to establish
region of validity of these MO-ETF-type calculations or ca
r.
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f
s
or
e

culations based on reaction coordinates. The latter meth
are the standard approaches for treating many-electron
atom collision systems, and calculations based on the HS
method for one-electron ion-atom collisions are desirable
provide theoretical data for comparison in view of the lack
accurate experimental data available for low-energy i
atom collisions except for total charge-transfer cross s
tions.
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