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Linear-least-squares-fitting procedure for the solution of a time-dependent wave function
of a model atom in a strong laser field in the Kramers-Henneberger frame
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We present a linear-least-squares-fitting method to solve the time-dependendiSgpfireequation of a
one-dimensional model atom in an intense laser field in the Kramers-Henneberger frame. In comparison with
calculations in the laboratory frame, it is shown that in the Kramers-Henneberger frame, the method is more
stable and larger time steps in the propagation can be used. The fitting procedure also allows for easy change
of basis functions during the time propagation. The method is applied to study the stabilization of a model atom
in an intense laser field where the electron is bound initially by a one-dimensional soft Coulomb potential.
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[. INTRODUCTION time-dependent wave function of an electron in a laser field
is better represented in the so-called Kramers-Henneberger
In the past decades, direct numerical integration of théKH) frame[8—-10]. In this frame, the free electron is at rest,
time-dependent Schdinger equatiof TDSE) has been em- While the nucleus quivers with the laser frequency. In the KH
ployed to interpret many experimental findings for atoms inframe, the electronic wave function does not depend strongly
an intense laser fieldl—5]. In a previous papd6], we have ©n time and it is expected that calculations of the wave func-
the time-dependent wave functions in terms of field-freevould be more efficient and stable such that the calculation

eigenstates, where the expansion coefficients are solved uh%‘_'i‘nh bel carri;.edldo.ut over a Longer tlmedperlod .an?j/or at a
ing a linear-least-squares-fitting technigi@. The linear-  Nigher-laser field intensity. The increased numerical prowess

least-squares-fitting procedure allows us to avoid the evaluvould allow us to study the issue of stabilization of atoms in

ation of many matrix elements, as occurred in the standard laser field at sufficiently high intensiti¢$1-13.

close-counling or eigenfunction expansion method. The nu- In the KH frame, a free electron in the laser field is at rest,
piing 9 P ' the sum of the Coulomb potential and the time-dependent

merical _results for harmonic ggnerauon were in good a9"€€ser-atom interaction in the laboratory frame is replaced by
ment with tho;e calculated with the split-operator method time-dependent KH potential. The main advantage of the
Unlike the split-operator method qnd oth'er methpds, th&H frame is that it is very suitable for studying the stabili-
least-squares method does not require the introduction of abyiion of atoms at sufficiently high intensities and frequen-
sorber at boundaries. The fitting procedure automatically filjes pecause the effective time-dependent potential is re-
ters out high-frequency oscillations near the boundary thapjaced approximately by a time-averaged static potential,
may result from the interference between the outgoing wavyith the higher-order time dependence taken as a small per-
and the reflected wave. However, the calculated probabilityurbation. In recent years, a number of theoretical studies on
distribution from the two methods do not agree satisfactorilythe ionization of atoms in laser fields have been carried out
at large distances, or near the boundaries, after propagatimgy using the finite-difference methdd0,12—15, the finite-

for a long time. It appears that the linear-least-squares-fittinglements methofdl 6], the split-operator methdd 7—-19, the
procedure, while removing the unphysical interference fronclose-coupling methof20-23, the Floquet theory24-2§,

the boundaries, also removed some fast oscillation ampliand the classical meth¢@9]. So far, to our knowledge, there
tudes in the wave functions. When the time step was reduceare few studies on the interaction of atoms with very strong
(for instance,At=<0.01 a.u.), the probability distributions laser fields in the KH frame using the close-coupling
would agree with those obtained by the split-operatormethod. The reason is because the matrix elements of the
method if the absorber were implemented at the boundariel§H potential are time dependent and the calculation of ma-
for each method. However, the introduction of the absorbetrix elements in each time step is very time consuming. As
on the boundaries increases the computation time signifimentioned above, the linear-least-squares-fitting method
cantly, especially for laser pulses with long duration or ofavoids the calculation of matrix elements and the method can
many cycles. In order to solve the TSDE using basis sebe easily implemented to integrate the TDSE in the KH
expansion, it is desirable that the wave function does noframe. As we will see later, there are additional advantages in
oscillate rapidly such that the time-dependent expansion cgropagating the TDSE in the KH frame. In Sec. Il, the the-
efficients can be integrated without resorting to very smalloretical method will be briefly outlined. The numerical re-
time steps. In[6], the time-dependent wave function was sults are presented in Sec. Il to show the advantage of cal-
integrated in the laboratory frame. It is well known that the culating the wave functions in the KH frame and the study of
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stabilization in an intense laser field. A short summary is By comparing Eqs(5) and(6), it is clear that the interac-
given in Sec. IV. tion potential does not increase within the KH frame,
which makes the numerical calculation more stable and trac-
Il. THEORETICAL METHOD table.

In our calculations, we chose a laser field profile
We consider a one-dimensional model atom in a laser
field. Within the dipole approximation, the time-dependent N A
Schradinger equation in the velocity gauge is given by E(t)= Eosmz(ﬁ)smwt, O=<t=<3T ®
(atomic units are used throughout this paper )
Eopsinwt, t>3T,
2

+V(X)

1

ap(xt)

ot

P(x,1) (1) whereE, is the amplitude, and the period of the laser field.
Thus, the field is turned on to the maximum amplitude over
3T.

We solved the time-dependent Sctlirger equation(s)
using a linear-least-squares fitting technique as described in
[6]. In this approach, the time-dependent wave function is

1
+ EA(t)

in the laboratory frame wher€(x) is taken to be the soft
Coulomb potential15,30,3]

V(x) ! (2)  first expanded as
X)=— :
V1+x? )
In Eq. (1) A(t) is the vector potential of the driving laser Pen(X,1) = 2, Co(t) (), 9

n=1

field andE(t) = — (1/c)dA(t)/dt is the electric field. Follow-
ing Kramers[8] and Hennebergd®], a unitary transforma-

) where the basis functiong,(x) are constructed from the
tion (see alsd10])

B-spline functions and the sine and cosine functions. Bhe
splines are used to construct the bound states mostly, while

Uze _.% 3) the sine and cosine functions are used to generate pseu-
=exp—iT), dostates to represent the continuum spectrum. Within the ba-
with sis set selected, the solution of E§) is reduced to a set of
linear first-order differential equations
?— 1JtA drp+ 1JtA2 d (4) L dey(t) .
T e AP g AT 3 0= 3 H(X 00D, (10)

gives the time-dependent ScHioger equation in the KH

frame In the conventional approach one would project this equa-

tion into the space spanned by the basis set. For a S8t of
P bazlsis functions, this would require the evaluation of roughly
= P (%D =Hikn (X, ) den (X, 1), (55 N? matrix elements, many of them involving oscillatory
functions. An alternative method proposed by Sidky and Lin
[7] was adopted by us if6] to solve the time-dependent
BT A\ Schralinger equatior(6). In this method, the spatial coordi-
=Uy(x,t) are the Hamiltonian and the wave function in the ey s discretized intvl points whereM is greater thai.
KH frame, respectively, witla(t) = — (1/c) [oA(7)d7 being gy evaluating Eq(10) at the discretized points, the resulting
the classical displacement of a free electron in the laser f'elclequations are then solved by the linear-least-squares-fitting
andV[x—a(t)] is called the KH potential. Thus, in the KH athod. The details of the method is given[8i. In the
frame the electron—lasgr interaction is removed t_)ut thepresent paper, we applied this method in solving the time-
electron-nucleus _potenUaI, (X) is replaced t_))_/ a time- gependent Schdinger equatior(5) in the KH frame.
dependent potentiaV[x— a(t)] where the position of the  Before presenting the numerical results, it is important to
electron is shifted by a time-dependent displacemef).  point out the advantage of performing the calculations in the
For convenience, here we write the TDSE in length gauge agH frame. To carry out Runge-Kutta integration forward at
the following: each time step, accurate values dxf,(t)/dt must be ob-
tained. For calculations in the length gadgee Eq(6)], the
i‘?‘P(X’t) _ ( _ Ep2+V(x)—xE(t)) o(X,t) (6) values ofdc,(t)/dt depend on botlE(t)x sin(mmx/Xmay) [Or
ot 2 Y cosMmx/Xma)] and V(X)sin(Mmmx/Xma) OF COSMTX/Xman
where the sine and cosine functions are from the basis func-
where they(x,t) of Eq. (1) in the velocity gauge an@(x,t)  tions. Whemmis large, the contribution from the former term

where Hyy(x,t)=(1/2)p?>+V[x—a(t)], and xu(x,t)

in the length gauge are connected by the relation varies rapidly withx for largex. To achieve accurate numeri-
. cal result, one would need very closed-space discretized
| i largex and integrate with very small time steps
X,t)=exp —xA(t X,1). 7 po!nts at larg y . '
yixy F{c ( )) e(x.0) @ This is the problem encountered[i6] when the linear-least-
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FIG. 1. Probability density of the time-dependent wave function  FIG. 2. ATl spectra at=6.25 T. The parameters used are the
at t=16 T. The solid line is calculated in the KH frame\{ same as in Fig. 1. Symbols as in Fig. 1.
=0.16 a.u.), and the dotted line is calculated in the laboratory
frame (At=0.02 a.u.). Both results use the same parameters exat high frequencies. This subject has been extensively inves-
cept the time steps. tigated theoreticallyfor instance[15,17,18, and references
therein. Experimentally, the stabilization has been observed
squares method was applied to H@) in the laboratory for Rydberg atomg32]. In a realistic experiment, the high
frame. In the KH frame, on the other hand, the values offield has to be turned on over a certain finite time. It is
dc,(t)/dt depend only onV[x— a(t)]sin(mmx/X,.) [0or  possible that the atom is fully ionized before the high field is
cosfnmx/xmad]- Since the potential ¥) decreases smoothly reached, and thus, stabilization would not occur. As pointed
at largex, the right-hand side of E¢5) would not become out previously[10,15,33, the wave function of the electron
large at largex. Furthermore, the KH potential changes is better described by KH eigenstates that are eigenstates of
smoothly from timet to t+ At, thus, it is possible to take a the time-average KH potential

larger At in the time propagation. )
d
— +Vo(ag.X)

242 x(a0.%)=ERpx(ao.x), (11)

IIl. NUMERICAL RESULTS

To illustrate the method, we compare in Fig. 1 the prob-wherea,=E,/w? is the maximum classical displacement of
ability density of the wave function at time=16 T for a  the electron in the constant field, and
laser with amplitude Eq=0.1 a.u. and frequencyw L
=0.148 a.u. calculated in the laboratory frame and in the . .
KH frame. We have employed equally spaced grid points VO(aO’X)_Tfo Vx=apsinet)d, (12)
with Ax=0.39 andx,,»,=400 and a basis set &f=700. In
both cases, identical absorber at the boundaries were usdd.the time-averaged part of the KH potential. However, this
From Fig. 1, the two results are essentially identical except dbasis set is not easily implemented to describe the initial
the outer region. However, to achieve the accuracy needed,state since it is the eigenstate of the field-free atom. Thus, the
time step ofAt=0.02 had to be used for calculations in the procedure we adopted is to expand the time-dependent wave
laboratory frame. In the KH frame, the same accuracy can bunction in terms of basis functions of the field-free atom
achieved by usingAt=0.16. The computation time was during the laser turn-on period. After the turn on, KH eigen-
found to be about six times smaller. As a check, we everstates are used as basis functions. With the fitting procedure,
took At=0.32 and reasonable results were still obtained. Ashe change of basis functions requires little modification of
a further check, we also obtained the above-threshold ionizahe code. Using th® splines and the sine and cosine func-
tion (ATI) spectra by using the same parameters as in Fig. kjons as primitive functions, the KH eigenstates are easily
but at timet=6.25 T where little ionized electron wave obtained by solving the above equati¢hl) in the basis
packet has arrived at the boundaries yet. Clearly, the presespanned. Note that the KH eigenstates depend onlgn
two calculations, as shown in Fig. 2, give essentially identi- As a test of this method, we propagate Eg). using the
cal ATl peaks. field-free eigenstates as basis functions at the turn-on stage
The least-squares-fitting procedure not only avoids thend the KH eigenstates once the field is fully on. The least-
evaluation of matrix elements, but also offers an easy way tequares-fitting method was used to solve the time-dependent
change the basis functions during the time integration. It hagquation. In Fig. 3 we show calculations carried out for three
the advantage of being able to switch to basis functions taisituations wherex,=4 a.u., with differing laser frequencies
lored to the problem at different regimes. In the following, and field strengths. Shown are the population weights of the
we show how this method is implemented to investigate theground state, the first excited state, and the total bound states,
stabilization of atoms in very high-intense fields, especiallyall are referred with respect to the KH eigenstates.
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FIG. 4. lonization probability as a function of time in the labo-
FIG. 3. Population distributions of the KH stat¢%) the ground  ratory frame, using the same parameters as in Fig. 3, respectively.
state, (2) the first excited state, an(B) total bound states, as a
function of time after the laser pulse turn ofa) Eq=0.36, » [see Fig. 83)], the total population in the KH bound states
=0.3;(b) Eg=4, 0=1; (¢) E=16, w=2. decreases rapidly with time, then stabilizes at 0.07, while the
populations in the KH ground state and the first excited state
In Fig. 3, the population of the ground state, the firstare negligible after six cycles. However, far=1, andE,
excited state, and total bound states of the KH time-average 4, as shown in Fig. ®), the populations of the KH ground
potential are plotted as a function of time for different inten-and first excited states account for almost the total bound
sities and frequencies. Because the population of the Khbopulation, and the two populations oscillate with time and
states has no meaning during the turn-on time period, welecrease linearly. These results are similar to those of Ref.
only show results after the laser is fully turned on. The lasef10] where calculations were carried out in the KH frame for
pulse used is the same as given in B}, and the parameters a short-range potential chosen to have only two bound states.
used arexma=300, N=650, Ax=0.3, At=0.1 to 0.2. At Their method required calculations of the overlap of KH
the modest strong fieldE;=0.36, and frequencyw=0.3  eigenstates.
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The oscillations in the individual bound-state populationsstabilization occurs, the wave function in the KH frame does
can be interpreted as due to the “residual” time-dependenhot change significantly within each cycle. The rapid varia-
part of the KH potential that would affect the time-dependenttion of ionization probability over a laser cycle in Figbs
wave function ifw is not very high[In Fig. 3(a), the oscil- and 4c) is due to the quiver energy of the electron. In an
lation is less clear since the amplitudes for the ground andctual experiment, ionization is measured after the laser
the first excited states are smjalFurthermore, the total pulse has been turned off. Thus, it is expected that the ion-
population in the KH bound states does not oscillate muchzation probability in the stabilization regime will depend
and decreases linearly with time slowly. This indicates thatsensitively on the turn off of the laser pulse.
the atomic system is stabilizing and there is little ionization
with ipcreasing time. For the higher laser frequengy: 2 V. SUMMARY
and field strengthEy=16 [see Fig. &)], the total KH
bound-state population remains constant, the populations of In summary, we showed the application of the linear-
the KH ground and first excited states also remain nearlyeast-squares-fitting procedure in solving the time-dependent
constant with the atom mostly in the ground state. The smalSchralinger equation for atoms in an intense laser field in
oscillation in the bound-state population is due to the rethe KH frame. Comparing to the solution in the laboratory
sidual time-dependent part of the KH potential. In this caseframe, we showed that calculations can be carried out in the
the atom is nearly completely stabilized right after theKH frame with a much larger time step to reduce the com-
turn-on step. putational demand. The fitting procedure also allows easy

In order to obtain the ionization probability with time in change of basis functions. Combining with the use of the KH
the laboratory frame, we need to transfoggy(x,t) back to  frame, we have investigated the stabilization in an intense
the laboratory frame via the unitary transformation E@. laser field using two sets of basis functions, one suitable for
and(4), and Eq.(14) in Ref.[6]. The time-dependent ioniza- the laser turn-on region and the other using KH eigenstates.
tion probabilitiesP;,,(t) for the three sets of parameters of It should be noted that the stabilized ca@®sand(c) in Figs.

Fig. 3 are shown in Fig. 4. In caga), 90% has been ionized 3 and 4 cannot be obtained using the fitting procedure in the
on the average at the end of 32 laser cycles, while in théaboratory frame even if time step Aaft=0.01 is used. In the
stabilization regioriin the case ofb) and(c)], the ionization =~ KH frame, calculations using time step aft=0.05 to 0.1
probability P;,,(t) changes rapidly between one and a mini-can still give accurate results.

mum within each cycle, this minimum decreases with in-

creasing field strength. The figures also show that in the sta- ACKNOWLEDGMENTS
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