
ina

ina

PHYSICAL REVIEW A, VOLUME 64, 043403
Linear-least-squares-fitting procedure for the solution of a time-dependent wave function
of a model atom in a strong laser field in the Kramers-Henneberger frame

Xiaoxin Zhou,1,2 Baiwen Li,1,3 and C. D. Lin4
1Wuhan Institute of Physics and Mathematics, The Chinese Academy of Science, Wuhan 430071, People’s Republic of Ch

2Department of Physics, Northwest Normal University, Lanzhou, Gansu 730070, People’s Republic of China
3Chinese Center of Advanced Science and Technology (World Laboratory), P.O. Box 8370, Beijing, People’s Republic of Ch

4Department of Physics, Kansas State University, Manhattan, Kansas 66506-2601
~Received 2 April 2001; published 12 September 2001!

We present a linear-least-squares-fitting method to solve the time-dependent Schro¨dinger equation of a
one-dimensional model atom in an intense laser field in the Kramers-Henneberger frame. In comparison with
calculations in the laboratory frame, it is shown that in the Kramers-Henneberger frame, the method is more
stable and larger time steps in the propagation can be used. The fitting procedure also allows for easy change
of basis functions during the time propagation. The method is applied to study the stabilization of a model atom
in an intense laser field where the electron is bound initially by a one-dimensional soft Coulomb potential.
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I. INTRODUCTION

In the past decades, direct numerical integration of
time-dependent Schro¨dinger equation~TDSE! has been em-
ployed to interpret many experimental findings for atoms
an intense laser field@1–5#. In a previous paper@6#, we have
proposed an approach for solving the TDSE by expand
the time-dependent wave functions in terms of field-fr
eigenstates, where the expansion coefficients are solved
ing a linear-least-squares-fitting technique@7#. The linear-
least-squares-fitting procedure allows us to avoid the ev
ation of many matrix elements, as occurred in the stand
close-coupling or eigenfunction expansion method. The
merical results for harmonic generation were in good agr
ment with those calculated with the split-operator meth
Unlike the split-operator method and other methods,
least-squares method does not require the introduction o
sorber at boundaries. The fitting procedure automatically
ters out high-frequency oscillations near the boundary
may result from the interference between the outgoing w
and the reflected wave. However, the calculated probab
distribution from the two methods do not agree satisfacto
at large distances, or near the boundaries, after propag
for a long time. It appears that the linear-least-squares-fit
procedure, while removing the unphysical interference fr
the boundaries, also removed some fast oscillation am
tudes in the wave functions. When the time step was redu
~for instance,Dt<0.01 a.u.), the probability distribution
would agree with those obtained by the split-opera
method if the absorber were implemented at the bounda
for each method. However, the introduction of the absor
on the boundaries increases the computation time sig
cantly, especially for laser pulses with long duration or
many cycles. In order to solve the TSDE using basis
expansion, it is desirable that the wave function does
oscillate rapidly such that the time-dependent expansion
efficients can be integrated without resorting to very sm
time steps. In@6#, the time-dependent wave function wa
integrated in the laboratory frame. It is well known that t
1050-2947/2001/64~4!/043403~6!/$20.00 64 0434
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time-dependent wave function of an electron in a laser fi
is better represented in the so-called Kramers-Hennebe
~KH! frame@8–10#. In this frame, the free electron is at res
while the nucleus quivers with the laser frequency. In the K
frame, the electronic wave function does not depend stron
on time and it is expected that calculations of the wave fu
tion in the KH frame using the linear-least-squares meth
would be more efficient and stable such that the calcula
can be carried out over a longer time period and/or a
higher-laser field intensity. The increased numerical prow
would allow us to study the issue of stabilization of atoms
a laser field at sufficiently high intensities@11–13#.

In the KH frame, a free electron in the laser field is at re
the sum of the Coulomb potential and the time-depend
laser-atom interaction in the laboratory frame is replaced
a time-dependent KH potential. The main advantage of
KH frame is that it is very suitable for studying the stabi
zation of atoms at sufficiently high intensities and freque
cies because the effective time-dependent potential is
placed approximately by a time-averaged static poten
with the higher-order time dependence taken as a small
turbation. In recent years, a number of theoretical studies
the ionization of atoms in laser fields have been carried
by using the finite-difference method@10,12–15#, the finite-
elements method@16#, the split-operator method@17–19#, the
close-coupling method@20–23#, the Floquet theory@24–28#,
and the classical method@29#. So far, to our knowledge, ther
are few studies on the interaction of atoms with very stro
laser fields in the KH frame using the close-coupli
method. The reason is because the matrix elements of
KH potential are time dependent and the calculation of m
trix elements in each time step is very time consuming.
mentioned above, the linear-least-squares-fitting met
avoids the calculation of matrix elements and the method
be easily implemented to integrate the TDSE in the K
frame. As we will see later, there are additional advantage
propagating the TDSE in the KH frame. In Sec. II, the th
oretical method will be briefly outlined. The numerical r
sults are presented in Sec. III to show the advantage of
culating the wave functions in the KH frame and the study
©2001 The American Physical Society03-1
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stabilization in an intense laser field. A short summary
given in Sec. IV.

II. THEORETICAL METHOD

We consider a one-dimensional model atom in a la
field. Within the dipole approximation, the time-depende
Schrödinger equation in the velocity gauge is given
~atomic units are used throughout this paper!

i
]c~x,t !

]t
5F1

2 S p1
1

c
A~ t ! D 2

1V~x!Gc~x,t ! ~1!

in the laboratory frame whereV(x) is taken to be the sof
Coulomb potential@15,30,31#

V~x!52
1

A11x2
. ~2!

In Eq. ~1! A(t) is the vector potential of the driving lase
field andE(t)52(1/c)dA(t)/dt is the electric field. Follow-
ing Kramers@8# and Henneberger@9#, a unitary transforma-
tion ~see also@10#!

U5exp~2 iT
`

!, ~3!

with

T
`

52
1

cE0

t

A~t!dtp1
1

2c2E0

t

A2~t!dt, ~4!

gives the time-dependent Schro¨dinger equation in the KH
frame

i
]

]t
cKH~x,t !5HKH~x,t !cKH~x,t !, ~5!

where HKH(x,t)5(1/2)p21V@x2a(t)#, and cKH(x,t)
5Uc(x,t) are the Hamiltonian and the wave function in t
KH frame, respectively, witha(t)52(1/c) *0

t A(t)dt being
the classical displacement of a free electron in the laser fi
andV@x2a(t)# is called the KH potential. Thus, in the KH
frame the electron-laser interaction is removed but
electron-nucleus potential, V~x! is replaced by a time-
dependent potentialV@x2a(t)# where the position of the
electron is shifted by a time-dependent displacementa(t).
For convenience, here we write the TDSE in length gauge
the following:

i
]w~x,t !

]t
5S 2

1

2
p21V~x!2xE~ t ! Dw~x,t !, ~6!

where thec(x,t) of Eq. ~1! in the velocity gauge andw(x,t)
in the length gauge are connected by the relation

c~x,t !5expS i

c
xA~ t ! Dw~x,t !. ~7!
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By comparing Eqs.~5! and~6!, it is clear that the interac-
tion potential does not increase withx in the KH frame,
which makes the numerical calculation more stable and t
table.

In our calculations, we chose a laser field profile

E~ t !5H E0 sin2S pt

6TD sinvt, 0<t<3T

E0 sinv t, t.3T,

~8!

whereE0 is the amplitude, andT the period of the laser field
Thus, the field is turned on to the maximum amplitude ov
3T.

We solved the time-dependent Schro¨dinger equation~5!
using a linear-least-squares fitting technique as describe
@6#. In this approach, the time-dependent wave function
first expanded as

cKH~x,t !5 (
n51

N

cn~ t !fn~x!, ~9!

where the basis functionsfn(x) are constructed from the
B-spline functions and the sine and cosine functions. ThB
splines are used to construct the bound states mostly, w
the sine and cosine functions are used to generate p
dostates to represent the continuum spectrum. Within the
sis set selected, the solution of Eq.~5! is reduced to a set o
linear first-order differential equations

i (
n51

N
dcn~ t !

dt
fn~x,t !5 (

n51

N

HKH~x,t !cn~ t !fn~x!. ~10!

In the conventional approach one would project this eq
tion into the space spanned by the basis set. For a setN
basis functions, this would require the evaluation of roug
N2 matrix elements, many of them involving oscillator
functions. An alternative method proposed by Sidky and L
@7# was adopted by us in@6# to solve the time-dependen
Schrödinger equation~6!. In this method, the spatial coord
natex is discretized intoM points whereM is greater thanN.
By evaluating Eq.~10! at the discretized points, the resultin
equations are then solved by the linear-least-squares-fi
method. The details of the method is given in@6#. In the
present paper, we applied this method in solving the tim
dependent Schro¨dinger equation~5! in the KH frame.

Before presenting the numerical results, it is important
point out the advantage of performing the calculations in
KH frame. To carry out Runge-Kutta integration forward
each time step, accurate values ofdcn(t)/dt must be ob-
tained. For calculations in the length gauge@see Eq.~6!#, the
values ofdcn(t)/dt depend on bothE(t)x sin(mpx/xmax) @or
cos(mpx/xmax)] and V(x)sin(mpx/xmax) or cos(mpx/xmax)
where the sine and cosine functions are from the basis fu
tions. Whenm is large, the contribution from the former term
varies rapidly withx for largex. To achieve accurate numer
cal result, one would need very closed-space discreti
points at largex and integrate with very small time step
This is the problem encountered in@6# when the linear-least-
3-2
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LINEAR-LEAST-SQUARES-FITTING PROCEDURE FOR . . . PHYSICAL REVIEW A 64 043403
squares method was applied to Eq.~6! in the laboratory
frame. In the KH frame, on the other hand, the values
dcn(t)/dt depend only onV@x2a(t)#sin(mpx/xmax) @or
cos(mpx/xmax)]. Since the potential V~x! decreases smoothl
at largex, the right-hand side of Eq.~5! would not become
large at largex. Furthermore, the KH potential change
smoothly from timet to t1Dt, thus, it is possible to take
largerDt in the time propagation.

III. NUMERICAL RESULTS

To illustrate the method, we compare in Fig. 1 the pro
ability density of the wave function at timet516 T for a
laser with amplitude E050.1 a.u. and frequencyv
50.148 a.u. calculated in the laboratory frame and in
KH frame. We have employed equally spaced grid poi
with Dx50.39 andxmax5400 and a basis set ofN5700. In
both cases, identical absorber at the boundaries were u
From Fig. 1, the two results are essentially identical excep
the outer region. However, to achieve the accuracy neede
time step ofDt50.02 had to be used for calculations in th
laboratory frame. In the KH frame, the same accuracy can
achieved by usingDt50.16. The computation time wa
found to be about six times smaller. As a check, we e
took Dt50.32 and reasonable results were still obtained.
a further check, we also obtained the above-threshold ion
tion ~ATI ! spectra by using the same parameters as in Fig
but at time t56.25 T where little ionized electron wav
packet has arrived at the boundaries yet. Clearly, the pre
two calculations, as shown in Fig. 2, give essentially iden
cal ATI peaks.

The least-squares-fitting procedure not only avoids
evaluation of matrix elements, but also offers an easy wa
change the basis functions during the time integration. It
the advantage of being able to switch to basis functions
lored to the problem at different regimes. In the followin
we show how this method is implemented to investigate
stabilization of atoms in very high-intense fields, especia

FIG. 1. Probability density of the time-dependent wave funct
at t516 T. The solid line is calculated in the KH frame (Dt
50.16 a.u.), and the dotted line is calculated in the laborat
frame (Dt50.02 a.u.). Both results use the same parameters
cept the time steps.
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at high frequencies. This subject has been extensively in
tigated theoretically~for instance,@15,17,18#, and references
therein!. Experimentally, the stabilization has been observ
for Rydberg atoms@32#. In a realistic experiment, the hig
field has to be turned on over a certain finite time. It
possible that the atom is fully ionized before the high field
reached, and thus, stabilization would not occur. As poin
out previously@10,15,33#, the wave function of the electron
is better described by KH eigenstates that are eigenstate
the time-average KH potential

F2
1

2

d2

dx2
1V0~a0 ,x!Gx~a0 ,x!5EKH

0 x~a0 ,x!, ~11!

wherea05E0 /v2 is the maximum classical displacement
the electron in the constant field, and

V0~a0 ,x!5
1

TE0

T

V~x2a0 sinvt !dt, ~12!

is the time-averaged part of the KH potential. However, t
basis set is not easily implemented to describe the in
state since it is the eigenstate of the field-free atom. Thus,
procedure we adopted is to expand the time-dependent w
function in terms of basis functions of the field-free ato
during the laser turn-on period. After the turn on, KH eige
states are used as basis functions. With the fitting proced
the change of basis functions requires little modification
the code. Using theB splines and the sine and cosine fun
tions as primitive functions, the KH eigenstates are ea
obtained by solving the above equation~11! in the basis
spanned. Note that the KH eigenstates depend only ona0.

As a test of this method, we propagate Eq.~5! using the
field-free eigenstates as basis functions at the turn-on s
and the KH eigenstates once the field is fully on. The lea
squares-fitting method was used to solve the time-depen
equation. In Fig. 3 we show calculations carried out for th
situations wherea054 a.u., with differing laser frequencie
and field strengths. Shown are the population weights of
ground state, the first excited state, and the total bound st
all are referred with respect to the KH eigenstates.

y
x-

FIG. 2. ATI spectra att56.25 T. The parameters used are t
same as in Fig. 1. Symbols as in Fig. 1.
3-3
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In Fig. 3, the population of the ground state, the fi
excited state, and total bound states of the KH time-aver
potential are plotted as a function of time for different inte
sities and frequencies. Because the population of the
states has no meaning during the turn-on time period,
only show results after the laser is fully turned on. The la
pulse used is the same as given in Eq.~8!, and the parameter
used arexmax5300, N5650, Dx50.3, Dt50.1 to 0.2. At
the modest strong field,E050.36, and frequencyv50.3

FIG. 3. Population distributions of the KH states,~1! the ground
state, ~2! the first excited state, and~3! total bound states, as
function of time after the laser pulse turn on.~a! E050.36, v
50.3; ~b! E054, v51; ~c! E0516, v52.
04340
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@see Fig. 3~a!#, the total population in the KH bound state
decreases rapidly with time, then stabilizes at 0.07, while
populations in the KH ground state and the first excited s
are negligible after six cycles. However, forv51, andE0
54, as shown in Fig. 3~b!, the populations of the KH ground
and first excited states account for almost the total bo
population, and the two populations oscillate with time a
decrease linearly. These results are similar to those of
@10# where calculations were carried out in the KH frame f
a short-range potential chosen to have only two bound sta
Their method required calculations of the overlap of K
eigenstates.

FIG. 4. Ionization probability as a function of time in the lab
ratory frame, using the same parameters as in Fig. 3, respectiv
3-4
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The oscillations in the individual bound-state populatio
can be interpreted as due to the ‘‘residual’’ time-depend
part of the KH potential that would affect the time-depend
wave function ifv is not very high@In Fig. 3~a!, the oscil-
lation is less clear since the amplitudes for the ground
the first excited states are small#. Furthermore, the tota
population in the KH bound states does not oscillate m
and decreases linearly with time slowly. This indicates t
the atomic system is stabilizing and there is little ionizati
with increasing time. For the higher laser frequencyv52
and field strengthE0516 @see Fig. 3~c!#, the total KH
bound-state population remains constant, the population
the KH ground and first excited states also remain ne
constant with the atom mostly in the ground state. The sm
oscillation in the bound-state population is due to the
sidual time-dependent part of the KH potential. In this ca
the atom is nearly completely stabilized right after t
turn-on step.

In order to obtain the ionization probability with time i
the laboratory frame, we need to transformwKH(x,t) back to
the laboratory frame via the unitary transformation Eqs.~3!
and~4!, and Eq.~14! in Ref. @6#. The time-dependent ioniza
tion probabilitiesPion(t) for the three sets of parameters
Fig. 3 are shown in Fig. 4. In case~a!, 90% has been ionized
on the average at the end of 32 laser cycles, while in
stabilization region@in the case of~b! and~c!#, the ionization
probability Pion(t) changes rapidly between one and a mi
mum within each cycle, this minimum decreases with
creasing field strength. The figures also show that in the
bilization region, the electron changes rapidly between
bound states and the continuum states~of the field-free
Hamiltonian! in the laboratory frame, unlike in the KH
frame, where stabilization is reflected by a stable large po
lation of the ground-state wave function in the KH fram
This suggests that it is better to describe stabilization
terms of the population distributions in the KH frame. Wh
ys

.

et
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stabilization occurs, the wave function in the KH frame do
not change significantly within each cycle. The rapid var
tion of ionization probability over a laser cycle in Fig. 4~b!
and 4~c! is due to the quiver energy of the electron. In
actual experiment, ionization is measured after the la
pulse has been turned off. Thus, it is expected that the
ization probability in the stabilization regime will depen
sensitively on the turn off of the laser pulse.

IV. SUMMARY

In summary, we showed the application of the line
least-squares-fitting procedure in solving the time-depend
Schrödinger equation for atoms in an intense laser field
the KH frame. Comparing to the solution in the laborato
frame, we showed that calculations can be carried out in
KH frame with a much larger time step to reduce the co
putational demand. The fitting procedure also allows e
change of basis functions. Combining with the use of the K
frame, we have investigated the stabilization in an inte
laser field using two sets of basis functions, one suitable
the laser turn-on region and the other using KH eigensta
It should be noted that the stabilized cases~b! and~c! in Figs.
3 and 4 cannot be obtained using the fitting procedure in
laboratory frame even if time step ofDt50.01 is used. In the
KH frame, calculations using time step ofDt50.05 to 0.1
can still give accurate results.
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