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Boundary-free scaling calculation of the time-dependent Schro¨dinger equation
for laser-atom interactions

Z. X. Zhao, B. D. Esry, and C. D. Lin
Department of Physics, Kansas State University, Manhattan, Kansas 66506-2601

~Received 26 June 2001; published 3 January 2002!

The time-dependent Schro¨dinger equation for atoms in an intense laser field is solved in scaled coordinates.
Starting with the time propagation of a free particle, we show that scaling removes the spreading and rapid
phase variation of a wave packet. By solving the one-dimensional model atom in an intense laser field, we
show that stable numerical results are best calculated in the acceleration gauge using scaled coordinates. The
wave function thus calculated has the least oscillations and does not spread at large time so that there is no
need to introduce absorbers at the boundaries. We show the method is suitable for calculations at any laser field
strength. We also show that the scaling method permits propagation to large times thus revealing above
threshold ionization structure directly in the wave function.
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I. INTRODUCTION

The interaction of intense lasers with atoms has attrac
considerable interest both experimentally and theoreticall
recent years@1#. In an intense laser field, an atom can
ionized by processes such as multiphoton ionization@2# or by
tunneling ionization@3#. Other phenomena such as abo
threshold ionization~ATI ! @4,5# and harmonic generatio
~HG! @6,7# are also well known. The HG process is of pa
ticular interest since it may lead to new sources of cohe
short wavelength light.

For laser intensities above about 1013W cm22, perturba-
tion theories can no longer be used to describe the laser-a
interactions. In the past, various nonperturbative approac
have been developed. One commonly used method is
quet theory@8,9# and its generalization to the many-electr
case in the form of theR-matrix Floquet method@10#. How-
ever, the method is not convenient for short laser pulses s
it presumes a cw laser. The more common approaches
short laser pulses are based on solving the time-depen
Schrödinger equation either directly on numerical grids or
a basis set. In the basis-set approach, basis functions
been chosen to be the field-free atomic eigenstates@11,12#,
Volkov states@13#, and others@14#. The resulting first-order
time-dependent equations are solved by direct numerica
tegration or by using a fitting method@15#. Grid methods
have included finite differences@16–19#, discrete variable
representation@20#, finite elements@21#, andB splines@22#.

In the time-dependent approach, the goal is to obtain
accurate wave function for the electron throughout the du
tion of the laser pulse. This time-dependent wave funct
should describe not only the bound excited states, but
the continuum states representing the ionized electr
When the calculation is carried out using basis functions,
continuum states are often represented by some set of p
dostates. When the calculation is carried out on a grid,
grides have to be confined to a box of finite size. Neith
approach allows the continuum electrons to escape to in
ity, and reflections from these artificial boundaries may res
in unphysical interference. Although it is possible to enla
1050-2947/2002/65~2!/023402~7!/$20.00 65 0234
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the box or basis set at a given time so that the wave func
does not reach the boundary, or to introducead hocabsorb-
ers near the boundaries, these approaches are inherently
ited and should be used with care in intense fields where
electrons are generated, and for long laser pulses where
propagation time is necessarily large.

The inherent limitations of representing a time-depend
continuum wave function by a finite basis or grid are app
ent even for a freely propagating wave packet. Consider
well-known example of a Gaussian wave packet travel
with a group velocityk0 . As time evolves, the wave packe
will spread and at the same time acquire a rapidly increas
phase. The sharper the wave packet is initially, the larger
faster is the spreading. One way to avoid this spreading i
calculate the momentum wave function directly. In mome
tum space, the wave function is always localized and d
not spread with time unless there is an external field. Thi
the approach taken by Sidky and Lin for treating impa
ionization in ion-atom collisions@23#. Another approach is to
use a scaled coordinate system. The scaled coordinate is
sen by scaling the spatial coordinate according toj
5x/R(t), whereR(t) is chosen arbitrary except it is set t
approachgt at large times withg a constant with units of
velocity. Thus, in the scaled coordinate, the electron wa
packet is stationary and does not expand with time.
shown by Sidky and Esry@24#, in the scaled coordinates th
rapid phase increase with time at largex is also removed,
leaving a scaled, time-dependent wave function that va
slowly in both time and space. The scaling approach t
achieves the goals of the momentum-space approachand
removes the rapid phase variation. Such functions are m
easier to calculate numerically.

The two approaches mentioned in the previous paragra
are designed specifically to treat the continuum wave fu
tion. In typical collision systems, however, there are a
bound states to deal with. Solving the time-dependent Sc¨-
dinger equation entirely in momentum space would requ
the solution of an integro-differential equation, where t
kernel involving the interaction potential is difficult to evalu
ate, if not impossible. Sidky and Lin circumvented this d
©2002 The American Physical Society02-1
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ficulty by solving the time-dependent equation in coordin
space even though the wave functions are expande
momentum-space-basis splines. In the scaled coordinate
proach, the price to be paid for the simplification of the co
tinuum wave function is that the bound states shrink w
time. A flexible numerical representation is thus required,
no other difficulties result. In Sidky and Esry, a short-ran
model potential that could support only one bound state
examined. In the present paper, the scaled coordinate
proach is applied to a one-dimensional soft-Coulomb pot
tial in a laser field. We will show that the existence of ma
bound states does not pose any practical computational p
lems and that the scaled wave functions are indeed m
smoother, thus making the method applicable for any fi
strengths and for propagation to very long times.

II. THEORETICAL METHODS

A. One-dimensional model atom

To illustrate the scaling method, we will perform calcul
tions on a one-dimensional~1D! soft-Coulomb potential@17#

V~x!52
1

A11x2
. ~1!

Just as for the three-dimensional case, this potential supp
an infinite number of bound states. The ground state and
first excited state have energies of20.669 and20.275 a.u.,
respectively~we will use atomic units hereafter unless ot
erwise indicated!. We choose a smooth turn on a cw lase

E~ t !5H E0 sin2S pt

6TD sin~vt !, 0<t<3T

E0 sinvt, t>3T

~2!

wherev, E0 , andT are the frequency, amplitude, and peri
of the laser field, respectively. Within the dipole approxim
tion, the time-dependent Schro¨dinger equation in the length
gauge is given by

i
]CL~x,t !

]t
5F p2

2m
2qEx1V~x!GCL~x,t !, ~3!

wherem is the mass of the electron,q52e is the electronic
charge, andp is the momentum.

B. Scaling scheme

Following Sidky and Esry, the scaled coordinate is d
fined by

j5
x

R~ t !
, ~4!

and the transformed, scaled wave functionCS(j,t) is given
by

CS~j,t !5ARe2 ibj2
C~x,t !. ~5!
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The superscriptS is used to denote the scaled wave functio
and the parameterb is

b5
1

2
mR

dR

dt
. ~6!

While the functional form ofR(t) is arbitrary, it should be
chosen so thatR→gt at larget, with g being a constant with
units of velocity, in order to make the wave packet stationa
The time-dependent Schrodinger equation~TDSE! for
CS(j,t) is

i
]CS~j,t !

]t
5F2

1

2mR2

]2

]j22qREj1V~Rj!

1
1

2
mR

d2R

dt2
j2GCS~j,t !. ~7!

To illustrate how the scaling works, consider a on
dimensional Gaussian electronic wave packet with veloc
k0 and widtha at timet50 a.u. This wave packet will freely
evolve as

C~x,t !5F~x,t !eiw~x,t !, ~8!

where the amplitude is given by@25#

uF~x,t !u25h~ t !expF2
~x2k0t !2

w2~ t ! G ~9!

with

h~ t !5F 2a2

p~a414t2!G
1/2

,

w~ t !5S a414t2

2a2 D 1/2

.

The center of the wave packet is thus moving with veloc
k0 and is spreading with time. The phase factorw(x,t) is
given by

w~x,t !5
1

2
tan21S 2t

a2D1k0x2
1

2
k0

2t1
2t~x2k0t !2

a414t2 ,

~10!

and approaches

p

4
1

2tx2

a414t2

at large times. This phase becomes linear in time at largt
and depends quadratically onx, leading to rapid oscillations
in the wave packet.

In contrast, using Eq.~5! andR→gt, the asymptotic form
of the scaled wave function in the scaled coordinate is

CS~j!5Fa2g2

2p G1/4

expF2
a2g2

4 S j2
k0

g D 2Geip/4. ~11!
2-2
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BOUNDARY-FREE SCALING CALCULATION OF THE . . . PHYSICAL REVIEW A 65 023402
The scaled wave packet is thustime independentin the limit
of large times. It is centered atj5k0 /g, fixed in width, and
has no rapid oscillations. Clearly such a function is mu
easier to calculate numerically than the original unsca
function.

As an illustration, we show in Fig. 1 the free propagati
of a Gaussian wave packet. The velocity of the wave pac
is 1 a.u. and its width is 1 a.u. att50. The real part of the
wave function att50, 10, and 20 a.u. are plotted. The so
lines denote the scaled wave function; and the dotted lin
the weighted unscaled functionARC(Rj,t). The abscissa is
the scaled coordinatej, with the scaling parameterR(t)
5A11t2 for t>0. Several features of the scaling method a
well illustrated here. First, the ‘‘real’’ wave function osci
lates much more rapidly than the scaled function, and
differences grow with time as shown in the progression fr
curve~b! to ~c!. Second, in the scaled coordinates, the wa
packet simply moves fromj50 to 1 as time goes from 0 to
`. Already at t510 a.u. the wave packet has essentia
reached its asymptotic position. Third, the width of t
scaled wave packet has also nearly reached its asymp
value att510 a.u., and has the manageable valueDj'2.5.
The real wave packet is 10 times bigger att510 a.u., and 20
times att520 a.u. In this example, the time evolution of th
unscaled wave function is known analytically. If we were
obtain this oscillating function by direct numerical integr
tion, it would clearly be a more challenging task.

The above example is for a freely propagating wa
packet. In laser-atom interactions, the wave function of
ionized electron still under the influence of the laser fie
undergoes complicated evolution due to the quiver moti
This field-induced acceleration leads to oscillations of
wave function that are not removed by the scaling trans
mation since the latter accounts only for motion of a const
velocity wave packet. We will show in the following sectio
how the quiver motion can also be analytically described

FIG. 1. Time evolution of a free wave packet. Only the real p
of the wave function is shown. Att50 a.u., the Gaussian wav
packet has a width of 1 a.u. and is traveling to the right with
velocity of 1 a.u. The dashed line is for the real wave function a
the solid line is for the scaled wave function showing that the la
has many fewer oscillations. The abscissa is the scaled coordi
The scaling parameter isR(t)5A11t2 for positive t.
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C. Gauge transformations

It is well known that the wave function of a free electro
in a cw laser field can be simplified by transforming from t
length gauge to the acceleration gauge:

CL5expS 2 i
q

c
AxDexp~ ipa2 im!CA , ~12!

where

A~ t !5A~0!2cE
0

t

Edt8,

a~ t !5a~0!1
q

c E0

t

Adt8,

m~ t !5m~0!1
q2

2c2 E
0

t

A2dt8. ~13!

This transformation can be easily understood classically
the classical description, the motion of an electron is char
terized by its position and velocity (x,v). When the laser
field is applied, these change to@x2a,v1(q/c)A#. By
shifting the center of (x,v) from ~0,0! to @a,2(q/c)A#, the
effects of the laser field is removed, and the electron in t
frame can be treated as freely propagating. This refere
frame is called the Kramers-Henneberger~KH! frame, and
the wave function is said to be in the acceleration gauge.
will use the terms KH frame and ‘‘acceleration gauge’’ inte
changeably in the following. In the KH frame, the TDS
becomes

i
]CA~x,t !

]t
5F p2

2m
1V~x2a!GCA~x,t !. ~14!

In scaled coordinates for the 1D problem, it is given by

i
]CA

S~j,t !

]t
5F2

1

2mR2

]2

]j2 1V~Rj2a!

1
1

2
mR

d2R

dt2
j2GCA

S~j,t !. ~15!

In the absence of the potentialV(x), the solution of Eq.~14!
is a plane wave. By transforming to the length gauge throu
Eq. ~12!, we obtain the usual Volkov state that describes
free particle in a laser field.

Further insight into the effects of using the scaling a
proach can be obtained by considering the time evolution
an initial Gaussian wave packet~as in Fig. 1! in a laser field
E5sinvt using the acceleration gauge. The time-depend
wave function can be obtained analytically even for th
case. In the KH frame, the evolution of the Gaussian wa
packet is given by the familiar free-particle result. To obta
the wave function in the length gauge, the gauge transfor
tion in Eq. ~12! can be applied to the KH frame wave fun
tion. Note that this is most straightforwardly accomplish
by writing the Gaussian in terms of its Fourier componen
The real part of the wave function in the scaled coordin

t
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and in the real coordinate are compared in Fig. 2 att50, 10,
and 20 a.u. Even though the wave function is oscillatory
the scaled coordinate, the oscillation is still much slow
than in the real-space wave function. The combination
acceleration gauge plus scaled coordinates thus acco
analytically for both the acceleration due to the laser and
constant-velocity free-particle propagation. The numeri
simplifications that result are further examined below usin
more realistic soft-Coulomb potential.

To integrate Eq.~15!, we need the initial state in the ac
celeration gauge. It is obtained from the transformation

CA~x,0!5exp@2 ipa~0!

1tm~0!#exp@ i ~q/c!A~0!x#CL~x,0!. ~16!

At first glance, the choiceA(0)5a(0)5m(0)50 appears
desirable since it would make the two functions identica
t50. Such a choice, however, would result in a drift ter
i.e., a term ina(t) linear in t that would carry the center o
the potential away fromj50. Since we need a fine numer
cal mesh near the nucleus to account for the shrinking bo
states, it is more efficient to choose the initialA(0) so that
the nucleus does not drift. With the laser field turn on giv
by Eq. ~2!, we found thatA(0)52E0/35v and a(0)50
gives the desired transformation. Thus, in the scaled
frame, the center of the soft-Coulomb potential follows t
oscillatinga(t) function with an amplitude of this oscillation
decreases with time as 1/R. Since the bound states mov
with the oscillating center, we need to use a fine spatial g
over the whole range of motion.

Once the time-dependent wave function is obtained,
can calculate the ATI spectrum by projecting it onto the co
tinuum states of the field-free 1D atom. IfFc(x) is one of
these continuum states, then the ATI spectrum can be ca
lated from the amplitude in the length gauge,

FIG. 2. Time evolution of the initial Gaussian wave packet
Fig. 1 in a cw laser fieldE5sinvt. The solid line is for the scaled
wave function and the dashed line is for the real wave function.
wave functions are in the length gauge, and only the real pa
shown.
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^Fc~x!uCL~x,t !&5^Fc~x!ue2 i ~q/c!Axeipa2 imuCA~x,t !&

5^e2 ipaFc~x!uei ~q/c!Ax exp@~q/c!Aa

2 im#CA~x,t !&. ~17!

In this expression, we have used the result

e2 ipae2 i ~q/c!Axeipa5e2 i ~q/c!Axei ~q/c!Aa, ~18!

which is obtained from the well-known formula

ePQe2P5Q1@P,Q#1
@P,@P,Q##

2!
1¯ ~19!

by letting P52 ipa, Q5ee
c
-gAx. Thus, the projection in

terms of scaled wave functions in the KH frame is given

^e2 ipaARFc~Rj!uexp@2 i ~q/c!A~Rj2a!#ueibj2
CA

S~j,t !&.
~20!

The function on the left side is most conveniently obtain
by solving the ‘‘shifted’’ Schro¨dinger equation

F2
1

2mR2

d2

dj2 1V~Rj2a!Gc5Ecc, ~21!

where

c5e2 ipaARFc~Rj!.

In our calculation, the range ofj was normally chosen
between217 and117. The solution of the above equatio
thus gives a set of pseudostates that represent the contin
The distribution of pseudostates is dense enough to ex
the ATI spectrum.

III. NUMERICAL RESULTS AND DISCUSSION

A. Wave functions in scaled coordinates

We now consider the solution of the 1D soft-Coulom
problem in a laser field to illustrate the advantages of p
forming calculations using scaled coordinates. We will foc
on the strong field regime, where the challenge to the
merical method is most severe. In all the calculations,
lasers are turned on smoothly in three cycles as describe
Eq. ~2!, and the electron is initially in the ground state. In t
first calculation, we choosev50.5193 a.u.~or a period of
12.1 a.u.! andE051 a.u. The scaling is applied starting att
510 a.u., and the scaling function R(t)
5A110.04t(t210)2 for t>10 a.u. No scaling was em
ployed beforet510 a.u., i.e.,R51. The wave functions are
calculated by integrating the TDSE in scaled coordinates
ing B splines in a Crank-Nicholson-like propagation schem
The wave functions in real coordinates are obtained from
~5!.

In solving the time-dependent wave functions in t
scaled coordinates, the range ofj is chosen to make sure tha
it is large enough to enclose the scaled wave function a
times. The range, of course, depends on the scaling pa
eter R(t) chosen. The grid points and the range stay fix

f

e
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BOUNDARY-FREE SCALING CALCULATION OF THE . . . PHYSICAL REVIEW A 65 023402
during the time integration. Since the bound states sh
with time, finer meshes are used for the region near the fo
center.

We first compare the wave functions in the accelerat
gauge and in the length gauge without scaling att560 a.u.
The real parts of the wave functions are shown in Fig. 3~a!.
Clearly the oscillation in the length gauge is much mo
rapid except in the outer region, where they are compara
It follows that the acceleration gauge has numerical adv
tages. A rapidly oscillating function not only requires mo
spatial grid points for accurate representation, but a
smaller time steps.

The wave function in the acceleration gauge becom
even simpler in the scaling approach. Comparing the
part of the two functions in Fig. 3~b!, the scaled wave func
tion is clearly smoother and thus easier to compute direc
In fact, the unscaled wave function was obtained from
computed scaled wave function using Eq.~5!.

We next consider a laser with the same frequency but w
the higher field ofE054 a.u. In Fig. 3~c!, we show the real
part of the wave function att560 a.u., again in the accelera
tion gauge. The scaling parameter is chosen asR(t)
5A114(t21)2 for t>1 a.u. The scaling must be starte
earlier and have a largeg due to the fast ionized electron
Without scaling, the wave function oscillates rapidly. Usi
scaling, the number of oscillations is substantially reduc
showing the merit of the scaled coordinates.

At field strengths of 1 and 4 a.u., the electron is read
ionized. In Fig. 4, we show the calculated ionization pro

FIG. 3. In~a!, comparison of the wave functions in length gau
~dotted line! and in acceleration gauge~dashed line!. No scaling
was used. Shown are the real part of the wave functions withE0

51 a.u. andv50.5193 a.u. In~b!, comparison of real wave func
tion ~dashed line! and the scaled wave function~solid line! in the
acceleration gauge. Laser parameters are as in~a!. Panel~c! is the
same as~b! except that the laser field has strengthE054 a.u.
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ability vs time. The ionization probability oscillates with th
laser period, with sharp minima at times of one quarter a
three quarter cycles. Away from the minima, at these fi
strengths the ionization probability is nearly unity. A clos
examination shows that the minima are lower atE054 a.u.
than atE051.0 a.u. This decrease in ionization probabili
with increasing field strength is an indication of stabilizatio
where the electron becomes more stable as the field stre
is increased.

B. ATI spectrum and wave functions in scaled coordinates

For atoms in an intense laser field, once the tim
dependent wave function is obtained, it can be used to
culate observable such as the harmonic generation spec
and the ATI spectrum. The latter is done by simply projecti
onto the continuum states. In Fig. 5, we show the ATI sp
trum as a solid curve forE050.1 a.u. andv50.148 a.u. for a
laser that was turned off after 8.25 cps. Physically, the sh
peaks in the ATI spectrum indicate that there are ioniz
electrons with reasonably well-defined energies~or veloci-
ties!. It is worthwhile to see whether this information can b
seen directly in the wave function. To this end, we also sh
in Fig. 5 the probability density in the scaled coordinate af
freely propagating the wave function from 8.25 to 80 cp

FIG. 4. Total ionization probabilities vs time forv
50.5193 a.u.:~a! E051 a.u. and~b! E054 a.u.

FIG. 5. Comparison of the position of the ATI peaks in scal
coordinates with the probability density at a large time. See text
the details of the parameters used in the calculation.
2-5
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Note that the ATI spectrum is plotted vsv/g with v the
velocity of the electron~converted from its energy! and g
50.1 a.u. The first ATI peak coincides with the first peak
the density. For the higher peaks, the overlap is not as g
with the peak positions of the density distribution laggi
behind the ATI peaks, but a one-to-one correspondence
be easily discerned. According to Eq.~11!, a freely propagat-
ing Gaussian wave packet is stationary in the large time li
in scaled coordinates with the peak located atj5k0 /g.
Thus, each peak in the probability density is a wave pac
representing a ‘‘burst’’ of ionized electrons whose veloc
can be read directly from the position of the peak.

The shift of the probability density peaks with respect
the ATI peaks can be understood by realizing that each w
packet is created at a different characteristic time. Follow
through the scaling transformation with R(t)
5A110.01(t250)2, we find that the center of the wav
packet in the scaled space is at

v~ t2tc!

R
5

v~ t2tc!

A110.01~ t250!2
, ~22!

if the wave packet was created at timetc and then propagate
freely. At large timet,

v~ t2tc!

R
→ v~ t2tc!

0.1~ t250!
'

v
0.1

2
tc250

t

v
0.1

. ~23!

The deviation between the ATI peak and the density pea
thus expressed by the second term on the right. At a gi
time, the difference is proportional to the velocity of th
electron in each ATI peak. Figure 5 indeed shows that
deviations are larger for the higher ATI peaks. To show t
the deviation also has to do with the asymptotic time wh
the wave function is examined, we show in Fig. 6~a! the
second ATI peak and the density of the wave function at
80, and 120 cps, with the laser field turned off at 8.25 c
One can see the deviations become smaller at the la
times. The density peak will presumably coincide with t
ATI peak at infinitely large times.

From Eq.~23!, the shift of the density peak from the AT
peak also depends on the formation time of the wave pac
In general, a longer pulse would have a larger average
ation time. To see how this is reflected in the calculated w
function, Fig. 6~b! shows the density distributions of th
wave functions at 80 T, in one case the laser was turned
at 6.25 T and in the other at 8.25 T. For the longer pulse,
density peak lags behind the ATI peak more sincetc in Eq.
~23! is larger. We have checked that the difference in the s
in Fig. 6~b! is not due to the difference in the free propag
tion time and that the ATI peak positions calculated from
two pulses are identical.

The time-dependent wave function thus directly sho
quite clearly ATI features. This result is not specific to t
scaling method, but scaling makes calculating and obser
these features considerably simpler. In particular, the w
function must evolve freely for a long time after the laser
turned off in order to see the simple structure in Fig. 5. T
long evolution time is necessary to allow the wave pack
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for each order of ATI generated at different times during t
laser pulse to coalesce into a single wave packet. In the
ample above, for instance, the wave packet correspondin
the ATI peak might be composed of two wave packets, o
created at the beginning of the laser pulse and the other a
end. Both of these wave packets have the same velocity,
are initially spatially and temporally separated. As time
creases, the wave packets travel and spread. Eventually,
coalesce into a single wave packet spatially separate from
wave packets corresponding to other ATI peaks. At sh
times, then, the wave function is a complicated collection
several ionized wave packets overlapping and interferi
Propagation to long time allows the simple structure of Fig
to emerge, and the scaling method makes this long t
propagation especially simple. Returning to Fig. 5, we s
that a grid in real space would have to range roughly fr
24500 to 4500 a.u. with a maximum step size of 1 a.u.
order to include the momentum components necessar
represent the highest ATI peak, 9000 points would thus
needed while the present calculation was carried with 20B
splines.

IV. SUMMARY AND DISCUSSION

In this paper, we investigate the solution of the tim
dependent Schro¨dinger equation of a one-dimensional ato
in an intense laser field using scaled coordinates. Two of
fundamental problems of the time-dependent wave func

FIG. 6. ~a! Comparison of the position of the second ATI pe
with the nearby peak of the probability density at 40 T, 80 T, a
120 T for a laser pulse turned off at 8.25 T, showing that the pea
the wave function approaches the ATI peak asymptotically.~b!
Comparison of the ATI peak and the probability density for tw
laser pulses at 80 T. The dashed lines are for a laser pulse turne
at 8.25 T, and the dotted lines are for a laser turned off at 6.2
The shift is a measure of the average time of the creation of the
peaks.
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in coordinate space are the spreading and the rapid p
oscillation of the wave function at large times. The sca
coordinate removes both of these problems analytica
When atoms are exposed to an intense laser, additiona
cillations on the wave function from the quiver motion of th
laser field can be reduced by calculating the wave functio
the KH frame, i.e., in the acceleration gauge. By combin
the scaling and the acceleration gauge, we show that
possible to perform accurate calculations for the o
dimensional soft-Coulomb problem in an intense laser fi
without using absorbers at the boundaries. We have ca
lated the total ionization rate and showed the wave func
in the KH frame tends to be more localized as the fi
strength is increased. We further demonstrated that infor
tion on the ATI peaks can be seen directly in the wave fu
p.

ev

K.

l,

er

02340
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tions in the scaled coordinate if we let the wave functi
propagate freely over a long time. The scaled coordin
method is thus not only more convenient for the solution
the time-dependent Schro¨dinger equation, but allows simply
for propagation to large times so that the ATI peaks can a
be seen in the wave function itself. By greatly reducing t
computational burden for laser-atom interactions, we hop
more easily treat fully three-dimensional problem.
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