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We analyzed radial and angular correlations of 3@123|" triply excited states of atoms. Using hyper-
spherical coordinates, we examined channel wave functions in the body-fixed frame to identify elementary
normal modes of the correlated motion of the three electrons. For these states, we showed that the bending
vibrational modes characterizing the angular correlations are the same as thdsd'@i"2and 33I1'3l”
intrashell states, but additiona*” or “ —" quantum numbers are needed to distinguish the symmetric or
antisymmetric stretch of the outer electron with respect to the two inner ones for2h8P' intershell states.
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I. INTRODUCTION including semiclassical methods. In spite of differences in
the language and methods used in these treatments, the con-
Since the advent of quantum mechanics, the descriptionlusions are identical, i.e., the correlated motion of the two
of a many-electron atom is based mostly on the independemtiectrons in doubly excited states of an atom can be classi-
particle model(IPM). In this model, each electron is de- fied in terms of molecular modes. Accurate numerical calcu-
scribed to be under the influence of a mean field due to thé&ations and experimental data have been obtained for the
other electrons and the field from the nucleus. The manyeoubly excited states in He in the past two decades and this
electron atomic states are then designated by a collection ofiature field has been nicely reviewed recently by Tanner
guantum numbers from individual electrons. Such an IPMet al.[9]. We also comment that such molecular modes have
fails completely for doubly excited states of atoms wherealso been identified in two-electron quantum dots in a con-
two electrons are simultaneously excited. Doubly excitedined magnetic field10].
states of an atom can be separated into two types. The first Since intrashell and intershell states of an atom can also
type is intrashell doubly excited states where the two elecbe grouped together to form a Rydberg series,Khand T
trons are at about equal distances from the nucleus. Theggiantum numbers and the and — quantum numbers can
states have been classified in terms of khend T quantum  be combined, such that each doubly excited state is desig-
numbers, as introduced initially by Herrick and Sinalwog nated byn(K,T)ﬁ [6], wheren and N are the approximate
[1,2] based on the S@) group. Subsequently, it was under- principal quantum numbers of each electron @nd+ or
stood thatK describes the bending vibration of the two elec- — is the symmetry in the radial motion. When radial corre-
trons andT is a projection of the orbital angular momentum lation is not significantA=0 was also introduced to de-
with respect to the quantization axis of the body-fixed framescribe such states. For intrashell states;N, and A=+
which is taken to be along the interelectronic line. Theseonly. Thus,n(K,T)ﬁ are the new approximate quantum num-
later works pointed out the importance of examining electrorbers that replace thelNI’ quantum numbers from the IPM,
correlations in the body-fixed frame of atoms and to borrowand doubly excited states are understood in terms of the
ideas from molecular physi¢8—7]. Thus, intrashell doubly bending vibrational motion and the stretch of the two elec-
excited states can then be visualized as analogous to the rovwiens. For low-lying doubly excited states, the<,T)x clas-
brational motion of a lineaKY, molecule, withX being the sification is adequate and such designations are now widely
nucleus andy the electron. The second type of states areused in describing doubly excited states. We comment that
intershell doubly excited states, where the distances of ththis classification is not expected to be valid for very high-
two electrons from the nucleus are quite different. To dedying doubly excited states, where the concept of principal
scribe the joint radial motion of the two electrons, an impor-quantum numbers does not exist any more.
tant concept, the so-calledt” and “ —” quantum numbers, After the successful classification of doubly excited states,
was first introduced by Cooper, Fano, and Pf&8tsFrom the  clearly the next objective is to look for the classification of
mechanistic viewpoint, in thet states, the two electrons triply excited states. Unlike doubly excited states of an atom,
move toward or away from the nucleus together in phasefew approaches have been available for the classification of
For the—states, the radial motions of the two electrons are ouhese states. An early attempt along this direction for in-
of phase—thus when one electron moves toward the nucleussashell triply excited states had been made by Watanabe and
the other moves away from it, and vice versa. The failure ofLin [11] where they examined a model atom of three elec-
the IPM for doubly excited states of atoms are now welltrons on the surface of a sphere, similar to the work of Ezra
understood. Various new approaches have been developedd Berry[5] for their model study of two-electron atoms.
for understanding the joint motion of the pair of electrons,Subsequent investigations by Bad al. [12] showed that

1050-2947/2003/62)/02251113)/$20.00 67 022511-1 ©2003 The American Physical Society



T. MORISHITA AND C. D. LIN PHYSICAL REVIEW A 67, 022511 (2003

TABLE |. Present classifications and independent particle m@éall) classifications of the 121'3l’
intershell triply excited states of Li. Energy levels and IPM classifications are taken from Conneely and
Lipsky [27]. In IPM classificationsA, B, C, D, E, andF stand for the Li core states of £1S°, 2s2p3P°,
2p?3pe, 2p21D®, 2s52p'P° and 22'S? respectively. The energy levels of those core states are
—1.897 0230,—1.870280,—1.785 150,— 1.752 300,— 1.738 230, and-1.602 650 a.u., respectivelj;
are the fractions of the rotational decomposition of the hyperspherical channel functions at the hyper-radius
Ry where the hyper-radial wave function is near the maximum for that state.

Nt

States Groug IPM Energy(a.u) T=0 T=1 T=2 T=3 T=4 Ry(a.u)
2ge

(1) AT-0 A 3s —2.004837 1.00 6.3

(2 c**-0 B 3p —1.941499 1.00 6.3

(3) ci -0 E 3p —1.846667 1.00 4.5

(4) CiL -0 D 3d —1.806143 1.00 6.2

(5) Cin -0 F 3s —1.655855 1.00 6.0

20

(1) B" -0 C 3p —1.883344 1.00 6.0

2Pe

(1) A*T-0 B 3p —1.971677 0.86 0.14 4.7

(2 B**-1 C 3s —1.878293 0.40 0.60 4.7

(3) Ci~-0 C 3d —1.849150 0.38 0.62 6.1

(4) B* -1 E3p —1.841264 0.42 058 6.1

(5) ci -0 D 3d —1.807407 0.71 0.29 6.1

2P0

(1) AtT-1 A 3p —1.987946 0.05 0.95 6.0

(2 At*-1 B 3s —1.965687 0.04 0.96 6.1

(3) Ci -1 B 3d —1.927816 0.21 0.79 6.0

(4) B* -0 E 3s —1.866322 0.27 0.73 6.0

(5) ctt1 C 3p —1.856718 0.07 0.93 6.0

(6) Cr -1 D 3p —1.820848 0.17 0.83 5.8

(7) Ci-1 E 3d —1.807621 0.25 0.75 5.8

(8) Cin -1 F 3p —1.692512 0.10 0.90 5.8

2De

(1) AtT-2 A 3d —1.961412 0.17 0.04 0.79 6.1
(2 ATT-2 B 3p —1.952783 0.07 0.08 0.85 6.2
(3) Ci-2 C 3d —1.843620 0.06 0.22 0.72 6.1
(4) Cli -2 E 3p —1.834940 0.20 0.22 0.58 6.1
(5) B* -1 D 3d —1.812242 0.32 0.23 0.45 6.1
(6) A*7-0 D 3s —1.806939 0.32 0.27 0.41 6.1
(7) Cin -2 F 3d —1.656244 0.14 0.09 0.77 7.4
ZDO

(1) AtT1 B 3d —1.934641 0.11 0.64 0.25 5.8
2 ATT-1 C 3p —1.869067 0.06 0.75 0.19 5.0
(3) B* -2 D 3p —1.844685 0.12 0.55 0.33 5.8
(4) ci -1 E 3d —1.809504 0.06 0.41 0.53 5.8
2Fe

(1) AtT-2 C 3d —1.847904 0.12 0.08 0.64 0.16 4.0
2 B* -3 D 3d —1.824001 0.17 0.20 0.44 0.19 3.9
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TABLE I. (Continued.

States Groug® IPM Energy(a.u) T=0 T=1 T=2 T=3 T=4 Ry(au)

2F0

(1) AT-3 B 3d —1.930872 0.04 0.20 0.11 0.65 5.0
(2 0;7-3 D 3p —1.850577 0.06 0.19 0.12 0.63 8.0
3 C/ -3 E 3d —1.802827 0.08 0.27 0.22 0.43 8.0
2Ge

(1) ATT-4 - - 0.04 0.07 0.13 0.07 0.69 55
ise

(1) C;_-O B 3p —1.957118 1.00 55
4s°

(1) B""-0 C3p —1.866429 1.00 6.0
4Pe

(1) A*t*-0 B 3p —1.957029 0.90 0.10 6.0
(2 B" -1 C 3s —1.888905 0.40 0.60 6.1
(3 Car*-O C 3d —1.847516 0.40 0.60 6.1
4P0

(1) At -1 B 3s —1.984064 0.07 0.93 6.0
(2 Ci 1 B 3d —1.931807 0.02 0.98 6.0
(3 C;:*-l C 3p —1.869121 0.23 0.77 6.0
4De

(1) ATT-2 B 3p —1.965886 0.08 0.11 0.81 5.8
(2 C;7-2 C 3d —1.846687 0.05 0.13 0.82 5.2
4D0

(1) AtT-1 B 3d —1.938396 0.05 0.85 0.10 6.0
(2 B* -2 C 3p —1.872317 0.17 0.39 0.44 6.0
4Fe

(1) ATT-2 C 3d —1.849785 0.33 0.07 0.31 0.29 4.5
4F0

(1) AT7-3 B 3d —1.936047 0.01 0.10 0.04 0.85 5.0

guantum symmetry imposes severe constraints on the bodyetation method19-22, K matrix method 23,24], and con-
fixed frame wave functions. Namely, the fact that each eigenfiguration interactionCl) method[25-27. Experimentally,
state of the model atom has well-defined total angular motriply excited states of Li atoms have been investigated using
mentumL, total spinS, and paritys, requires that the wave synchrotron radiatioi28—34] and partial decay widths of
function in the body-fixed frame to have nodal surfaces due’P° and ?D® states have been measured and the results are
to the symmetry imposed on the wave function. Partial plotcompared well with these theoretical calculatidi3®,36.

of wave functions from this model atom were analyzed andHowever, only a very limited number of triply excited states
several elementary normal modes were identified. Subsdxave been measured or calculated so far.

quent studies of triply excited states of atoms follow two  Another line of theoretical inquiry of triply excited states
general directions. One is the calculation of energy levelss the one we have followed. Our main objective is to search
and decay widths of individual triply excited states using thefor new classifications of triply excited states by exploring
standard methods such as fRenatrix method13—-16, the  the correlated motion of the three electrons and to identify
multiconfiguration Hartree-Fock methdd 7,18, complex- approximate normal modes of their internal degrees of free-
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Li (223) quently denoted by, B, andC, respectively, for simplicity
[39,40. For the 64 331'3l” triply excited states, the excited
normal modes of these three elementary groups have also
been identified[37,41. Similar effort of classifying in-
trashell triply excited states has been undertaken by Madsen
17 and Mdmer [42,43. For the group of states where the three
electrons form a coplanar equilateral triangle with the
nucleus at the centégroupA), they have been able to con-
struct approximate wave functions from a direct product of
single-electron Stark states. However, their method has been
- - = limited to this elementary group only, where the internal
- wave function has no nodal surfaces . Their method has not
- - - been developed for the classification of all intrashell triply
— - - = excited states.
19 In this paper, we set to classify intershell triply excited
states. We obtained the wave functions of intershell as well
- - - - as intrashell states simultaneously using hyperspherical coor-
- - = dinates within the adiabatic approximation. By analyzing the
— hyperspherical channel wave functions in the body-fixed
20 f_ frame(Sec. I), we showed that quantum symmetries such as
L, S and = would impose constraints on the body-fixed
frame channel functions. From the nature of these con-

Energy (a.u.)
|

2ge 4ge  Zpe dpe  2pe Ape Zpe dpe straints, we classify the intershell triply excited states and the
20 4g0 Zpo dpe o dpo Zpe dpe results are shown in Sec. lll. Section IV summarizes the
States result and the classification for all the 5022’ 31" intershell

states is given in Table I.
FIG. 1. Energy levels of thel2l’3l” intershell triply excited

states of Li forL<3. The energies are measured from the triple-|; ~A| CULATION AND ANALYSIS OF WAVE FUNCTIONS
ionization threshold. The order along each column is according to OF TRIPLY EXCITED STATES OF ATOMS

the 25*1L™ symmetry. The relative orders of the spectra exhibit no
regularity. Numerical values of the energy levels are taken from A. Solutions in hyperspherical coordinates

Conneely and Lipsky27]. We consider the three-electron atom within the nonrela-

dom. For this purpose, we need to have an efficient methotivistic approximation such that the Schliinger equation for
of calculating the wave functions of triply excited states asa three-electron atom is
well as a means to analyze them. The model atom of three 3
electrons on the surface of a sphere in R&l] serves as a [2 (_ EA B E) >y 1
good starting point for the study of intrashell triply excited 270y
states without the need to deal with singly and doubly ex-
cited states of a real atom. wherer; is the position vector of théth electron from the

For the model atom, since each electron is confined to theucleus with electric charg&, and E is the total energy
surface, the three-electron system is governed by six anglemeasured from the triple-ionization threshold. The solution
The six-dimensional spatial wave function can be further reof this equation gives the complete spectra of a three-
duced to three dimensions if the overall rotation of the modeklectron atom, with triply excited states lying way above
atom with respect to the space-fixed axis is removed. Tsingly and doubly excited states. According to IPM, there are
describe the joint motion of the three electrons, the remain50 triply excited states in thel2l’3l” manifold. These
ing three degrees of freedom should be chosen “democratistates can decay to singly ionized states dftk, as well as
cally.” A set of such internal angles were adopted by Baoto doubly ionized states of Ef +e+e. When such decays
et al. [12], where they further analyzed intrinsic quantum are not considered, their energies can be obtained approxi-
symmetry and the nodal structure of the wave functions irmately using Cl approach. Thé2 'nl” triply excited states
the body-fixed frame. The existence of nodal surfaces in &ave been extensively calculated and tabulated using such a
multidimensional space implies higher energig&7,38. method by Conneely and Lipskg7] for L<3. We can ex-
Thus, by examining the nodal surfaces of the calculatedract the 49 energy levels of thd Z'31"” states forL<3
wave functions, the classification of intrashell states becomefsom their calculation. Their calculated energy levels for Li
possible. For this purpose, probability densities in the threeare shown in Fig. 1, ordered along each column for each
dimensional space are visualized using contour surf@%s  25*1L™ symmetry. The numerical values are also given in
From such an analysis, the eight22’'2l” triply excited Table I.
states were classified into three s¢89,40. Each set of From Fig. 1, the level positions appear to be rather erratic.
states can be classified in termdb§;, groups—A;, A5, and  Our objective is to regroup these levels into different sub-
the doubly degenerate’ [11]. The three sets are subse- groups, or to have them classified, such that the energy levels

—E|¥=0, 1)

=1 =i ri—rjl
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within each group would exhibit an ordered pattern. Thecross. Then all the potential curves for singly and doubly
classification is aided by displaying wave functions in appro-excited states are removed. Among the remaining curves that
priate internal coordinates. We analyze the wave functions isupport 221" nl” triply excited states, the curves which show

hyperspherical coordinates.

sharp avoided crossings are also treated diabatically. Using

The hyperspherical method replaces the radial distancebke diabatic potential curves, each channel function would

r{, r,, andrs by a hyper-radiuiR= \/r21+r22+ r32 and two
mock angles ay=tan X(r,/r,), a,=tan *(\rZ+r/ry).
The ranges of these variables ar& R<c and O<ay,a,

<. Thus, the nine-dimensional spatial coordinates of the : _
599 Rydberg series, each curve supports from the asymptotic

three electrons in the space-fixed frame are represented

the hyper-radiufR and eight hyperangleisy; ,a,,r1,75,f 3},
where we shall us€ at times to denote all the eight angles
collectively. In hyperspherical coordinates, the Sclmger
equation for the rescaled wave functigri= Rriror3W is

2

—EE‘FHM(Q;R)—E =0, (2)

whereH ,(;R) is the adiabatic Hamiltonian which is para-
metrically dependent oR [44]. Within the adiabatic ap-
proximation[45], the total wave function for thath state in
channelu can be written as

n S,S . S
Yun= FM(R)( SE o> 12(Q.R)X512) : (3)
where FZ(R) is the hyper-radial function which measures
the size of the systen® ,({);R) is the hyperspherical adia-
batic channel function, which contains all the information
about electron correlations for states within charmeland
x3,=[{x(1)x(2)}*2((3)]% is the total spin function with

intermediate spirg,,. The channel functiond ,({;R) and
their associated adiabatic potentiélg(R) are obtained by
solving the adiabatic eigenvalue problem at eRch

[Had Q;R) — U (R)]D ,(2;R)=0. (4)

We solve this eight-dimensional eigenvalue problem usin

each electron, i.e., products of spherical harmonics i

evolve smoothly such that examination of the channel func-
tion for only one particular value dR is adequate to repre-
sent the main features of the channel.

Within the single-channel approximation, we can identify

energy and the position of the minimum of each curve. The
nine curves at the bottom frame of Fig. 2 support the nine
Rydberg series:

25*(1$®)np
2s2p(®PO)ns
2s2p(®P°)nd
2p*(°P°)np
2p*('D%)np
2p%(*D®)nf
2s2p(*PO)ns
2s2p(*P°)nd
2p*(*s)np (5

In the Rydberg series in EE5), there are eight states which
can be assigned tol2|'31"?P° triply excited states, since
the lowest state in the@®(*D®)nf series is fom=4. The
curve which supports the(!D®)4f state can be easily
identified from Fig. 2 since it has the potential minimum at

the largest values dR among the nine curves &~ 10 a.u.
and this curve converges to thepZ'D®) state of Li" at

5t !
basis functions consisting of coupled spherical harmonics fﬁrargeR. [See Table | for the energy levels of the'(121")

state$. The potential curves that support the two intrashell

h12172172p° states, namely, €2p and 2°, can also be

(r1,r2,rs) and direct products of discrete variable represeng,gily identified from Fig. 2. Since intrashell states are lo-

tation functions in ¢, a,) [44]. In a typical calculation, the

cated at smalleR, each of these two states are supported by

orbital angular momentum for each electron ranges fromyg (o curves which have the minimumRi-3.5 a.u.. The

0 to 3.

As an example, in the top frame of Fig. 2, we show the

adiabatic potential curves ,(R) for Li( 2P°). The potentials
can be classified by their asymptotic limits. At largeeach
curve approaches one of the two-electrofi(riin’l’) states
and it supports the three-electron ig’l'n”1”) stateg46].

2s%2p state is associated with the lowest curve converging to
the 2s2p(3P°) states of Li, and the 2 is associated with

the second lowest curve converging to the*@P®) state of

Li*. Thus among the eightl 21’ 31"?P° states, two of them
are the first excited states of each of these two curves. The
other six curves are also identified from their asymptotic be-

In the curves of Fig. 2, there are numerous sharp avoidel,yior and the positions of the potential minima. For each of

crossings between the potentials which support & '2l”
triply excited states and those which support trenih’l’

these six curves, the potential minimum iskat 6 a.u., and
the lowest state is one of thdZ1’'3|"” states.

doubly excited states. For clarity, the nine potential curves

that support 221'nl” triply excited states are shown at the

bottom of Fig. 2. These curves are obtained as follows. First,

B. Analysis and visualization of radial correlations

the sharply avoided crossings between the curves that sup- As discussed in the preceding section, there are nine po-
port doubly excited states and those support triply excitedential curves that support nine Rydberg series of the
states are treated diabatically, i.e., their curves are allowed tI2]'nl”2P° triply excited states. The two curves where the
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261 FIG. 3. lllustration of radial electron densities for states in
groupsA**t andA*~ in the 2P° symmetry. Contour plots of the
radial density functiorp/,{ a1, @,;R) at the value oR where the
hyperspherical potentials are at the minima, see Fig. 2. The three
electrons are at about the same distance from the nucleus for states
in groupA**, while one of the electrons is at a larger distance from
the nucleus than the other two for states in grédp .

161

181

Hyperspherical Potentials (a.u)
(=]

associated with theA™ ™ curve has peak at;=r,=r4
=2.0 a.u. R=3.54a.u.), showing the existence of an in-

22 trashell 221" 21" triply excited state. In contrast, for the" ~
curve near the potential minimum B&=6 a.u., there is little
247 density atr,=r,=r5. Instead, the peak occurs at a point
along the dotted line, correspondingrp=r,=1.6 a.u. and
286

r;=>5.5 a.u., for one of the equivalent peaks, indicating that
0 5 10 15 20 25 one electron is further away from the other two as measured
from the nucleus.
As will be shown in Secs. lll Aand Il B, the angular part
FIG. 2. Hyperspherical potential curves for tR°) in the re-  of the channel functions associated with these two curves are
gion of the 221'nl” manifolds. Top frame: Adiabatic potentials almost identical, and they are designated by a symbaor’ “
UM(R). Bottom frame: The nine potential curves which support theTheir major difference is in the radial distributions. In the
2121"nl" triply states with the coupling to the potentials for the earlier studies of intrashell states, there was no need to ad-
doubly excited states removed. The potential curve indicated by ‘dress the radial modes of the electrons which are represented
A**" supports the 2°2p?P° intrashell triply excited state. The py the nodal structure of the distributions (). To
potential curve indicated byA™ " supports the 22p(°*P°)3s’P°  extend the classification scheme for includin@ 31" |
intershell triply excited state. tershell states, the symmetric or antisymmetric nature of the
radial stretch should be described. Pairs of superscripts “
potential minimum occurs &~ 3.5 a.u. can each supportan +” and “ + —” are used for such purposes. The first super-
intrashell 221" 21" triply excited state. The rest of the seven script for each pair is to describe the phase of the stretch
curves do not support any intrashell states. The fact that theyode of the two inner electrons, while the second one is to
lowest states have different principal quantum numbers redescribe the phase of the stretch mode of the outermost elec-
flects the effect of radial correlations. We can distinguishtron with respect to the two inner ones. For the- states,
channels which support intrashell states from those which dehe radial stretch of all the three electrons are in phase, and
not by examining the radial density distribution function at atheir radial motion is totally symmetric. For the 21'3l”
given R by defining states treated here, the two inner electrons form 24 '2in-
trashell doubly excited state core. Their radial motion is a
pﬁéu(al,azR):E |<I>i’812(Q;R)|2dF1df2dF3. (6) symm?tri:: stretch mode and thus the first su_perscript is al-
ways “+” for the 212I'3l"” states. Note that if we are to
classify 231'nl” triply excited states, we would encounter “
In Fig. 3, we show the results of the densities in the () —" for the first superscript if the radial stretch for the two
plane for the two channels labeledA* " and “A* ™" in inner electrons is antisymmetric, or even “0” if they are
Fig. 2 near their potential minima. In Fig. 3, we divide the “uncorrelated” [6]. In other words, the first superscript is
(a1,a,) plane into six domains separated by dotted linesidentified with theA quantum number used in thé& (T)A
Due to the fact that electrons are indistinguishable, the sixlassification of doubly excited statfs.
domains are equivalent. The dotted lines mark the space The above example shows that we can separk2€’ 21"
where two electrons are at the same distance from thstates into two groups, namely,+ and + —, from the ra-
nucleus. The point where the three dotted lines intersect idial correlation in the channel functions. However, radial
forry=r,=r3. From Fig. 3, it is clear that the radial density correlation alone does not distinguish the channels within

Hyperradius, R (a.u.)
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each group. For example, it does not distinguish the t#wo

+ channels, nor does it distinguish the sever channels.
From our previous studies on intrashell stdtg8,40, each
channel within the first group is further distinguished by their
angular correlations. For this purpose, we need to analyze the
wave functions in the body-fixed frame of the atom.

C. Body-fixed frame analysis of the channel wave functions

The channel function in the laboratory-fixed frame
(I)if_’ﬁ,, can be written in terms of the channel function
SS12
(’?MWLQ
tion:

in the body-fixed frame by the following transforma-

L

L QR= 2 el QiRDG(@), ()

T

FIG. 4. Definition of the three relative angles among the three
whereD(Q",z,,(w) is the standard rotation matrix, aiMlandQ electrons and the nucleus for intershell statesThe position vec-
are the projections of onto the space-fixed axis and the tors of the three electrong {,r,,r3) from the nucleus form ar

body-fixedéz axis, respectively. Here, we usefor the three plane.0.i§ the angle between t@xis of the body-figed frame and
Euler angles to represent the orientation of the body-fixedh® Position vector,. The position of ther plane with respect to
frame with respect to the space-fixed system, and the notd2€ nucleus is measured By On the plane, two anglesy(¢) as

tion ), for the five internal angles to describe the shape 01defined in the figure specify the shape of the triangle formed by the
ition vectors of the three electrofis) Probability distribution of
the three-electron atom. PosI

. the three electrons on the three anglész( ¢) is represented by
s,lsrlz Eq. (7), the channel .functlon of eacQ component contour surface<c) Top view of the contour surface to indicate the
@710 depends on the choice of the body-fixed frame axeSrange of the two angles and &.

Following Ref.[11], we define our body-fixed frame by

confined to the surface of a sphere. In this case, we defined

three angles 4, »,¢) to determine the relative positions of

3 the three electrons on the sphere. For intershell states, in

S,=5(r1—ry), general, the distance of each electron from the nucleus is
2 different. We extend the definition of these angl@s, ¢)

Sz=r1><r2+r2><l’3+|’3><l’1,

_ to intershell states. We consider the domain o§r,
S=§ XS, ®) =r,) in what follows. We first define & plane formed by

The body-fixed frame-axis thus defined is totally antisym- the three electrons. Then we defifi¢o be the angle between

metric and perpendicular to the plane formed by the thredhe SZ, axis andr;. It takes FWO other angleg and ¢ to
electrons. Namely, we consider a three-electron atom as scribe the shape of the triangle of the three e[ectro_ns. On
the o plane, the angle between electrons 1 and 2 is defined to

oblate molecule. In the body-fixed frame, the channel func- ;
tions satisfy the following relatiofil 1]; be 27, chosen along the arc that includes electron 3. The
angle between electron 3 and the line bisecting electrons 1
@512 (O :R)=m(—1)L7x>%1* () :R) (99 and 2 is defined to bep. See Fig. 4a). The ranges of angles
uTLl=Q I pnmLlQ I ! .
are Osf=m, Osy=<mw, and —np<¢=<n. These three
wherew=+1 is the parity of the system. Thus, we take angles, together witky;, a,, andR, specify a definite shape
=|Q| (0<T=L) for analysis in what follows. and size of the three electrons measured from the nucleus.
In our previous studies of intrashell triply excited states To visualize the collective motion of the three electrons,
[39,40, the angular correlations of the three electrons wergve introduce the three-electron density function
analyzed atr,=r,=r5. This particular configuration is p{'s,t(€2;R) thatis defined as the rotation-averaged density
equivalent to the model atom where the three electrons ardistribution for each channel function,

2 e QR (T=0)
12
plsat(Q1;R)= (10
S,S . S,S .
8212 (e (QRP+] e, 22(Q1R)P] (T#0).
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This density represents the probability for the three electronehere

to take specific shapes. In Fig. 4, we show the density for an

intershell state of Li as an example. The plots in Figh) 4 L

and 4c) represent the contour surfaces where the density is > Ny(R)=1 (14)

60% of the maximum at a givery , «,), taken to be where T=0

plifar,a;R) [see Eq.(6)] is maximum for the state. A

contour surface of higher density would fit inside the surfaceat eachR. If the resulting coefficienN+(R) is very close to
Such contour surfaces would provide information on theunity, thenT is an approximate good quantum number. When
most probable shape of the three electrons for each triplthis is the case,{, n,¢) and (a4,a,) are considered to be
excited state. the angles that describe the bending and the stretch modes of

Let us consider the symmetry property of the wave func-an XY; molecule, respectively. Thus, to classify triply ex-
tion in the body-fixed frame. Quantum symmetries imposecited states, one first needs to elucidate to what exténia
boundary conditions on each rotational component wavegood quantum number, and for that dominantomponent
function, and play an essential role in the classification. Fowhere and what is the nature of its nodal surfaces.
2121"'nl" intershell states, two of the electrons in the 2 In the following, we analyze the channel functions in the
shell are at the same distance from the nucleus on an averagedy-fixed frame for all 221’ 3|"” triply excited states calcu-
and the third one is further away from the nucleus, i.e., theyated to examine to what extent these states can be classified
have maxima atrz>r,=r,). Here, we consider two impor- according to this scheme.
tant symmetry properties of eadhcomponent of intershell
2121'nl" states ati(z>r,=r).

First, we study the symmetry due to exchange of the two
inner electrons. Wherb=0, the three electrons on the
plane making an isosceles triangle with electrons 1 and 2 at We have calculated the potential curves for Li atom, for
its base. For this geometry, interchange rf and r, is  all spin and parities, and fdr=0, 1, 2, 3, and 4. For each
equivalent to a rotation ofr about theS, axis followed by  symmetry, the curves that support22’'3l” triply excited
space inversiont— —r. Under this operation, the internal states are identified. These curves are similar to the fife
channel function transforms aS @umLQ—T curves shown in Fig. 2. We now address the classification of
(—=1)""9¢, .. The interchange of the two electrons 1 triply excited states by analyzing the channel functions cal-
and 2 also changes the phase of the channel function due talated.
the antisymmetry, so that m(—1)""9p, o=
(— 1)512<pMLQ for #=0. This leads to the condition that the
internal wave function vanishes &t=0, when

Ill. CLASSIFICATION OF 2 L2L'3L" TRIPLY
EXCITED STATES

A. States belonging to groupsA**, B**, andC**

We first identify hyperspherical channels associated with
m(—1)tS2=—1 and T=0. (11 potential curves that support intrashell triply excited states.
They are distinguished by having the minimum of the poten-

Next, we consider the reflection symmetry with respect tdfial at R~3.5 a.u., as discussed in Sec. Il A. For each of
the (S;,S,) plane in the body-fixed frame. In the coplanar such potentials, thel2l’3|"” state is the second state since
geometry, where the plane of the three electrons contains trge first state is al21’2]" intrashell state. For each of such
nucleus, space inversion is equivalent to a rotationmof intershell states, the hyper-radial wave functiép(R) has

about theS, axis. Thus under inversion, the internal wave one node, while the channel function is the same as the cor-
function transforms a,, . o— m(— 1)Q¢MLQ_ Thus, the responding intrashell state in the channel. The correlations of

wave function vanishes = /2 for the 221'21"” intrashell states have been investigated previ-
ously. There are eight of them, and are designated as groups
m(—1)T=—1. (12 I, I, and Il earlier[39)], but has since been changedAoB,

andC in order to better accommodate the new groups in the

This condition is the same as for intrashell triply excited classification of 831”31 intrashell triply excited states
state(11]. [37,41. The states in group\ are characterized by having

There is noa priori reason to expect that each triply ex- the shape of an equilateral triangle with the three electrons at
cited state possesses only a single major rotational compéhe corners and the nucleus at the center. For states in group
nent T in the body-fixed frame. On the other hand, for a B the three electrons have the shape of an equilateral tri-
highly correlated system if the constituent particles moveAndle, but the coplanar geometry with the nucleus is forbid-
together similar to that of a rigid bod§, would be a good den. For states in group, the electrons can be coplanar with

quantum number. By integrating the rotational component€ nucleus, but they cannot form an equilateral triangle. We
density in Eq.(10) over all the angle$), , we obtain a mea- ext(_and this classification to thd 21 ’3I”. states by a(_ddlng the _
sure of the purity of the rotational compong#ro], radial quantum numbers_ as superscripts to describe the _radlal
correlation discussed in Sec. I1IB. Namely, the eight
1 2121"31" states which have thel2l'2]1"” intrashell counter-
- |~ . parts (i.e., within the same Rydberg serieare assigned to
N(R) 8772f Plorr((i R, (13 groupsA™t, B*, andC* .
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FIG. 5. Energy levels and examples of the three-electron density
functions p{'s, (2, ;R) of the 221"3I"” triply excited states in
groupsA**, B**, andC**. Each energy level is denoted by %
2St17(n), wheren stands for thenth state within the 21'3l” o
manifold for the giver®>™1L™ symmetry. The hyperangular part of P (1)
the internal wave functions of the states in grodgst, B**, and

C*" are the same as those in groups I, Il, and lll in &0,

respectively. FIG. 6. Energy levels and an example of the density functions of

the states in group™ ~. Mechanical analog of the motion of the

In Fig. 5, we show the energy levels of the eigh2P 31" three electrons is shown in the bottom, where the solid circle rep-
states assigned ta**, B**, andC** groups. In the top resents the nucleus and the open circles represent the electrons.

frame, the energy levels are ordered according &nd the
dominantT component of the state. The integerin each B. Group A*~

parenthesis indicates timeh state for thafS* L™ symmetry I -
within the 22I’3I” manifold (Recall, for example, there are . We next identify 221°3|" states that have a nodal surface

eight such 221'31"2P° states. The number below each ' (“1":22- Clearly, the first group can be designated as
level indicates the rotational purity+(R) in Eq. (13) of the group A" ~. These states are characterized by an antisym-

state. The closer the purity is to 1, the better the designatiof"€iC Stretch mode of the outer electron with respect to the
is. At the bottom, the rotational density distributions of the WO inner electrons, as represented byin the second su-
dominantT components for representative states are Show,perscrlpt. This group of states should have no nodal surfaces
The rotational density distributions for all the states withinin the angles ¢,7,¢), and thus are designated by symbol A.
each group are essentially identical. This is the essence of tH¢0t every lowest state of each— channel belongs to group
classification scheme, indicating that the electronic densitp” . From the discussion of the body-fixed frame wave
distributions in the body-fixed frame for all the states within function, certain states exhibit nodal surfaces due to the
the group are similar, and the energy levels within the grougluantum symmetry. For example, from E{l2), if =
can be viewed as due to rotational excitations. (—1)"=—1, then the body-fixed frame wave function for
We note that the patterns of the energy levels of groupshat T component has a node & =/2. Thus only thosé
A*T, B**, andC** for the 221'31” intershell states are components that satisfy=(—1)" can be assigned to group
almost the same as those for groulssB, and C for the ~ A¥ ™. In particular,?S° and *S° states have odd parity and
intrashell 221'21" states, respectively, since they have thehave T=0 component only. Consequently, #&° and *S°
same correlation patterns. We also note that the densities states belong to group™ ~. Following the symmetry con-
Fig. 5 are shown aR~6 a.u., where the hyper-radial func- sideration in Eqs(11) and(12), and the composition of the
tions of the 221'3|” states have the maxima, far away from rotational components, we have identified theAl'3™ states
the locations of the potential minima &~3.5 a.u.. Thus, in Fig. 6. There is onéG® state which should be included in
even though the nodal surfaces remain identical for intershethis group. This state can be constructed from g 2D®
and the intrashell states, the density distributions are someore with a 3l electron, but it was not calculated by Con-
what shifted. For example, the angle between the two inneneely and Lipsky27]. From the symmetry consideration and
electrons for the intershell states in groud$* andB*™"  the fraction of the rotational components for the state in
becomes closer ter/2, since the repulsive force from the Table I, this state should be classified witkr 3. As a result,
outermost electron is weaker than that for intrashell stateghere are 14 states in thé2 31" manifold that belong to the
and the densities for states in groGgave nodal surfaces at A*~ group. Note that the rotational purity of the low-lying
¢=0 only. states in the group tends to be much higher. The purity dete-
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riorates with increasind.. A low purity is also seen for B
2D®(6) with T=0, which is the secondD® state in this
group.

The 14 states listed in groud™ ~ all have angular distri- —_— 2p2)
butions characterized by symb&l The contour surface for a ﬁ) D3y 010
represe_ntative state in this group in anglé@sy, ¢) is repre- 2P°4) 0.58 D) o5
sented in the lower left of Fig. 6. The surface shows that the 22 P e
three electrons tend to lie coplanar with the nucleus, with the -19} ?2s°1) 060
three electrons forming an isosceles triangle with the two 1o
inner electrons at the base. On the 7/2 plane, the distri-
bution in (n,¢) is rather localized, as seen by the density
plot shown in the triangle. The antisymmetric stretch of the 20
outer electron with respect to the two inner symmetric stretch
electrons is shown pictorially in Fig. 6 also.

Apart from the antisymmetric stretch mode, a few follow- 0 1 2 3
ing observations can be drawn from the rotational level dia- T
grams in Fig. 6.

(1) The energy levels have been ordered similar to the
rotational levels of a rigid symmetric top. If the atom can be
approximated as a rigid rotor, the energy levels would follow
the relation

-1 8 2De5

Energy (a.u.)

2L(L+1)—T?

E(L,T)= ol ,

(19

wherel is the moment of inertia. According to this equation, \
for a givenT, the energy levels go up with increasihgThe

spectra in Fig. 6 do follow this rule. This equation also states FIG. 7. Same as Fig. 6, but for grol" .

that for a fixedL, the energy decreases with increasihg

Again the energy levels from Fig. 6 do follow this rule. The cited quanta, but in different degrees of freedom. In this case,
fact that the energy levels of the states in this group do folpne quantum of excitation iR takes more energy than one
low the order of a rigid symmetric top approximately sup-quantum of excitation ind;,a,). Such relative energy or-
ports the validity of the approximate classification proposedjering has been found in two-electron atoms as well. For
here. In other words, this new classification does identify thesxample, it is known that thesPs3S® state in He has lower
essential features common to all the2P’31” triply excited  energy than the €2s'S°® state. From the hyperspherical
states in this group, in terms of the antisymmetric stretch ofiewpoint, the latter has a node in the hyper-radial coordi-
the outer electron with respect to the two inner ones and tha{ate, while the former has a node in the hyperangle imposed
the three electrons are coplanar with the nucleus and form g, the symmetry of the state. Similar to the present case, the
isosceles triangle. All these properties are represented by thgye with a node in the hyper-radial coordinate has higher
symbolA™ . energy.

(2) Another observation from Fig. 6 is the near degen-
eracy of the pair of states that have identicandT. This is —
similar to theA doubling in moleculesA doubling has been C. Group B
found in doubly excited states of atoms as well. Those states We consider the group of states that have a nodal surface
with identicalK, T, A, andL quantum numbers for nonzefo  due to the symmetry condition in E¢12) at the coplanar
are nearly degeneraf@]. geometry, i.e.f= /2, and where the outer electron has an-

(3) Another comment to be made is the relative energiesisymmetric stretch with respect to the two inner ones. We
of the 221'31” states that belong to groud®™*, as com- designate this group @&" ~, according to our convention.
pared to the states belonging to grodip™. For example, the  The energy levels of these states are shown in Fig. 7, with a
lowest 221"31"?P° state belongs to group™® ~, while the  representative distribution ird(7, ¢), shown by the contour
second state belongs to group” ". Let us compare the surface where the density vanishes at the coplanar geometry.
number of nodal surfaces of these two states. Both stateSuch a distribution in§, %, ¢) is characteristic of group. A
have no nodes in angle9,(n,¢). The lowest state belongs pictorial representation of the local antisymmetric stretch is
to AT, thus it has a nodal surface in{,a5), with no node  shown in the other diagram using arrows, ancand — are
in R. The second state belongs A5 ", it has no nodes in used to illustrate the antisymmetric bending vibration with
(aq,@,), but has a node iR. Thus by counting the number respect to the plane containing the nucleus. Eight states have
of nodes in the first two 21" 31"2P° states, they have iden- been identified for this group. This bending vibrational mo-
tical number of nodes, but in different coordinates. In a verytion is analogous to the bending vibrational motion of NH
rough description, these states have identical number of exnolecules. Notice that the energies of these states lie be-
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FIG. 9. Same as Fig. 8, but for tit&, ~ group.

4Se (1)

larly, groupC,, ~ designates states where the two inner elec-
FIG. 8. Energy levels and an example of the density functions otrons perform a hinge motion, with the outer electron more
the states in grougC; . The density function in 4,¢) at 6  or |ess fixed. A node in the wave function at- #/4 due to
= m/2 is also shown at bottom left. Mechanical analog of the anguthe excitation of the angular mode is the major feature of
lar motion of the three electrons is shown at the bottom right. Th§ese states. This node is clearly seen in the) plane and
stretch modes in the radial motion are not indicated. is illustrated mechanically as well.

We emphasize that both grous ~ andC, ~ are char-
tween—1.9 and—1.8 a.u.. Referring to Fig. 6, these statesacterized by the fact that an isosceles triangle in the plane of
have higher energies than most of the states in giup. the nucleus is unfavorable, or more precisely, for the domi-
The classification of the higher states within the manifold innantT component the wave function vanishes at this special
terms of collective modes is less accurate since mode mixingeometry. For intrashell states, we cannot distinguish the

is usually not small. swing mode from the hinge mode, since they are degenerate.
A single mode was used for the intrashell stdt&$,37,41.
D. Groups C~ and C;~ For intershell states, the hinge motion is between the two

) - _ inner electrons, while the swing motion is for the outer elec-
The next groups that we identified are labele€ds and  on. Thus, the degeneracy in these two modes disappears.
Cq ~ . The radial motion of the outermost electron exhibits

antisymmetric stretch with respect to the two inner ones. The E. Groups CX™, it~ and C4~
" ss ! ? Si

wave functions tend to distribute near the /2 plane, as ) )
seen from the contour surface plots in Figs. 8 and 9. The The last groups consist of excited states constructed from

designations ofc and Cy, are to distinguish the nodal sur- Cs: a“‘i 9T_ groups. They are assigned to three groups,
faces in¢ and in 7, respectively, and to give each a mecha-Css » Cpn » @ndCg, , as shqwn in Fig. 10, tog.ether Wlt_h
nistic interpretation, as illustrated pictorially in Figs. 8 and 9.examples of the density functions. These are highly excited

(Only angular motions are illustrated in the figures, althougtstates within the E21'3” manifold and the number of their
they also have the- — type radial stretch motioh. members are severely truncated as imposed by the IPM and

For groupC_ ~, there is a nodal plane &t=0 and this is the Pauli exclusion principle. There is only one state in group
understood as a swing motion of the outer electron, with th€ss » namely, °S%(4) with T=0. The density function of
two inner elections more or less fixed. We note that the nodathis state in groupC¢;~ has two nodal surfaces ap
surface of the*S®(1) state is due to the symmetry condition =const. Each state in this group has one more quantum in
in Eq. (11), while the nodes of the other states in graly the swing modes) comparing to the states in grogy .
are due to a dynamic excitation of the angular mode. SimiThus, the states are designated@y , having twos’s in
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C:s- C;:l'l C;f]; modes. The pairs of superscripts-“+" or “ + —" are used
to denote the symmetric or antisymmetric stretch modes: The
2555) 2P®) DD first superscript is for the motion of the two inner electrons,
LO0- oS0 037 and the second superscript is for the motion of the outer
electron with respect to the two inner electrons. The final
results from the present classifications are summarized in
Table 1. Under column 1, each state is labeled byLjtS§, ,
andn of the nth state within that symmetry in the 2’3"
—18] Zs&» 2P manifold. The second column gives the classification of that
19 een 0T state from the present work. Along the third column, the IPM
%3) designation by Conneely and Lipskg7] is shown. The
fourth column gives the energy of the state obtained by Con-
neely and Lipsky[27]. The remaining coefficients give the
T rotational compositions of the wave function in the body-
¢ fixed frame at the hyper-radilg, indicated.R, was chosen
n to be near where the hyper-radial wave function is maximum
for that state.

The scheme presented here could possibly be generalized
2eye 2ee 2eqe to triply excited states where all the three electrons are in
5 (4 S (%) 53 different shells, such asl2l'4l” states. In this case, there

FIG. 10. Energy levels and examples of the density functions ofVill b& symmetric and antisymmetric stretches between the
the states in group§Z,~, C;, andCZ,~ . The density functions tWO inner electrons, corresponding to and — for the first
are in the ¢7,¢) plane at6= /2. superscript, in addition to the- and — for the second su-

perscript addressed here. The classification of these states
the subscripts. Similarly, we identified groqﬁh— by adding would be gxtremely tedious and .difficult since the deviation
an extra nodal surface in anghg to states in grouic; . from the simple normal modes in each degree of freedom
Three states are assigned in this group as shown in Fig. 1#/ould be very large. Unlike complex molecules where ex-
We also have grou€Z;~ and two states in this group are perimentalist can excite one or two bonds between a pair of

shown in Fig. 10. These states have additional nodal surfacéd0ms. the identification of different modes in multiply ex-
ted states is extremely complicated since they are truly

in (n,¢). For these states, the hinge mode and the swin : . X . X
mode are mixed together, and their nodal surfaces are ngfany body in nature. Our attempt for the triply excited in-
parallel either tog axis or to 7 axis. We tentatively desig- trashell and intershell states of atoms in the past years shows
: b - : the complexities of such an endeavor. With high excitation
h I o . For th high : ; : 2
nate them as belonging to group, or these higher gnergies and high density of these states within a narrow

excited states, the densities are not very localized, so th : . : :
gpergy region, progress both in theory and experiment is

assignment presented here may be questionable. However, pected fo be very slow. On the other hand, using the pro-

tsr?eo \:\gsv%:;;\(t)tﬁg ?rt]g; é:lla:)sfszlifyr:? (?Ietzﬁlize higher states based (gédure employed in this paper for the classification of

2121"31" states, the method can, in principle, be extended to
higher triply excited states even though the actual classifica-
tion would be very complicated.

In this paper, we proposed a classification scheme for the
intershell 221"31" triply excited states of atoms. Compared

to intrashell states, the opening of the stretch mode of the T M. wishes to thank Professor M. Matsuzawa and Pro-
outer electron with respect to the two inner ones introducegessor S. Watanabe for their encouragement throughout this
many more states. We have classified eight of these stat@grk. T.M. was supported in part by a Grant-in-Aid for Sci-

into groupsA™ ™, B™™, andC" " which are the extension entific Research, Ministry of Education, Science, and Cul-

from the 221"21" intrashell states. The rest of the 42 statesyyre, Japan, and C.D.L. was supported in part by Chemical
have been found to belong to groups ~, B, C{~,  Sciences, Geosciences and Biosciences Division, Office of
Ch , C& , Ch, andCJ, . SymbolsA, B, andC with  Basic Energy Sciences, Office of Science, U.S. Department

ss ¢
subscriptss andh are used to denote the bending vibrationalof Energy.

|
=
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Energy (a.u.)
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