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Total cross-section calculations on proton-impact ionization of hydrogen
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Department of Physics, Cardwell Hall, Kansas State University, Manhattan, Kansas 66506

~Received 14 May 2001; published 14 December 2001!

We have calculated the total cross section for proton-impact ionization of atomic hydrogen for the interme-
diate energy range 25–100 keV. We evaluate error bars of 5% on our theoretical values. The present results
disagree with the experiment of Shah and Gilbody@J. Phys. B14, 2361~1981!# and Shahet al. @J. Phys. B20,
2481~1987!#, differing by 20% at the peak of the ionization cross section. On the other hand, our results show
better agreement with two recent theoretical calculations, one performed by close coupling and the other by
integrating the time-dependent Schro¨dinger equation on a three-dimensional lattice. The present results also
compare favorably with theoretical and experimental determinations of capture and excitation cross sections.
We describe the two-center momentum space discretization method, used here, in detail, explaining how the
cross sections and corresponding error bars are determined.
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I. INTRODUCTION

Ion impact ionization has been an interesting problem
many years, but most recently, there has been a flurry
work on the subject of proton impact ionization of molecu
with the aim of understanding radiation damage in biologi
systems@1,2#. Unfortunately, our understanding of even t
most basic ion impact collision system, protons on hydrog
is not very good. At the peak of the ionization cross secti
numbers available from the ‘‘best’’ experiment@3,4# and
‘‘best’’ theory @5# disagree by 20%.

The proton-hydrogen system is a prototype for ion-at
collision systems. The theoretical understanding of ion-at
collisions is based on methods and models tried out on
fundamental collision system. Yet, a complete description
proton-hydrogen collisions at keV energies has proved
sive. The basic reaction channels are elastic scattering, ta
excitation, capture to the projectile and ionization. Ionizat
is the least understood process of the four. In the interm
ate energy regime 25–100 keV, where the projectile pro
comes in at a speed comparable to the average speed o
electron, all four processes are important and interconnec
A poor understanding of one – ionization – limits the acc
racy of the description of all other processes. Thus, it
paramount to develop a theoretical description of elect
ejection in the proton-hydrogen system that can give the t
ionization cross section to arbitrary accuracy.

The first ab initio attempt at computing the total ioniza
tion cross section at intermediate impact energies was
formed by Shakeshaft@6#. He employed a two-center expan
sion in atomic orbitals about both centers, using pseudost
~positive energy, localized states! to represent the ionization
continuum. At the time, Shakeshaft’s calculation came in
20% below the maximum for ionization total cross secti
from available experimental data. Later, measurements
Shah and Gilbody and Shahet al. @3,4# were in better agree
ment with the calculation of Ref.@6#. Further elaboration of
the two-center atomic orbitals method by Kuang and L
@7,8# showed very good agreement between theory and
experiment of Shahet al. in the intermediate impact energ
range. The issue seemed to be settled until Toshima@5# per-
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formed a very detailed study of the two-center clos
coupling method and determined that previous clo
coupling studies were not converged. His studies provid
cross sections that were now 20% higher than the experim
of Shahet al. Lattice calculations by Kolakowskaet al. @9#
came in also significantly higher than the experiment at
maximum of the ionization cross section. Thus, the pres
situation is the opposite of what it was in 1978; the theo
now predicts 20% higher-ionization cross sections than
experiment measures.

Experimentally, the proton-hydrogen collision system
difficult to investigate because of problems in making a
characterizing the atomic hydrogen target. The first stud
by Fiteet al. @10# measured the ionization cross section up
an impact energy of 40 keV, but the error bars were at
20–30 % level. Other early measurements made by Gilb
and Ireland@11# and Parket al. @12# in the intermediate im-
pact energy regime also had a large experimental error.
generally accepted numbers for the total ionization cross
tion in p-H collisions were generated from experiments do
by Shah and Gilbody and Shahet al. in 1981 and 1987@3,4#,
which claim experimental error on the level of 5% or bett
Recent studies by Kerbyet al. @13#, focusing on the doubly
differential cross section for ejecting electrons in thep-H
system, produced total ionization cross sections, which di
from Refs.@3,4# by up to 29%.

On the theoretical side, there is much more work done
the proton-hydrogen collision system, see Refs.@14,15# and
references therein. The reason for this is obvious; thep-H
system contains only one electron and a simple Coulo
interaction with the two protons, the motion of which may
described classically to a good approximation. Thus, thep-H
system reduces to the quantum-mechanical study of a si
electron in the time-dependent field of two moving proton
As a result, most elastic and inelastic processes involv
bound states on the target or projectile protons are well
scribed by current theory.

Ionization, however, remains a challenge even for thep-H
system. Within the last five years, a variety of approaches
obtaining the ionization total cross section in proto
hydrogen collision have appeared in the literature~in reverse
©2001 The American Physical Society11-1
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EMIL Y. SIDKY AND C. D. LIN PHYSICAL REVIEW A 65 012711
chronological order!: Finite Hilbert basis set calculations b
Fu et al. @16#, classical trajectory Monte Carlo calculation
with initial ensemble geared for ionization@17#, direct solu-
tion of the time-dependent Schro¨dinger equation on a very
large three-dimensional lattice@9#, an extensive study of the
two-center close-coupling approach by Toshima@5#, pertur-
bation theory using a time-dependent two-state model a
zeroth order trial wave function@18#, and a three-cente
close-coupling calculation by McLaughlinet al. @15#. In this
paper, we will discuss at length the close-coupling meth
and the lattice calculation in comparison with the pres
calculation.

To address the issue of ionization in proton-hydrogen c
lisions, we have developed the two-center momentum sp
discretization~TCMSD! method @19,20#. The original pur-
pose of the TCMSD method was to examine the full thr
dimensional distribution of ejected electrons, and we h
applied the method to understand the saddle-point me
nism in low-velocity proton-hydrogen collisions@21# and
a-H collisions @22#. For the low-impact velocities, the TC
MSD method cannot propagate the electronic wave func
far enough to establish a final probability of ionization. O
the other hand, for impact velocities 1 a.u. and above,
TCMSD method may reach large enough times to give
total ionization cross section. Moreover, TCMSD allows
to put error bars on our computed numbers. In this paper
first show the TCMSD results for inelastic processes
proton-hydrogen collisions, then we give a detailed acco
of the theory with the parameters used in the current ca
lation and finally, we discuss the convergence of our cal
lation relative to other theoretical work.

II. INELASTIC CROSS SECTIONS

The main goal of this paper is to provide a reliable calc
lation for the ionization cross section for the proto
hydrogen system in the intermediate impact energy ra
25–100 keV or 1–2 a.u, in impact velocity. We show o
results for ionization and support them later by a detai
description of the theory. But as stated in the Introducti
ionization is intertwined with other inelastic processes t
are also important in this energy range. It is not possible
accurately describe one without treating all. To support
ionization results, we also show cross sections for excita
to the 2s and 2p states of the target and capture to 2s and 2p
states of the projectile. Numerical results for reported cr
sections are shown in Table I.

TABLE I. Ionization and other inelastic cross sections in un
of 10216 cm2. All numbers have 5% error.

E ~keV! Ionization
Excitation

2s
Excitation

2p
Capture

2s
Capture

2p

25 0.961 0.1423 0.5103 0.3994 0.195
40 1.649 0.1566 0.6266 0.2262 0.081
50 1.801 0.1464 0.6587 0.1384 0.044
75 1.700 0.1151 0.7078 0.0412 0.010
100 1.457 0.0931 0.7124 0.0144 0.003
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A. Ionization

In Fig. 1, we present our total cross section for prot
impact ionization of hydrogen. Other recent calculatio
shown by Toshima@5# and Kolakowskaet al. @9# represent
the state of the art in the close-coupling and lattice meth
respectively. The experimental results shown come fr
Kerby et al. @13# and Shah and Gilbody and Shahet al. @3,4#.
Also shown is the interpolated, recommended values fr
the International Atomic Energy Agency~IAEA ! @23#, which
are clearly based on the results of Shahet al. We estimate
uncertainties in our calculation and claim an accuracy of
error, putting our cross sections at odds with the values
ported by Shahet al.

Our calculation of the ionization cross section matches
data of Shah and Gilbody@3# at the low end of our energy
range, but we obtain a value 30% higher at the maximum
the ionization cross section. The agreement with the exp
ment of Kerbyet al. is slightly better, but there again w
have a large discrepancy near the maximum of the cr
section. The curve from the IAEA is classified as accura
category B, 10–25 % error, significantly larger error th
reported by Shahet al. The error bars of the present calc
lation does overlap with the 25% error bars drawn in Fig.
One of the main difficulties in producing the experimen
cross sections is to determine the ratio of atomic hydroge
molecular hydrogen in the gas target. In the case of R
@3,4# the data is normalized to the Born approximation
impact velocity ofv57.75 a.u. The validity of the Born ap
proximation, even at that high an impact velocity, is an op
question@5,24#. Normalization issues aside, the shape of o
calculation does not fit with that of Shahet al.

FIG. 1. Comparison of total ionization cross sections with oth
theory and experiment. solid circles with solid line and error ba
present results; asterisks, Toshima@5#; diamonds, finite difference
method by Kolakowskaet al. @9#; open boxes, Fourier collocation
method by Kolakowskaet al. @9#; up triangles, experiment by Sha
et al. @3#; down triangles, experiment by Shahet al. @4#; 3, experi-
ment by Kerbyet al. @13#; dashed line is the recommended valu
from the International Atomic Energy Agency~IAEA !. The IAEA
rates their data in accuracy class B, 10–25% error. The dashed
bar shows the maximum of that error range, 25%.
1-2
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The ionization cross section of the present calculat
compares better with other recent theoretical calculati
than with the reported experimental data. Our calculat
agrees with both reported points from the Fourier collocat
calculation of Kolakowskaet al. @9#, but their numbers from
the finite difference method are about 30% higher at imp
velocity v51 a.u. Ref.@9# does not, however, express a l
of confidence in their ionization cross section due to
indirect way in which it is determined, citing the differenc
between their own Fourier collocation and finite differen
calculations. The present ionization cross section agrees
with the close-coupling calculation of Toshima@5#. The only
significant disagreement is at impact velocity 1 a.u., wh
Toshima’s value is 11% higher than our cross section
impact ionization. At 50 keV (v51.414), the present calcu
lation agrees with Toshima’s number to within 1%. Even
the level of impact-parameter dependence, see Fig. 2,
computed probability of ionization fits well with Toshima’s
We also show the impact-parameter dependence of the
ization probability for the other energies we calculated
Fig. 3. We come back to a more detailed discussion of
comparison between our results and the other theories
presenting our theoretical framework.

B. excitation and capture

Considering the scatter in the various results for the i
ization cross section, we offer additional support for our c
culation by showing its results for excitation and char
transfer. In Fig. 4, we compare our cross section for exc
tion to 2p with experimental results of Detleffsenet al. @25#
and Barnett@26# in addition to the theoretical calculations o
Toshima@5# and Schultzet al. @27#. Our calculation is con-
sistent with the experiment for impact velocities in the ran
of v51 –1.3 a.u. and then once again atv52. The present
calculation shows smooth behavior between those lim
while the experiment of Ref.@25# shows a rapid increas

FIG. 2. Comparison of weighted probabilities,bP(b) for ion-
ization between present calculation, solid circles with solid line, a
Toshima@5#, up triangle with dashed line, for an impact energy
50 keV (v51.414 a.u.)
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between impact velocities 1.3 and 1.4 a.u.; such structur
difficult to understand for these intermediate impact energ
The close-coupling calculations also are higher than
present calculations in the middle of our energy range,
not as high as the experiment by Detleffsenet al. The lattice
results come in slightly above the close-coupling results
intermediate velocities but they agree with each other at
energy. We remark that the impact-parameter range cov
in the present calculation goes tob510 a.u., which is suffi-
cient for ionization but falls a little short for excitation to th
2p. We extrapolated the impact-parameter dependence o
excitation probability, and the extrapolated piece contribu
as much as 6% , atv52, to our reported cross sections.~The

d
FIG. 3. Weighted probabilities of ionization,bP(b), for all en-

ergy points calculated for this article: line with squares 25 keVv
51), line with diamonds 40 keV (v51.265), line with circles 50
keV (v51.414), line with up triangles 75 keV (v51.732), and line
with down triangles 100 keV (v52).

FIG. 4. Comparison of excitation cross section with experime
H2s excitation: solid squares with lines and error bars, pres
calculation; crosses, Toshima@5#; down triangles, Schultzet al.
@27#; open circles, Higginset al. @28#. H2p excitation: solid circles
with lines and error bars, present calculation; asterisks, Toshima@5#;
diamonds, Schultzet al. @27#; open squares, Detleffsenet al. @25#;
up triangles, Barnett@26#.
1-3
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EMIL Y. SIDKY AND C. D. LIN PHYSICAL REVIEW A 65 012711
extrapolated contribution is less than 0.5% atv51.414,
where we have the largest discrepancy between theory
experiment.! In Fig. 4, we also show excitation to the 2s
compared with experiment by Higginset al. @28# and theory
by Toshima@5# and Schultzet al. @27#. The lattice results
match well with the close-coupling calculation for interm
diate energy. Our calculation agrees with the experimen
within experimental and theoretical error bars, while t
close-coupling calculation falls outside the experimental
ror bars at intermediate impact velocities.

Turning to the capture cross section, we show in Fig
our results for capture to 2s and 2p compared with recom-
mended values from the IAEA, calculations by Toshima@5#
and Kolakowskaet al @29#. The IAEA classifies its 2s cap-
ture as accuracy category C/E and 2p capture as accurac
category C: C means 25 to 50% error and E is more t
100% error. In the figure, 50% error bars are put on
IAEA data at the endpoints, and a 25% error bar is shown
one interior point. The capture to the 2p agrees with the
present calculation to within prescribed accuracy. The ag
ment between the two sets of numbers is even better
capture to the 2s. Our calculation is even within the 25%
error bar of their prescribed numbers. Moreover, we h
agreement over the whole impact velocity range where b
capture cross sections drop more than an order of magnit
The close-coupling results match with our 2s capture cross
section but not for 2p capture, which lies outside our erro
bars. The lattice calculations for 2s capture track the presen
and close-coupling results, but the lattice results for 2p cap-
ture are again below the present calculation and appea
agree with the close-coupling results. In any case, all th
theoretical calculations fit with the IAEA recommended da
The fact that the TCMSD calculation gives reasonable cr

FIG. 5. Comparison of capture cross section with recommen
numbers from the International Atomic Energy Agency~IAEA !.
H2s: solid squares with lines and error bars, present calculat
asterisks, Toshima@5#; down triangles, Kolakowskaet al. @29#;
dashed line, IAEA.H2p: solid circles with lines and error bars
present calculation; crosses, Toshima@5#; diamonds, Kolakowska
et al. @29#; dashed line, IAEA. Outer error bars on the IAEA curv
represent the IAEA’s maximum error bar, and the interior error
represents IAEA’s minimum error bar.
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sections for the inelastic process that are weaker than ion
tion gives us additional confidence in our reported ionizat
cross sections.

III. THE THEORETICAL FRAMEWORK

We review here the two-center momentum space discr
zation ~TCMSD! method, because its implementation h
evolved since the original articles@19,20#. Also, the empha-
sis of this article is to provide accurate numbers, so a deta
description of TCMSD with a critical assessment of
strengths and weaknesses is in order.

The proton on a hydrogen collision system is viewed
the standard semiclassical framework, where the internuc
motion is classical and the electron is treated fully quant
mechanically. Moreover, we assume rectilinear motion
the projectile center with constant velocityvW and impact pa-
rameterbW . The time-dependent Schro¨dinger equation, written
in the target frame, for an electron in the field of the tw
protons is

i
]

]t
c~rW,t !5S 2

1

2
¹22

1

urWu
2

1

urW2RW u Dc~rW,t !, RW 5vW t1bW .

~1!

The coordinate system is the natural frame, where the p
jectile velocityvW is along thex axis, the impact parameter i
along they axis, and thez axis is perpendicular to the colli
sion plane. Atomic units are used throughout. The details
the two-center momentum space discretization~TCMSD!
method, employed to solve Eq.~1!, are presented in Ref
@19#. Here, we restate the form of the electronic moment
space wave function, give a brief account of how the tim
dependent wave function is found, and discuss the calc
tional parameters used to solve Eq.~1!. We describe at length
how bound-state and ionization amplitudes are derived fr
the time-dependent wave function.

A. Wave-function propagation

The electron wave function in the ion-atom collision
represented by a two-center expansion in momentum sp

F~pW ,t !5(
l ,m

T̃l ,m~p,t !Yl ,m~ p̂!1e2 i (pW •RW 21/2v2t)

3(
l ,m

P̃l ,m~q,t !Yl ,m~ q̂!, qW 5pW 2vW , ~2!

where the spherical harmonicYl ,m is defined with respect to
each center in the momentum space expansion. We use
real form of the spherical harmonics with the convention t
positive values ofm refer to cosmf and negative values ofm
refer to sinmf. The phase factor in front of the second su
on the right of Eq.~2! is the plane-wave electron translatio
factor in the momentum space. We have carried out a pa
wave expansion on each center and the radial functi
T̃l ,m(p,t) and P̃l ,m(q,t) are in turn expanded inB splines:

d

n;

r

1-4
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T̃l ,m~p,t !5(
i 51

N

ci
lm~ t !B̃i~p!1c1

lm~ t ! f l~pmin ,p!

1cN
lm~ t !gl~pmax,p!. ~3!

The B-spline expansion covers a range frompmin to pmax,
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wherepmin is nonzero. As in@19#, fourth-order basis splines
are employed. The knot sequence is repeated atpmin and
pmax in order to have the first and lastB spline terminate at

unity. We have attached asymptotic pieces toB̃1(p) and

B̃N(p)
f l~pmin ,p!5H ~p/pmin!
l 0<p,pmin

0 p>pmin
, ~4!

gl~pmax,p!5H 0 p,pmax

~@~ l 11!pmax#
211!21 l

pmax
l

pl

~@~ l 11!p#211!21 l p>pmax
. ~5!
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Roughly speaking,f l takes care of the low-momentum b
havior coming from the inner turning point of each part
wave, in configuration space. The functiongl
'(pmax/p)41 l represents the well-known large momentu
components of the Coulomb wave function@30#. The par-
ticular form of gl in Eq. ~5! is selected to get the lowestn
bound state exactly correct for eachl (1s, 2p, 3d, etc.!,
since they are the major players in collisions with groun
state atoms. In any case, the error introduced by this appr
mation was checked by propagating the 2s orbital in time
over the duration of a collision with no projectile ion inte
action. The resulting probability deviated from unity b
0.02%, much less than other numerical errors. The projec
radial functions have an expansion inq similar to Eq. ~3!
with the spline coefficients labeleddi

lm .
Substituting Eq.~2! into Eq. ~1! gives a set of first-orde

coupled equations for the expansion coefficients in Eq.~3!.
The coefficientsci

lm(t) and di
lm(t) are arrived at through a

fourth-order fixed step-size Runge-Kutta integration. T
time derivative of theB-spline coefficients at each integra
tion step result from a least-squares fit toHc at a set of
points that typically outnumber the basis functions by a f
tor of four. The fit is performed in configuration space af
inverse Fourier transformation of the basis functio
B̃i(p)Yl ,m( p̂) and e2 i (pW •RW 21/2v2t)B̃i(q)Yl ,m(q̂). The fitting
points are arranged as a spherical polar grid about both ta
and projectile protons. The linear system solved is sho
schematically.

~~AT!K8JAJK!xK5~AT!K8JbJ . ~6!

Products with like indices imply summation.K and K8 are
indices running through all basis functions, andJ is an index
running through all the fitting points. The matrixA is a rect-
angular matrix of all basis functions evaluated at all fitti
points. The least-squares method prescribes multiply
through byAT, providing a square linear system. The vec
l

-
xi-

le

e

-
r
,

et
n

g
r

xK represents the time derivative of the coefficients, and
vector bJ represents2 iHc evaluated at the fitting points
The x2 of the fit reveals the error of the time derivative
the electron probability density. OncexK is found, this infor-
mation is fed into the Runge-Kutta integration, which
checked for accuracy by the wave-function normalizat
and by reducing the integration step size.

Since the wave-function normalization is not automa
cally preserved in TCMSD, the deviation of the norm fro
unity may be used to put error bars on the physical quanti
derived from TCMSD propagation. The same cannot be d
in close-coupling methods, since the wave-function norm
ization only reflects accurate time integration and matrix
ement evaluation, but unit norm does not ensure accu
representation of the wave function itself. In lattice metho
the norm is not preserved at all, as components of the w
function near the boundary of the integration box are mas
away@9,27,29#. Close-coupling and lattice calculations mu
rely on indirect ways to evaluate convergence, such as
amining changes in the cross section with respect to vary
calculation parameters. Thus, to our knowledge, TCMSD
the only method of solving the time-dependent Schro¨dinger
equation that can directly put error bars on cross secti
derived from the propagated wave function.

B. Wave-function analysis

The numerical wave function, having passed the num
cal checks, is analyzed to extract the bound-state amplitu
Previously in Refs.@19–22#, we have neglected overlaps b
tween the two centers and performed bound-state projec
individually on the target and projectile centers, because
were only interested in the gross features of the ejected e
tron spectrum. Since we are now interested in obtain
cross sections that are as accurate as possible, it is nece
to project out the bound states on both target and projec
from the whole wave function.
1-5
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EMIL Y. SIDKY AND C. D. LIN PHYSICAL REVIEW A 65 012711
anlm
T ~ t !5E

0

`

Fnl~p!T̃lm~p,t !p2dp

1E
Vp

Fnl~p!Yl ,m~ p̂!e2 i (pW •RW 21/2v2t)

3 (
l 8,m8

P̃l 8,m8~q,t !Yl 8,m8~ q̂!dpW , ~7!

qW 5pW 2vW .

FnlYl ,m is the target hydrogen bound state in moment
space andVp represents volume in momentum space.
analogous formula for the projectile bound-state amplitud
anlm

P (t) is simple to write, so we do not show it here. As
technical note, we remark that the numerical integrals in
~7! are actually performed over the radial variables5Ap,
which allows the same precision with fewer integrati
points. The momentum space wave function in Eq.~2! con-
tains all bound states of the Coulomb potential, since
bound statesdecreasein size with increasing principal quan
tum numbern. This differs from close-coupling method
where each bound state is explicitly entered into the calc
tion, and conventional lattice methods that are limited ton
53 @9,27,29# since bound statesincreasein size proportional
to n2 in configuration space.

For the present purposes, we are interested in finding
probability of ionization as opposed to the distribution
ejected electrons. Thus, we do not attempt to construct
continuum part of the wave function, but instead we wr
the probability for ionization as the total probability minu
the bound states on target and projectile

Pion~b!5N~b!2(
i

~ uai
T~ t f !u21uai

P~ t f !u2!; ~8!

N~b!5E
V
F~pW ,t f !* F~pW ,t f !dpW .

The index i runs through all bound-state probabilities. T
quantities, of course, are taken at their final valuet5t f . The
target and projectile amplitudes are grouped in the same s
because in all cases, the same harmonic expansion was
on both centers. It is not possible to take the sum over bo
states up ton5`, so instead, we compute Eq.~7! for bound
states throughnmax55 for impact-parameterb<5. ~For
larger impact-parameternmax53 since amplitudes for highe
n are too small.! To extrapolate to highern, we use the 1/n3

scaling of the bound-state probabilities

uanu25uanmax
u2~n/nmax!

3 for n.nmax. ~9!

The extrapolated values are entered into the sum in Eq.~8!.
The error of the bound-state probabilities is, to first ord

the same as the relative error on the wave-function norm
actuality, the relative error increases slowly withn, since the
higher the excited state is, the fewer radialB splines there are
to represent it~as the radial momentum collapses to zero an
01271
s,

.

e

a-

he

e

m,
sed
d

r,
In

increases!. Thus, the highly excited states are at the mercy
scatter in just a few basis functions. There is also an ad
tional error on the bound-state probabilities due to stopp
the TCMSD propagation at a finite time, discussed more
low. The error inPion(b) is the absolute error in the wave
function norm, since we obtain it by subtracting the boun
state probabilities from the total wave-function probabili
We estimate the error in the total ionization cross section
computing a relative error at each impact parametere(b)
5u12N(b)u/Pion(b). The effect of this error on the tota
cross section for ionization is about in the range of 3–3.5
An additional error comes from the extrapolation of t
bound-state probabilities ton5`, resulting in additional
1–1.5 % error. Cross sections for bound-state processes
have less error from inaccuracy of the propagation, but m
error due to stopping at a finite time. Thus, we put error b
of 5% on all our calculated cross sections, including the
citation and capture cross sections ton<2.

C. Parameters of the TCMSD calculation

We discuss the actual parameters used in the calcula
Selection of the proper radial grid on which theB splines are
defined and a suitable number of harmonics about each
ton is critical for a valid calculation. In addition, an appr
priate set of fitting points must be chosen, avoiding line
dependence difficulties within the basis set. For the curr
paper, three different basis sets were tested: set A, spe
ized for low-impact parameter collisions, set B, for lar
impact parameter, and set C from our earlier work@20#. After
specifying the parameters of each basis set, we show a c
parison of all three sets for an impact energy of 25 keV at
intermediate impact-parameterb52.0.

Since the two-center nature of the ion-atom collision
taken into account already by the expansion about e
nucleus, much of the numerical effort goes toward solv
for the radial functions. Thus, in all cases we takel max52.
Since the quantization axis is chosen to be perpendicula
the collision plane, the odd-parity states are never popula
due to the even parity of the initials state. Thus, six spherica
harmonics cover all partial waves up to and includingl 52.
In radial momentum,pmin is fixed at 0.01 a.u., butpmax
varies in each basis set and in some cases it varies withl. In
general, one expects larger momentum to be important
lower l, since low l partial waves extend to smallerr in
configuration space, where the kinetic energy is larger.

The specific basis sets are chosen as follows. Set A:
B-spline knot points were selected at intervals of 0.05
tween 0.01 and 4.01 a.u. specifying 83 radialB splines. The
same radial set was used for all partial waves, because
found that high momentum plays an important role fors, p,
andd partial waves in close collisions (b<1). Totaling the
harmonics and corresponding radialB splines, set A is com-
posed of 996 (12383) elements. Set B: For larger impa
parameter, the radial momentum functions turn out to
smooth functions aside from a phase factor, exp(2ip2t/2),
multiplying the continuum component~see Fig. 9 in Sec.
IV C!. Thus, we design a knot sequence with relatively la
1-6
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spacing for low momentum, but then for high momentum
interval spacingdecreases. The knot points follow the fol-
lowing formula:

pi5H 0.07i 10.01 0< i<30

A2.1121~ i 230!~pmax
2 22.112!/K 30, i<301K

.

~10!

We use a wider spacing of 0.07 for the knot points betwe
0.01 and 2.11. For large momentum,p.2.11, the formula in
Eq. ~10! gives constant intervals inp2 so that the oscillations
of the exp(2ip2t/2) phase factor are equally well repr
sented. For thes-waveK539 intervals are necessary in th
second part in order to reachpmax54.0 and at the same tim
have the first interval afterp52.11 be close to 0.07. With
Eq. ~10! p312p3050.069 and the last interval isp692p68
50.037. The big savings comes in the partial wavesp andd,
where K is only 15 reachingpmax53.0. The number ofB
splines in thes, p, andd partial waves are 72, 48, and 4
respectively. The total number of basis elements is 624
reduction of more than a third from set A. Set C: The fin
basis set has equally spacedB spline knots as does set A, an
likewise the interval is chosen to be 0.05 a.u. in momentu
The difference is thatpmax is taken to be 4.01, 2.51, and 2.0
for thes, p, andd partial waves, respectively. The number
basis elements for this case is 636, comparable in size to
B.

Determining the proper set of configuration space fitt
points is also important for having a stable propagation
the electronic wave function. The fitting points are arrang
as a spherical polar grid about both target and projectile p
tons. In the azimuthal anglef, we choose six angles at equ
intervals ofp/3 radians except whenu50 due to the degen
eracy off on thez axis. Only three values ofu are selected:
u50, p/5, and 2p/5. The other values ofu, 3p/5, 4p/5,
andp, are redundant because of reflection symmetry; re
that we use the natural frame. Thus, there are a total o
angular fitting points on each center to uniquely determ
six harmonics on each proton. As a guide to setting the ra
fitting points, one may think in terms of the inverse relatio
ship between interval size and stepsize between Fou
space and configuration space. Take the largest basis, s
to start with. The interval spacing is 0.05 a.u. in moment
space, so one expects that the fitting points should exten
2p/0.05 or'126 a.u. in configuration space. Likewise, t
highest-spatial frequency is given by 2p/pmax or
'1.57 a.u., and one would expect to have at least two po
per oscillation. By trial and error we settled on the followin
set of radial fitting points:

r i50.6i 10.5 for 0< i<100,

r i54.0~ i 2100!10.5 for 100, i<115. ~11!

The radial fitting points start atr 50.5, end atr 5120.5, and
have a high-resolution grid up tor 560.5. The number of
fitting points is 3016 (23133116), and the same set of fi
ting points is used to determine setsA, B, andC. An impor-
tant point to have stable propagation of the wave function
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to weight the fitting points in the radial direction byr 2, since
the number of angular points remains at 13 no matter h
larger is, yet the spherical shell they cover grows withr 2. In
any case, with this set of fitting points basis set A is ov
determined by a ratio of 3 to 1, while sets B and C a
overdetermined by close to 5 to 1.

D. Comparison of basis sets A, B, and C

We compare the three basis sets for a 25 keV collision
impact-parameterb52.0 . As stated above, the main crite
rion, determining how good a TCMSD calculation is, is t
preservation of the total wave-function norm. Evaluating t
norm of sets A, B, and C at the final time,t f525.2, gave
values of 1.0052, 1.0069, and 1.0160, respectively. Se
clearly, is expected to be the best since it has the most b
elements. Set B, however, is significantly better than se
with the norm deviating from unity by 0.7% as opposed
1.6% for set C. We have also checked this conclusion
other collision parameters. We remark that despite the dif
ences in sets A, B, and C, all three calculations show sim
ejected electron momentum distributions. Table II compa
the probabilities for, capture, excitation, and ionization fro
sets A and B. The percent difference between the two ca
lations is shown also to see if these results are consis
with the estimated error of 5%. Indeed, the probabilities
the bound states and ionization vary in the range of 5%
less. Only the capture to the 2ps shows a fractional differ-
ence greater than 5%, but this particular capture chann
very weak. Capture to 2p still only varies by about 1% be
tween the two calculations. For the cross sections show
this article, set A was used forb<2.0 and set B for 2.0,b
<10.0 .

E. vt dependence

Ideally, to establish the probabilities of various proces
in the ion-atom collision, one would like to propagate t
electronic wave function tot5`. In reality, this is not pos-

TABLE II. Comparison of TCMSD calculations with basis se
A and B ~see text! for a 25 keV collision at impact parameterb
52.0 a.u. Probabilities for bound states and electron ejection
compared atvt525.2 a.u. Columns 1 and 2 show probabilitie
from sets A and B, respectively. Column 3 gives the percent dif
ence of probabilities arrived at through sets A and B.

set A set B % diff.

Norm 1.0052 1.0069 -
Pion 0.083 86 0.084 25 4.63%
Targ. 1s 0.479 66 0.488 05 1.72%
2s 0.009 91 0.009 65 2.62%
2ps 0.011 94 0.012 37 3.48%
2pp 0.016 33 0.016 77 2.62%
Proj. 1s 0.301 34 0.293 39 2.64%
2s 0.041 91 0.041 84 0.17%
2ps 0.000 78 0.000 83 5.66%
2pp 0.008 77 0.008 69 0.91%
1-7
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EMIL Y. SIDKY AND C. D. LIN PHYSICAL REVIEW A 65 012711
sible. Accordingly, we demonstrate that our ending point
vt f525.2 is sufficient to establish the bound-state and i
ization probabilities, to within 5%, for collisions in the rang
of 25–100 keV.

In Fig. 6, we show bound-state probabilities, arrived
through Eq.~7!, for thes wave on the target proton during
25 keV collision atb51.5 a.u. The probabilities have bee
multiplied byn3 to allow all levels to be plotted on the sam
graph and to demonstrate the 1/n3 scaling. The probabilities
for n51 andn52 have clearly stabilized byvt525.2, but
highern’s have not. One may see a decrease in the amplit
of the oscillations of then53 probability, but then54 and
5 will not stabilize until much later. The oscillations at high
n, however, do not affect our analysis very much since th
probabilities are so small. Note that there is hardly anyvt
dependence in the sum of alln-level probabilities. Looking
at the ‘‘final’’ values for n53, 4, and 5, one sees that th
1/n3 scaling holds reasonably well. The contribution to t
ionization cross section from the extrapolated bound sta
n>6 enters at the level of about 3–4 %. The error in t
extrapolation is rather large, not because of breakdown in
1/n3 scaling, but because then55 probability is still oscil-
lating atvt525.2. The amplitude of this oscillation is abo
a third of then55 probability. Thus, the error in the ioniza
tion cross section, coming from the bound-state extrap
tion, is 1–1.5 %.

In Fig. 6 we have only shown a small subset of the bou
states involved in calculating the ionization cross section.
the other bound states’vt dependence affect the ionizatio
probability? What about overlap between bound states
both centers? The easiest way to answer these questions
show the probability for ionization as a function ofvt. Since
the normalization of the calculations presented here is
served to 0.5%, any larger variations withvt must come

FIG. 6. Targets-wave bound-state probabilities, calculated
Eq. ~7!, as a function ofvt. v is the projectile velocity andt is the
time measured from closest approach. The collision energy is
keV (v51) and the impact parameter is 1.5 a.u. All probabiliti
have been multiplied byn3 except for the curve representing th
sum of all the bound-state probabilities. The curves are labeled
their correspondingn values. The curve labeled ‘‘total’’ represen
the sum of the probabilities for all bound states of the targets wave.
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from the above-mentioned questions. In Fig. 7, we plot
probability for ionization for a 25 and 50 keV collision a
impact-parameterb51.5 a.u. The dotted lines are drawn
at 5% on either side of the final value. The ionization pro
ability at 25 keV does not enter the claimed error range u
vt517 a.u., while the 50 keV ionization probability has a
ready reached 95% of its final value atvt57 a.u. There is a
slight oscillation inPion for the 25 keV calculation that un
doubtedly stems from the oscillations seen in the highn
bound states in Fig. 6, but the curve remains within the p
scribed limits. We did not attempt to evaluate an ionizati
cross section for impact energies less than 25 keV due
insufficient range invt.

IV. DISCUSSION

Having shown results for the ionization cross section a
having described exactly how we arrive at our numbers,
now discuss how well TCMSD, close-coupling@5#, and lat-
tice @9# approaches meet the challenges of the prot
hydrogen system at intermediate impact energies. Spe
cally, we talk about convergence in partial waves, rad
momentum range, and radial momentum resolution. Theo
converged on these three criteria are completely conver
calculations. The TCMSD method has a large advantage o
other methods on the last point – the momentum resolut

A. Partial wave-convergence

For the TCMSD calculation, we have included part
waves up tol 52. We do have, however, two strong pieces
evidence that this is sufficient.~1! For the calculations tha
we have performed, even thel 52 harmonics receive a sma
fraction of the total wave function.~2! As stated before, the
TCMSD method does not automatically preserve the wa
function norm. If a portion of the wave function were lost
the higher harmonics, this would show up as a deviation

5

y

FIG. 7. Probability for ionization, calculated by Eq.~8!, as a
function of vt. v is the projectile velocity andt is the time mea-
sured from the closest approach. The impact paramter isb51.5,
and the solid line is the result for a 25 keV (v51) collision and the
dashed line is for the 50 keV (v51.414). The dotted lines are
placed at 5% in either direction of the final values.
1-8
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TOTAL CROSS-SECTION CALCULATIONS ON PROTON- . . . PHYSICAL REVIEW A 65 012711
the norm from unity. The lack of higher partial waves cou
in fact be the reason why the norm is preserved to 0.5%
not better.

The lattice calculation has no real limitation here, since
partial waves are implicitly contained in their thre
dimensional Cartesian grid. For two-center close-coupli
the question of the necessary number of partial waves
been an interesting issue for many years, see, for exam
Kuang and Lin@7,8#. One would like to have pseudostat
representing the continuum on both target and projectile c
ters, but this may lead to false oscillatory structure in
resulting inelastic cross sections@7,8#. The conclusion of
Refs.@7,8# was to put only pseudostates on one center and
to partial waves up to and includingl 55 on that center.
Toshima, however, showed in Ref.@5# that l 55 is not even
sufficient to achieve convergence of the ionization cross s
tion, when pseudostates are placed on one center. Refe
@5# did show that the convergence in partial waves was v
rapid if pseudostates were included on both centers~in ac-
cordance with the TCMSD calculation!, and furthermore, the
false oscillation problem disappears if pseudostate ener
are dense enough@31#.

B. Momentum range

For all the individual runs of the TCMSD calculation, th
normalization is preserved to close to 0.5% except for o
case; for thev52.0 collision at an impact-parameterb
50.5 the final wave-function norm comes in at 97.4%. T
loss of norm does not affect the total cross-section calc
tion much, since the probability of ionization atb50.5 is
over a third. So the dip in the norm causes the error to sp
to 8% for this one point, and we maintain the 5% error on
total cross section. It is, however, important to understa
why this happens to know the limitations on the theory.

The reason for the loss of norm may be traced to
necessity of representing high-momentum components
the projectile for collisions at high-impact velocity and low
impact parameter. Figure 8 shows the projectiles, ps, and
pp momentum radial functions atvt50.2, just after the pro-
jectile has reached closest approach. At this early a po
vt50.2, along the projectile trajectory the contribution to t
projectile component of the wave function comes mai
from the ground-state hydrogen target atom. Accordingly,
projectile radial functions display a broad maximum neap
52 a.u., since the target wave function in momentum sp
is separated from the projectile center by 2 a.u. Furtherm
the broadness of the peak reflects the wide initial momen
distribution of the target electron. The target atom also ha
larger overlap with the projectileps wave, explaining why
our ps radial momentum amplitude is larger than thepp
amplitude. A part of the peak atp52 probably has a con
nection with the binary encounter mechanism, but the p
jectile velocity is too slow to clearly separate out the bina
encounter component. The maximum radial momentum r
resented byB splines in the TCMSD calculation ispmax
54, and the tail of the projectile momentum distribution
not so small at this momentum forv52. This problem
makes a two-center expansion difficult for high velocity.
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any case, the current set of TCMSD parameters allows
lision energies up to 100 keV.

The lattice calculation must have these large momen
components represented, since the ground-state orbita
represented numerically, which requires momentum com
nents up to at least 10 a.u. Thep52 peak in the projectile
radial momentum corresponds roughly to a pseudostate
ergy of 2 a.u. in the projectile frame~from evaluatingp2/2).
The calculation of Ref.@5# included pseudostates up to 4–
a.u. in energy. Thus, it is no surprise that we have agreem
between TCMSD, close-coupling, and the lattice method
v52 a.u. in Fig. 1.

C. Momentum resolution

At the lower end of the impact velocity rangev51, TC-
MSD, close-coupling, and the lattice method differ consid
ably in their reported ionization cross section. This variati
may be traced to the differences in radial momentum res
tion. The TCMSD radial momentum resolution is 0.05
0.07 a.u., depending on whether one is using basis set A o
A rough idea of the close-coupling momentum resoluti
may be arrived at by taking the square root of twice t
pseudostate energyA2E. Thus, for low-energy pseudostate
the calculation by Toshima@5# has a resolution of 0.11 a.u
For the high end of the pseudostate spectrum, the resolu
is considerably worse,'0.8 a.u. The momentum resolutio
of the lattice calculation is actually determined by the size
the Cartesian grid in configuration space, due to the inve
relation between coordinate space and Fourier space.
calculation of@9# applies a masking function at the bounda
of a box going from230–30 a.u. The action of the maskin
function on the configuration space wave function is t
same as convolving the momentum space wave func
with the Fourier transform of the masking function. Thu

FIG. 8. The amplitude of momentum space radial functions
the projectile immediately after closest approachvt50.2, where the
collision velocity isv52 and t is time measured from the close
approach. The impact parameter isb50.5 a.u. The solid line rep-
resents thes-wave amplitude, the dashed line is theps amplitude,
and the dotted line is thepp amplitude.ps and pp are the real
form of p-orbitals aligned, respectively, parallel and perpendicu
to the projectile velocty in the collision plane.
1-9
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EMIL Y. SIDKY AND C. D. LIN PHYSICAL REVIEW A 65 012711
their momentum resolution is 2p/60 or 0.1 atomic unit, since
any finer detail would be washed out by convolution. T
TCMSD calculation has a factor of two better momentu
resolution than any other previous theory applied to prot
hydrogen collisions.

Why is momentum resolution important at low-impact v
locity? The start of the response to this question is see
Fig. 7. The slower collision takes longer to stabilize than
higher-velocity collision; one must represent the electro
wave function to at leastvt517 (t517) a.u. in the 25 keV
case whilevt57 (t55) is sufficient for 50 keV collision. A
scaling law for the dependence of ionization on internucl
separation@22#, predicts that the internuclear separation
which ionization stabilizes is proportional tov2; thus, one
expects that the 25 keV collision needs to be propaga
twice as far invt as the 50 keV case~or 2A2 longer in time!.
During the longer stabilizing time, the wave function for th
25 keV collision becomes more complicated. Figure 9~a!
shows the real part of the momentum radial function for
targets wave atvt510.2 a.u. after the 1s bound state has
been projected out. Thus, this radial function represe
mostly continuum levels. Note that the radial function d
plays quite a few oscillations. The cause for these osc
tions was identified in Refs.@20,32#. The ejected componen
of the wave function exhibits, to first order, a free expans
in configuration space. This means that the ejected elec
component of the momentum space wave function evolve
time similar to exp(2 ip2t/2). Extracting the correspondin
phase, one can see that it matches well withp2t/2 in Fig.
9~b! for t510.2 a.u.@The second part of the set B knot poi
grid was designed to deal with this phase better, see
~10!#. As time increases, this phase factor creates more

FIG. 9. The target momentum space radial function for ths
wave of the 25 keV collision at impact parameterb51.5 and at a
time t510.2 a.u. after closest approach.~a! The solid line repre-
sents the real part of the target radials wave after projecting out the
1s bound state. The ripples in the total radial function result from
exp(2ip2t/2) phase in the continuum interfering with the bou
part, which is mainly just the 1s state.~b! The solid line is the phase
derived from the real and imaginary part of the radials wave after
having projected out the 1s bound state. The dotted line is th
argument of the expansion phase,2p2t/2 at t510.2 a.u..
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problem, since it is proportional to time. The 25 keV (v
51.0) collision took more than three times the amount
time to reach its final probability values than the 50 ke
(v51.414) collision. Hence, it is clear why the theorie
which agree well at 50 keV, diverge from each other at
keV. Of the three theories shown in Fig. 1, TCMSD is t
best equipped to deal with the radial phase oscillations
cause of its superior momentum resolution.

V. FUTURE OUTLOOK

The immediate goal of this paper is to provide accur
total ionization cross sections for the proton-hydrogen s
tem at intermediate impact energy. But an equally, if n
more, important goal is to show the way to better models
ion-impact ionization. The lattice calculation is enormou
employing 27 000 000 (30033003300) grid points. Direct
generalization of this method to more complicated syste
such as ion-impact ionization of molecules is out of the qu
tion. The two-center momentum space discretization a
close-coupling methods are more compact calculations w
basis sizes of 500 to 1000 elements, but still these calc
tions are large. From the discussion of the radial ph
above, it is clear that one can do better. Already, one can
that the wave-function representation in TCMSD is lopsid
Only 12 harmonics are necessary, six on each center
cover the wave function. On the other hand, as much as
radial B splines were necessary to describe the radial m
mentum behavior. We have just showed that free expan
of the ejected electron component of the wave function
responsible for ripples in the radial momentum. Thus,
next step for future theory should be to take care of t
expansion phase analytically allowing a reduction in t
number of basis functions and propagation of the wave fu
tion to much larger times.

There already has been some theoretical work addres
the analytical treatment of the ejected electron expansion
1985 Solov’ev and Vinitsky@33# proposed solving ion-atom
collision in coordinates where the internuclear separation
scaled to unity. Such a scaling confines the ejected elec
cloud and introduces a phase factor exp(ivr2/R) which is the
configuration space analog of the momentum space ph
factor, exp(2ip2t/2) discussed above. A two-state mod
based on the Solov’ev scaling has been developed
proton-hydrogen collisions@34#, but it has not provided tota
cross-section values. Illescas and Riera@35# have proposed
to apply the expansion phase factor exp(ivr2/R) as a general-
ized translation factor without scaling the coordinate sp
of the ion-atom collision. Recently, Sidky and Esry@36# have
proposed two solutions to the general problem of describ
ionization in any atomic process:~1! writing a general scaled
time-dependent Schro¨dinger equation akin to the Solov’e
scaling but avoiding its inherent singularities;~2! solution of
the time-dependent wave equation with a combination of
tionary Gaussians and Gaussian wave packets. Refer
@36# solved a one-dimensional model problem demonstra
their methods. As of yet, there has been no attempt to s
the full proton-hydrogen system taking into account analy
cally the basic motion of ejected electron component, but

a
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results presented in this article clearly show that accoun
of the expansion is a necessary step toward an impro
theory of ion impact ionization.

In summary, we have provided total cross-section cal
lations for proton impact ionization of hydrogen at an ene
range where this process is the most important, 25–100
~1–2 a.u. of velocity!. The results are in accord with othe
recent theoretical calculations except at the low-impact
locity end,v51 a.u. Our two-center momentum space d
cretization method has allowed us also to estimate error
of 5% . The present calculation gives a maximum cross s
tion of 1.82310216 cm2, while the accepted experiment
results measure a maximum of 1.42310216 cm2. Our value
.
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for the maximum ionization cross section is 22% higher th
the experimental value, which considering the error b
claimed on both numbers, constitutes a disagreement.
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