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Boundary-free scaling calculation of the time-dependent Schidinger equation
for laser-atom interactions
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The time-dependent Schtimger equation for atoms in an intense laser field is solved in scaled coordinates.
Starting with the time propagation of a free particle, we show that scaling removes the spreading and rapid
phase variation of a wave packet. By solving the one-dimensional model atom in an intense laser field, we
show that stable numerical results are best calculated in the acceleration gauge using scaled coordinates. The
wave function thus calculated has the least oscillations and does not spread at large time so that there is no
need to introduce absorbers at the boundaries. We show the method is suitable for calculations at any laser field
strength. We also show that the scaling method permits propagation to large times thus revealing above
threshold ionization structure directly in the wave function.
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[. INTRODUCTION the box or basis set at a given time so that the wave function
does not reach the boundary, or to introdackhocabsorb-

The interaction of intense lasers with atoms has attractedrs near the boundaries, these approaches are inherently lim-
considerable interest both experimentally and theoretically inted and should be used with care in intense fields where fast
recent yearg1l]. In an intense laser field, an atom can beelectrons are generated, and for long laser pulses where the
ionized by processes such as multiphoton ionizatBror by ~ propagation time is necessarily large.
tunneling ionization[3]. Other phenomena such as above The inherent limitations of representing a time-dependent
threshold ionization(ATl) [4,5] and harmonic generation continuum wave function by a finite basis or grid are appar-
(HG) [6,7] are also well known. The HG process is of par- ent even for a freely propagating wave packet. Consider the
ticular interest since it may lead to new sources of coherentvell-known example of a Gaussian wave packet traveling
short wavelength light. with a group velocityk,. As time evolves, the wave packet

For laser intensities above about'd® cm 2, perturba-  will spread and at the same time acquire a rapidly increasing
tion theories can no longer be used to describe the laser-atophase. The sharper the wave packet is initially, the larger and
interactions. In the past, various nonperturbative approachdaster is the spreading. One way to avoid this spreading is to
have been developed. One commonly used method is Flaalculate the momentum wave function directly. In momen-
quet theony[8,9] and its generalization to the many-electrontum space, the wave function is always localized and does
case in the form of th& matrix Floquet metho@10]. How-  not spread with time unless there is an external field. This is
ever, the method is not convenient for short laser pulses sindde approach taken by Sidky and Lin for treating impact
it presumes a cw laser. The more common approaches faonization in ion-atom collisiong23]. Another approach is to
short laser pulses are based on solving the time-dependeuse a scaled coordinate system. The scaled coordinate is cho-
Schralinger equation either directly on numerical grids or insen by scaling the spatial coordinate according &o
a basis set. In the basis-set approach, basis functions hawex/R(t), whereR(t) is chosen arbitrary except it is set to
been chosen to be the field-free atomic eigenstdt®sl 2, approachyt at large times withy a constant with units of
Volkov stateq13], and otherg14]. The resulting first-order velocity. Thus, in the scaled coordinate, the electron wave
time-dependent equations are solved by direct numerical inpacket is stationary and does not expand with time. As
tegration or by using a fitting methdd 5]. Grid methods shown by Sidky and Esrf24], in the scaled coordinates the
have included finite differencelsl6—19, discrete variable rapid phase increase with time at largaés also removed,
representatiof20], finite elementg21], andB splines[22]. leaving a scaled, time-dependent wave function that varies

In the time-dependent approach, the goal is to obtain aslowly in both time and space. The scaling approach thus
accurate wave function for the electron throughout the duraachieves the goals of the momentum-space appr@ach
tion of the laser pulse. This time-dependent wave functiormremoves the rapid phase variation. Such functions are much
should describe not only the bound excited states, but alseasier to calculate numerically.
the continuum states representing the ionized electrons. The two approaches mentioned in the previous paragraphs
When the calculation is carried out using basis functions, thare designed specifically to treat the continuum wave func-
continuum states are often represented by some set of psetipn. In typical collision systems, however, there are also
dostates. When the calculation is carried out on a grid, théound states to deal with. Solving the time-dependent Schro
grides have to be confined to a box of finite size. Neitherdinger equation entirely in momentum space would require
approach allows the continuum electrons to escape to infinthe solution of an integro-differential equation, where the
ity, and reflections from these artificial boundaries may resulkernel involving the interaction potential is difficult to evalu-
in unphysical interference. Although it is possible to enlargeate, if not impossible. Sidky and Lin circumvented this dif-
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ficulty by solving the time-dependent equation in coordinateThe superscripBis used to denote the scaled wave function,
space even though the wave functions are expanded iand the parametes is

momentum-space-basis splines. In the scaled coordinate ap-

proach, the price to be paid for the simplification of the con- 1 dR

tinuum wave function is that the bound states shrink with p= EmRE' ©6)
time. A flexible numerical representation is thus required, but

no other difficulties result. In Sidky and Esry, a short-rangeWhile the functional form ofR(t) is arbitrary, it should be
model potential that could support only one bound state washosen so thaR— yt at larget, with y being a constant with
examined. In the present paper, the scaled coordinate apnits of velocity, in order to make the wave packet stationary.
proach is applied to a one-dimensional soft-Coulomb potenThe time-dependent Schrodinger equatighDSE) for

tial in a laser field. We will show that the existence of many¥S(¢,t) is

bound states does not pose any practical computational prob-

lems and that the scaled wave functions are indeed much OvSED [ 1 3_2_ REZ+V(R
smoother, thus making the method applicable for any field : gt | 2mR 9&° qREE+V(RE)
strengths and for propagation to very long times. L R
+ S mR—— &2 WS(£ 1), )
Il. THEORETICAL METHODS 2 dt
A. One-dimensional model atom To illustrate how the scaling works, consider a one-

To illustrate the scaling method, we will perform calcula- dimensional Gaussian electronic wave packet with velocity

tions on a one-dimensionélD) soft-Coulomb potentidl17] Ko alnd widtha at timet=0 a.u. This wave packet will freely
evolve as

1

Ji+x2
where the amplitude is given 45|
Just as for the three-dimensional case, this potential supports
(X— kot)z}

V(X)=— (1) P(x,t)=P(x,t)e ¢*D, (8)

an infinite number of bound states. The ground state and the

first excited state have energies-60.669 and—0.275 a.u., |<I>(x,t)|2=h(t)ex;{ T W)
respectively(we will use atomic units hereafter unless oth-
erwise indicatefl We choose a smooth turn on a cw laser jith

(©)

at 2 1/2
E()= Eo sinz(ﬁ)sin(wt), 0=<t<3T i h(t)= m} ,
EoSinwt, t=3T at+4t2\ 12
wherew, E,, andT are the frequency, amplitude, and period w(t)= 2a’®

of the laser field, respectively. Within the dipole approxima-
tion, the time-dependent Scliinger equation in the length The center of the wave packet is thus moving with velocity

gauge is given by ko and is spreading with time. The phase facigx,t) is
given by
oL(xt) [ p?
| = o UEXEV(X) | WL(x.D), 3 1 (et . 1k2 2t(x—kot)?
¢(x,t)—§tan 22 + OX_E of + P
wherem s the mass of the electrog= —e is the electronic (10
charge, ang is the momentum.
and approaches
B. Scaling scheme - 2tx2
Following Sidky and Esry, the scaled coordinate is de- Z+ at+4t?

fined by
at large times. This phase becomes linear in time at large
£= X 4) and depends quadratically anleading to rapid oscillations
R(t)’ in the wave packet.
In contrast, using Eq5) andR— vt, the asymptotic form
and the transformed, scaled wave functibri(¢,t) is given  of the scaled wave function in the scaled coordinate is

by 1/4 a2 yz ko 2
‘{ At

a2 ,}/2

2

V(&)= Re PEW(x,1). 5) ‘I’S@:[ em (11)

023402-2



BOUNDARY-FREE SCALING CALCULATION OF THE .. .. PHYSICAL REVIEW A 65 023402

@) =0 a.u C. Gauge transformations
05 | (@ =0au. ] _ .
0.0 —/\7 It is well known that the wave function of a free electron

—05 |- | in a cw laser field can be simplified by transforming from the
) . , , length gauge to the acceleration gauge:

> 0.5 q
v 00 \If,_=exr<—iEAx)exp(ipa—i,u)\IfA, (12
-0.5
where
0.5
0.0 e [Ear
05 A(t)=A(0) cJoEdt,
-50 30 -10 1.0 30 50 q [t
g a(t)=a(0)+5f Adt’,
0

FIG. 1. Time evolution of a free wave packet. Only the real part
of the wave function is shown. At=0 a.u., the Gaussian wave q2 t 2 1)
packet has a width of 1 a.u. and is traveling to the right with a p(t)=p(0)+ 2¢2 foA dt’. (13
velocity of 1 a.u. The dashed line is for the real wave function and
the solid line is for the scaled wave function showing that the latterrhis transformation can be easily understood classically. In
has many fewer oscillations. The abscissa is the scaled coordinatge classical description, the motion of an electron is charac-
The scaling parameter B(t) = 1+t for positivet. terized by its position and velocityx(v). When the laser
field is applied, these change {x—«,v+(g/c)A]. By
shifting the center ofX,v) from (0,0 to [ @, —(g/c)A], the
hef“fects of the laser field is removed, and the electron in this
érame can be treated as freely propagating. This reference

The scaled wave packet is thtisie independenh the limit
of large times. It is centered §t=k, /vy, fixed in width, and
has no rapid oscillations. Clearly such a function is muc

easier to calculate numerically than the original unscale )
function y 9 rame is called the Kramers-HennebergkH) frame, and
: the wave function is said to be in the acceleration gauge. We

As an illustration, we show in Fig. 1 the free propagation i the t KH f qe lerati »int
of a Gaussian wave packet. The velocity of the wave packe“["I use the terms rame and acceleration gauge nter-

is 1 a.u. and its width is 1 a.u. &&= 0. The real part of the changeably in the following. In the KH frame, the TDSE
wave function at=0, 10, and 20 a.u. are plotted. The solid becomes
lines denote the scaled wave function; and the dotted lines, IV A(X,1)
the weighted unscaled functiofR¥ (Ré&,t). The abscissa is | —
the scaled coordinatg, with the scaling parameteR(t)

=J1+1t2 for t=0. Several features of the scaling method aren scaled coordinates for the 1D problem, it is given by
well illustrated here. First, the “real” wave function oscil-

2
=[2p—m+V(X— a)

ot WA, t). (14)

lates much more rapidly than the scaled function, and the ) &‘I’i(f,t) 92

differences grow with time as shown in the progression from = = [ T ImR 982 +V(Ré—a)

curve (b) to (c). Second, in the scaled coordinates, the wave

packet simply moves fror§=0 to 1 as time goes from 0 to 1 d’R ols

o, Already att=10a.u. the wave packet has essentially +§mRW§ WR(E D). (15)

reached its asymptotic position. Third, the width of the
scaled wave packet has also nearly reached its asymptotio the absence of the potenti(x), the solution of Eq(14)
value att=10a.u., and has the manageable valde=2.5. is a plane wave. By transforming to the length gauge through
The real wave packet is 10 times biggetatiOa.u., and 20 Eq. (12), we obtain the usual Volkov state that describes a
times att=20a.u. In this example, the time evolution of the free particle in a laser field.
unscaled wave function is known analytically. If we were to ~ Further insight into the effects of using the scaling ap-
obtain this oscillating function by direct numerical integra- proach can be obtained by considering the time evolution of
tion, it would clearly be a more challenging task. an initial Gaussian wave packets in Fig. 1 in a laser field
The above example is for a freely propagating waveE=sinwt using the acceleration gauge. The time-dependent
packet. In laser-atom interactions, the wave function of arwave function can be obtained analytically even for this
ionized electron still under the influence of the laser fieldcase. In the KH frame, the evolution of the Gaussian wave
undergoes complicated evolution due to the quiver motionpacket is given by the familiar free-particle result. To obtain
This field-induced acceleration leads to oscillations of thethe wave function in the length gauge, the gauge transforma-
wave function that are not removed by the scaling transfortion in Eq.(12) can be applied to the KH frame wave func-
mation since the latter accounts only for motion of a constantion. Note that this is most straightforwardly accomplished
velocity wave packet. We will show in the following section by writing the Gaussian in terms of its Fourier components.
how the quiver motion can also be analytically described. The real part of the wave function in the scaled coordinate
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c — c —i(g/c)Axnipa—i
0.5 w <(I) (X)|\I,L(X’t)> <(I) (X)|e . ep M|\PA(X1t)>
0.0 :<e*ipa<I)C(X)|ei(q/C)AXEXH:(q/C)Aa

-05 1 -
N — —ip]¥a(x,1)). (17
%f 8(5) In this expression, we have used the result
& _05 e iPag-i(@/0)AXgipa_ g-i(alc)Axgi(a/c)Aa. (18)
0.5 | | I I which is obtained from the well-known formula
05 A eoe P=orip.ars PP g

-50 =30 -1.0 10 30 50 .
& by letting P=—ipa, Q=e%**. Thus, the projection in
terms of scaled wave functions in the KH frame is given by
FIG. 2. Time evolution of the initial Gaussian wave packet of _ o,
Fig. 1 in a cw laser field =sinwt. The solid line is for the scaled (e~ 'P*\[RDS(RE)|exy] —i(a/c)A(RE— a)]|€PEWS(£,1)).

wave function and the dashed line is for the real wave function. The (20)

wave functions are in the length gauge, and only the real part is

shown. The function on the left side is most conveniently obtained
by solving the “shifted” Schrdinger equation

and in the real coordinate are compared in Fig. 2=a, 10, 1 2

and 20 a.u. Even though the wave function is oscillatory in — —— —+V(Ré—a) |¢y=E., (21)

the scaled coordinate, the oscillation is still much slower 2mR’ d¢

than in the real-space wave function. The combination O(Nhere
acceleration gauge plus scaled coordinates thus accounts

analytically for both the acceleration due to the laser and the y=e P ROS(RE).
constant-velocity free-particle propagation. The numerical

Simplifications that result are further examined below using a In our calculation, the range of was normally chosen

more realistic soft-Coulomb potential. between—17 and+17. The solution of the above equation
To integrate Eq(15), we need the initial state in the ac- thus gives a set of pseudostates that represent the continuum.
celeration gauge. It is obtained from the transformation  The distribution of pseudostates is dense enough to extract
the ATI spectrum.

W A(X,00=exd —ipa(0)
+tu(0)]exdi(g/c)A(0)x]V (x,0). (16)

I1l. NUMERICAL RESULTS AND DISCUSSION
A. Wave functions in scaled coordinates

We now consider the solution of the 1D soft-Coulomb
At first glance, the choicé\(0)=a(0)=w(0)=0 appears problem in a laser field to illustrate the advantages of per-
desirable since it would make the two functions identical aforming calculations using scaled coordinates. We will focus
t=0. Such a choice, however, would result in a drift term,on the strong field regime, where the challenge to the nu-
i.e., a term ina(t) linear int that would carry the center of merical method is most severe. In all the calculations, the
the potential away fron§=0. Since we need a fine numeri- lasers are turned on smoothly in three cycles as described in
cal mesh near the nucleus to account for the shrinking boun8d. (2), and the electron is initially in the ground state. In the
states, it is more efficient to choose the inith0) so that first calculation, we choose=0.5193 a.u.(or a period of
the nucleus does not drift. With the laser field turn on givenl2.1 a.ur andEg=1 a.u. The scaling is applied startingtat
by Eq. (2), we found thatA(0)=—Ey/35» and «(0)=0 =10a.u,, and the scaling function R(t)
gives the desired transformation. Thus, in the scaled KH=1+0.04(t—10)? for t=10a.u. No scaling was em-
frame, the center of the soft-Coulomb potential follows theployed beforet=10a.u., i.e.R=1. The wave functions are
oscillatinge(t) function with an amplitude of this oscillation calculated by integrating the TDSE in scaled coordinates us-
decreases with time asR/ Since the bound states move ing B splines in a Crank-Nicholson-like propagation scheme.
with the oscillating center, we need to use a fine spatial gridfhe wave functions in real coordinates are obtained from Eq.
over the whole range of motion. (5).

Once the time-dependent wave function is obtained, we In solving the time-dependent wave functions in the
can calculate the ATI spectrum by projecting it onto the con-scaled coordinates, the rangedé chosen to make sure that
tinuum states of the field-free 1D atom.df°(x) is one of it is large enough to enclose the scaled wave function at all
these continuum states, then the ATI spectrum can be calctimes. The range, of course, depends on the scaling param-
lated from the amplitude in the length gauge, eter R(t) chosen. The grid points and the range stay fixed
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FIG. 4. Total ionization probabilites vs time forw
-0.05 =0.5193 a.u.{a) Eo=1 a.u. andb) E;=4 a.u.
025 . ‘ . . o - . .
350 0 o 50 ability vs time. The ionization probability oscillates with the

laser period, with sharp minima at times of one quarter and

three quarter cycles. Away from the minima, at these field
FIG. 3. In(a), comparison of the wave functions in length gauge strengths the ionization probability is nearly unity. A closer

(dotted ling and in acceleration gaug@ashed ling No scaling examination shows that the minima are lowerEgt=4 a.u.

was used. Shown are the real part of the wave functions Bjth than atE,=1.0a.u. This decrease in ionization probability

=1a.u. andw=0.5193 a.u. Inb), comparison of real wave func- with increasing field strength is an indication of stabilization,

tion (dashed ling and the scaled wave functidsolid ling) in the  where the electron becomes more stable as the field strength

acceleration gauge. Laser parameters are &a)irfPanel(c) is the  js increased.

same agh) except that the laser field has stren@if=4 a.u.

X (au.)

B. ATI spectrum and wave functions in scaled coordinates
during the time integration. Since the bound states shrink 0. 4ioms in an intense laser field, once the time-

with time, finer meshes are used for the region near the forcaependent wave function is obtained. it can be used to cal-
cer\}t/er.f_ h ¢ . in th lerati culate observable such as the harmonic generation spectrum
€ |rs(tj (;omhpa:e t i wave un_crt:ons N ': e acceleration,, the AT spectrum. The latter is done by simply projecting
gauge and in the length gauge without scalngaﬁo a.U.  onto the continuum states. In Fig. 5, we show the ATI spec-
The real parts of the wave functions are shown in Fi@.3 trum as a solid curve fdE,=0.1a.u. ando=0.148 a.u. for a
Clearly the oscillation in the length gauge is much more,qe 1hat was turned off after 8.25 cps. Physically, the sharp

rapid except in the outer region, where they are COmp""rabl%eaks in the ATI spectrum indicate that there are ionized

It follows that the acceleration gauge has numerical advanélectrons with reasonably well-defined energies veloci-

tages. A rgpidly. oscillating function not only re:-quires rnoreties). It is worthwhile to see whether this information can be
spatial grid points for accurate representation, but alsQgen girectly in the wave function. To this end, we also show
smaller time steps. in Fig. 5 the probability density in the scaled coordinate after

The_wave function in.the acceleration gauge become eely propagating the wave function from 8.25 to 80 cps.
even simpler in the scaling approach. Comparing the rea

part of the two functions in Fig.(®), the scaled wave func- - ———r———+——— S .
tion is clearly smoother and thus easier to compute directly. 03 [ ]
In fact, the unscaled wave function was obtained from the ]
computed scaled wave function using E9).

We next consider a laser with the same frequency but with
the higher field ofEy=4 a.u. In Fig. 8c), we show the real
part of the wave function dt=60 a.u., again in the accelera-
tion gauge. The scaling parameter is chosen R{$)
=\J1+4(t—1)? for t=1a.u. The scaling must be started
earlier and have a large due to the fast ionized electron. 2 4 6 8§ 10 12 14
Without scaling, the wave function oscillates rapidly. Using g \74)
scaling, the number of oscillations is substantially reduced,
showing the merit of the scaled coordinates. FIG. 5. Comparison of the position of the ATI peaks in scaled

At field strengths of 1 and 4 a.u., the electron is readilycoordinates with the probability density at a large time. See text for
ionized. In Fig. 4, we show the calculated ionization prob-the details of the parameters used in the calculation.

0.2

0.1

¥, 7, ATI
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Note that the ATI spectrum is plotted ws' y with v the
velocity of the electronconverted from its energyand y
=0.1a.u. The first ATl peak coincides with the first peak of
the density. For the higher peaks, the overlap is not as good,
with the peak positions of the density distribution lagging
behind the ATI peaks, but a one-to-one correspondence can
be easily discerned. According to E41), a freely propagat-

ing Gaussian wave packet is stationary in the large time limit
in scaled coordinates with the peak locatedé&atky/y.
Thus, each peak in the probability density is a wave packet
representing a “burst” of ionized electrons whose velocity
can be read directly from the position of the peak.

The shift of the probability density peaks with respect to
the ATl peaks can be understood by realizing that each wave
packet is created at a different characteristic time. Following
through the scaling transformation  with R(t)
=\/1+0.01¢—50)?, we find that the center of the wave
packet in the scaled space is at

v(t—t v(t—t
() _wt-t) 22
R V1+0.01(t—50)
FIG. 6. (a) Comparison of the position of the second ATI peak

if the wave packet was created at titgeand then propagated with the nearby peak of the probability density at 40 T, 80 T, and

freely. At large timet, 120 T for a laser pulse turned off at 8.25 T, showing that the peak in
the wave function approaches the ATI peak asymptoticdly.
v(t—te) v(t—te) v t.—50 v Comparison of the ATl peak and the probability density for two

Yl (23

R 0.1(t—50) ~“01 t o1 laser pulses at 80 T. The dashed lines are for a laser pulse turned off

at 8.25 T, and the dotted lines are for a laser turned off at 6.25 T.

The deviation between the ATI peak and the density peak ighe shiftis a measure of the average time of the creation of the ATI
thus expressed by the second term on the right. At a giveReaks.
time, the difference is proportional to the velocity of the
electron in each ATI peak. Figure 5 indeed shows that théor each order of ATl generated at different times during the
deviations are larger for the higher ATI peaks. To show thataser pulse to coalesce into a single wave packet. In the ex-
the deviation also has to do with the asymptotic time wherample above, for instance, the wave packet corresponding to
the wave function is examined, we show in Figa)éthe the ATI peak might be composed of two wave packets, one
second ATI peak and the density of the wave function at 40¢reated at the beginning of the laser pulse and the other at the
80, and 120 cps, with the laser field turned off at 8.25 cpsend. Both of these wave packets have the same velocity, but
One can see the deviations become smaller at the largére initially spatially and temporally separated. As time in-
times. The density peak will presumably coincide with thecreases, the wave packets travel and spread. Eventually, they
ATI peak at infinitely large times. coalesce into a single wave packet spatially separate from the

From Eq.(23), the shift of the density peak from the ATI wave packets corresponding to other ATl peaks. At short
peak also depends on the formation time of the wave packetimes, then, the wave function is a complicated collection of
In general, a longer pulse would have a larger average creseveral ionized wave packets overlapping and interfering.
ation time. To see how this is reflected in the calculated wavéropagation to long time allows the simple structure of Fig. 5
function, Fig. @b) shows the density distributions of the to emerge, and the scaling method makes this long time
wave functions at 80 T, in one case the laser was turned offropagation especially simple. Returning to Fig. 5, we see
at 6.25 T and in the other at 8.25 T. For the longer pulse, théhat a grid in real space would have to range roughly from
density peak lags behind the ATI peak more sihcen Eq.  —4500 to 4500 a.u. with a maximum step size of 1 a.u. in
(23) is larger. We have checked that the difference in the shiforder to include the momentum components necessary to
in Fig. 6(b) is not due to the difference in the free propaga-represent the highest ATl peak, 9000 points would thus be
tion time and that the AT peak positions calculated from theneeded while the present calculation was carried with 200
two pulses are identical. splines.

The time-dependent wave function thus directly shows
quite clearly ATI features. This result is not specific to the
scaling method, but scaling makes calculating and observing
these features considerably simpler. In particular, the wave In this paper, we investigate the solution of the time-
function must evolve freely for a long time after the laser isdependent Schdinger equation of a one-dimensional atom
turned off in order to see the simple structure in Fig. 5. Thisin an intense laser field using scaled coordinates. Two of the
long evolution time is necessary to allow the wave packetsundamental problems of the time-dependent wave function

IV. SUMMARY AND DISCUSSION
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in coordinate space are the spreading and the rapid phasens in the scaled coordinate if we let the wave function
oscillation of the wave function at large times. The scaledporopagate freely over a long time. The scaled coordinate
coordinate removes both of these problems analyticallymethod is thus not only more convenient for the solution of
When atoms are exposed to an intense laser, additional oghe time-dependent Schiimger equation, but allows simply
cillations on the wave function from the quiver motion of the for propagation to large times so that the ATl peaks can also
laser field can be reduced by calculating the wave function ihe seen in the wave function itself. By greatly reducing the
the KH frame, i.e., in the acceleration gauge. By combiningcomputational burden for laser-atom interactions, we hope to

the scaling and the acceleration gauge, we show that it ifore easily treat fully three-dimensional problem.
possible to perform accurate calculations for the one-

dimensional soft-Coulomb problem in an intense laser field

without using abs_orb_ers at the boundaries. We have ca_lcu- ACKNOWLEDGMENT

lated the total ionization rate and showed the wave function

in the KH frame tends to be more localized as the field This work is in part supported by Chemical Sciences,
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