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§ 1. Introduction

This chapter is concerned with the electronic transi-
tions in two-body collisions between ions, atoms and
molecules. The collision energy covered ranges from
the subthermal regime (less than millielectronvolts)
in ion traps to the relativistic regime (greater than
gigaelectronvolts) in relativistic heavy-ion colliders.
Experimentally a scattering event consists of (1) the
preparation of projectiles and targets in well-defined
initial quantum states before the collision and (2) the
determination of quantum states of the collision prod-
ucts at the end of the collision.

Elementary collisions involving atoms, ions and
molecules occur in many gaseous and plasma environ-
ments, such as in the upper atmosphere and in gaseous
discharges. Collisions of ions with atoms and/or
molecules provide the heating and cooling mecha-
nisms for the laboratory and astrophysical plasmas.
Understanding the energy transfer in collisions be-
tween ions with matter and with biological molecules
is essential to cancer therapy. At the fundamental
level, atomic collisions provide a more efficient means
for populating excited species than photons and elec-
trons. Furthermore simple atomic collisions offer a
fertile ground for testing the quantum mechanical
scattering theory. This chapter is addresses the appli-
cation of scattering theory to solve problems in fast
and slow collisions of atoms, ions and molecules.

In discussing atomic scattering theory, it is impos-
sible not to mention the experimental progress. In the
past few decades, technology has improved drastically
such that experimentalists can now control beams
of atoms, ions and molecules with much ease, over
an ever-increasing range of energies. For example,
in the 1960s, multiply charged ions were produced
only at Van der Graaf accelerator or cyclotron facili-
ties, which tend to have higher energies ranging from
hundreds of kiloelectronvolts per atomic mass unit to
hundreds of megaelectronvolts per atomic mass unit.
In the 1980s, new ion sources such as ECR and EBIS
produced multiply charged ions from fractional to
tens of kiloelectronvolts per atomic mass unit. Since
the 1990s, heavy-ion storage rings, combined with
laser or electron cooling, has become available for
precision experiments.

While most of the targets are prepared in the
ground state in a collision experiment, in many ap-
plications it is desirable to prepare targets in the ex-
cited states. Such excited states have been obtained
using laser excitations and the states can be oriented
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or aligned using circular- or linear-polarised light, re-
spectively. Collisions with Rydberg atoms have also
been investigated.

For the collision products, the identification of ex-
citation, charge transfer or ionisation processes can be
carried out by measuring the charge states of the col-
lision products. To determine the specific final states,
methods such as photon emission, energy loss or en-
ergy gain of projectiles and selective laser excitations
of collision products have been used. For multielec-
tron systems, Auger electron emission or X-ray emis-
sion can be used to identify the final states. For ion-
isation processes, electron spectrometers with ever-
improving resolution have been developed. In recent
years, the two-dimensional momentum distributions
of the recoil ions and of the ejected electrons have
been measured directly. To achieve superb resolution
for the recoil ions, the target atoms are supersonically
cooled. In the future they can be prepared by laser
cooling as well.

The rest of this chapter is organised as follows.
The next three sections address the basic theoretical
issues and approximations for ion–atom collisions.
§5–§7 discuss theories for Penning ionisation, asso-
ciative ionisation and ion–molecule and ion–cluster
collisions.

§ 2. Time-Independent Methods

The Hamiltonian and the Coordinate Systems

Consider a prototype ion–atom collision system
where a bare ion A+ impinges on a one-electron atom
(B+ + e−). Within the nonrelativistic theory, the col-
lision dynamics is governed by the time-independent
Schrödinger equation

Hψ = Eψ, (1)

where H is the Hamiltonian and E is the total energy
of the system.

The time-independent wave function is described
by six variables in the centre-of-mass frame. In such a
simple collision, the inelastic process consists of target
excitation, electron capture and ionisation processes.
At low energies the ionisation process is not impor-
tant. In Fig. 1 three sets of Jacobi coordinates that
can be used to solve Eq. (1) are shown. In Jacobi
coordinates, the kinetic energy operator for the three
particles is separable

Ti = −
1

2mi
∇2

ri
−

1
2µi

∇2
Ri

, (2)

where i = α, β, γ. In the equation above and the
rest of this chapter, atomic units (me = h- = e = 1) are
used throughout unless otherwise noted. The reduced
masses in this equation depend on the coordinate sys-
tem used. In terms of the masses of the three parti-
cles, MA, MB and m(=1 for the electron), the reduced
masses entering Eq. (2) for the α set, for example, are

given explicitly by

mα =
MA +MB

MA +MB +1
; µα =

MAMB

MA +MB
= µ, (3)

where µ is defined to be the reduced mass of the two
heavy particles. The reduced masses for the β and
the γ set of coordinate frames are similarly defined.
If non-Jacobi coordinates are used, such as the last
system shown in Fig. 1, the kinetic energy operator T
becomes

T = −
1

2m
∇2

r −
1
2µ

∇2
R −

1
M

∇R ·∇r, (4)

where the last term is nondiagonal, and is known as
the mass polarisation term. In this coordinate system
where O is an arbitrary point, OA = pR, OB = qR with
p+q = 1, the various masses are given by

m =
mαµ

mα∆2 + µ
, M =

µ
∆ , ∆ =

pMA −qMB
MA +MB

. (5)

The potential energy entering the Schrödinger equa-
tion is very simple in general. It is the sum of the
pair-wise Coulomb interactions.

Close-Coupling or Coupled-Channel Methods

A general approach to solve the multidimensional
partial differential equation (1) is the close-coupling
method (Bransden and McDowell, 1992; Fritsch and
Lin, 1991). Consider direct excitation and electron
capture processes only. The solution of Eq. (1) can
be expanded as

ψ =
M

∑
j=1

Xj(Rβ, rβ) Fj(Rβ) +
N

∑
j=M+1

Yj(Rγ, rγ) Gγ(Rγ), (6)

where Xj and Yj are the channel functions. They re-
duce to the bound states of the two-body systems in
the asymptotic region,

Xj(Rβ, rβ) −−−−−→
Rβ →∞

φj(rβ) (7)

Yj(Rγ, rγ) −−−−−→
Rγ →∞

χj(rγ),

where φj and χj are the bound states of the (e− + B+)
system and the (e− + A+) system, respectively. Eq. (6)
when is substituted (6) into Eq. (1) and the variational
procedure is used, a set of coupled integrodifferential
equations for Fj (Rβ) and Gj(Rγ) is obtained, which is
exact for any three-body system except for the basis
set truncation. For example, the resulting equations
can be used to study positron–hydrogen atom colli-
sions; see Chapter 2.6.1. The essential approximation
for ion–atom collision theory is to take advantage of
the fact that the mass of each of the heavy particles is
much larger than the mass of the electron and to use
this fact to simplify the resulting close-coupling equa-
tions. From the geometries in Fig. 1, the two radius
vectors in the γ set are related to the two vectors in
the β set by

rγ = − Rβ +
MB

MB +1
rβ ∼= −Rβ + rβ (8)
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Rγ =
MA

MA +1
Rβ +

MA +MB +1
(MA + 1)(MB +1)

rβ = Rβ +
1
µ

rβ,

where the fact that MA and MB are much larger than
1 has been used. This allows one to write

Gj(Rγ) = Gj(−Rβ +
1
µ

rβ) = T(
1
µ

rβ) Gj(Rβ), (9)

where T is the translation operator, T(x) = exp[i PRβ ·
x]. For collisions at energies above hundreds of elec-
tronvolts, Gj is a sharply peaked function in the di-
rection of the incident ion at large internuclear sepa-
rations, so that it is possible to approximate (9) by

Gj(Rγ) ∼= eivj·rβ G j(Rβ), (10)

where the phase factor is often called the electron
translational factor, with vj being approximately
equal to the velocity of the ion.

Molecular Orbital Expansion Method

Intuitively, the ion–atom collision complex at low en-
ergies can be approximated as a transient molecule
where the electronic motion is separated from the nu-
clear motion. The electronic wave function is ob-
tained by solving

[

−
1
2
∇2

r +V−En(R)
]

ϕn(r;R) = 0 (11)

at a fixed internuclear distance R, where V is the po-
tential seen by the electron. Note that the molecular
frame coordinates are used (the α set) in (11) but the
indices have been suppressed. Each molecular orbital
ϕn(r;R) separates into an atomic orbital on atom A
or atom B at large internuclear distances. Using these
molecular orbitals, one can expand

ψ = ∑
n

Fn(R ) ϕn(r;R ). (12)

After multiplying the Schrödinger equation (H−E)ψ =
0 by ϕ∗

n and integrating over the electronic coordi-

Figure 1 Three sets of Jacobi coordinates and one non-
Jacobian coordinates for three particles.

nates, one obtains a set of coupled-channel equations
for Fn(R),

[

−
1
2µ

∇2
R + En(R )−E] Fn(R ) (13)

=
1
2µ ∑

k

〈

ϕn

∣

∣

∣

∣

∂2

∂R2

∣

∣

∣

∣

ϕk

〉

Fk(R )

+
1
µ ∑

k

〈 ϕn |∇R|ϕk 〉 ∇RFk(R).

The brackets denote integration over the electron co-
ordinates. Equation (13) is commonly known as the
perturbed stationary state (PSS) approximation. With
proper generalisation to many-electron wave func-
tions, the PSS approximation has been widely used for
treating ion–atom and atom–atom collisions since its
first introduction by Massey and Smith (1933). How-
ever, the asymptotic wave functions in the PSS ap-
proximation do not satisfy the correct boundary con-
ditions. This deficiency results in a number of prob-
lems in practical applications. First the coupling ma-
trix elements in (13) depend on the choice of the ori-
gin for the electron coordinates. Second, the coupling
matrix elements may remain nonzero as the internu-
clear distance goes to infinity, suggesting that the PSS
model may predict unphysical transitions at large in-
ternuclear separations (Delos, 1981).

For collisions at higher energies, say on the order
of kiloelectronvolts per atomic mass unit, the motion
of the heavy particles can be described classically. A
commonly used remedy to this approximation is to
introduce electron translational factors where each
molecular orbital in (12) is multiplied by a phase fac-
tor, exp[iv · rf(R, r)], where different forms of f(R, r)
have been used. The electron translational factors are
not valid in the low-energy region where inelastic col-
lision requires a full quantum-mechanical treatment.
One useful approach that can be used for low-energy
ion–atom collisions without all the problems of the
perturbed stationary state approximation is the hy-
perspherical approach.

Hyperspherical Approach

The fundamental difficulties of the PSS model can be
avoided if one formulates ion–atom collisions within
the framework of the hyperspherical approach (Lin,
1995). Starting with any one of the three Jacobi coor-
dinate systems as in Fig. 1, one can define two mass-
weighted vectors

ξ1 =
√

µ1

µ
r1

ξ2 =
√

µ2

µ
r2, (14)

where µ is an arbitrary scaling mass and r1 and r2
are the pair of radius vectors of any set of Jacobi co-
ordinates in Fig. 1, with reduced masses µ1 and µ2,
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respectively. Introducing the hyperradius ρ and the
hyperangle φ through

ρ =
√

ξ2
1 + ξ2

2 (15)

tanφ = ξ2/ξ1,

the Schrödinger equation is given by
(

−
1
2µ

∂2

∂ρ2
+

∧2 − 1
4

2µρ2
+ V(ρ, φ, θ)

)

ψ = Eψ, (16)

where θ is the angle between ξ1 and ξ2 and

∧2 = −
∂2

∂φ2
+

` 2
1(ξ̂1)

cos2 φ
+

` 2
2(ξ̂2)

sin2 φ
(17)

is the grand angular momentum operator with ì be-
ing the orbital angular momentum operator associ-
ated with the radius vector ξi. The hyperradius ρ
is invariant for all the three Jacobi coordinates, but
the remaining five hyperspherical angles Ω = (φ, ξ1, ξ2)
depend on the specific Jacobi coordinates. How-
ever, ∧2(Ωα) = ∧2(Ωβ) = ∧2(Ωγ). Equation (16) can be
solved in the same fashion as the Born–Oppenheimer
approximation with ρ being treated as the slow vari-
able,

ψ = ∑
µ

Fµ(ρ) Φµ(ρ;Ω), (18)

where the channel functions Φµ(ρ;Ω) are obtained by
solving

[

∧2 − 1
4

2µρ2
+V(ρ, θ, φ)

]

Φµ(ρ;Ω) = Uµ(ρ) Φµ(ρ;Ω). (19)

The set of hyperspherical potential curves Uµ(ρ) is
analogous to molecular potential curves in the Born–
Oppenheimer approximation. In the limit of large ρ,
each low-energy channel function dissociates into a
two-body bound state.

Equation (19) can be solved in the body frame sim-
ilar to the Born–Oppenheimer approach as well. In
the α-set coordinates, define the body-frame z′ axis
to be along ξ1, the y′ axis perpendicular to the plane
formed by the three particles and x′ given such that
the body-frame (x′, y′, z′) axes form a right-handed or-
thogonal set. The Euler angles of the body frame are
ω = (ω1, ω2, ω3) with ω2 = θ1, ω1 = φ1, where (θ1, φ1)
are the spherical angles of ξ1. In the body frame the
total wave function can be expanded as

ψ(ρ, Ω) = ∑
µ

∑
I

FµI(ρ)ΦµI (ρ;θ, φ)D̄
J
IMJ

(ω1, ω2, ω3), (20)

where D̄ is the symmetrized Wigner D function, J is
the total angular momentum, I and MJ are the projec-
tions along the body-frame and the laboratory-frame
quantisation axes, respectively.

This expansion is very similar to the perturbed sta-
tionary state approximation in the body-frame where

the “channel function” FµI(ρ) is the solution of
(

−
∂2

∂ρ2
−

1
4ρ2

− 2µE

)

FµI(ρ) + ∑
νI′

[

VµI, νI′ (ρ)

+WµI, νI′ (ρ)
]

FνI′ (ρ) = 0, (21)

where

VµI, νI′ (ρ) = 〈ΦµI(ρ;θ, φ)D̄
J
IMJ

∣

∣

∣∧2 + 2µV
∣

∣

∣

ΦνI′ (ρ;θ, φ)D̄
J
I′MJ

〉, (22)

which includes the rotational coupling terms, and

WµI, νI′ (ρ) = 2
〈

ΦµI(ρ;θ, φ)
∣

∣

∣

∣

d
dρ

∣

∣

∣

∣

ΦνI′ (ρ, θ, φ)
〉

d
dρ

+

〈

ΦµI(ρ;θ, φ)

∣

∣

∣

∣

∣

d2

dρ2

∣

∣

∣

∣

∣

ΦνI′ (ρ;θ, φ)

〉

(23)

gives the radial coupling terms.
It is well known from the PSS approximation that

the radial coupling terms are difficult to evaluate
accurately in the region where the potential curves
show avoided crossings. In recent years there have
been different proposals to deal with these sharped
avoided crossings. One is the so-called diabatic-by-
sector method. In this method the hyperradius is di-
vided into many small sectors and the channel func-
tions ΦµI(ρ;θ, φ) are fixed within each sector such that
there is no WµI, νI′(ρ) coupling terms. Within each sec-
tor the coupled differential equations are integrated
from the beginning to the end of the sector where the
total hyperradial wave function and its derivative are
matched to the respective functions in the next sec-
tor. This procedure is continued till the large R region
where they are matched to the asymptotic solutions in
the laboratory frame (Lin, 1995). Another method is
the so-called slow-variable method (Tolstikhin et al.,
1996). These approaches are much easier to imple-
ment when many channels are included in the calcu-
lations.

The hyperspherical approach outlined above (Lin,
1995) is useful for any three-body collision systems.
It has not been widely used in ion–atom collisions
since many partial waves are needed in such systems.
However, it has been shown (Igarashi and Lin, 1999)
recently that a procedure similar to the PSS approx-
imation can be used for applying the hyperspheri-
cal method to ion–atom collisions; i.e., the poten-
tial curves and coupling terms must only be calcu-
lated once. This new observation makes the hyper-
spherical approach as easy to use as the PSS model,
yet without the inherent problems associated with
the PSS model. The method has been applied to ob-
tain electron transfer cross sections for the process
D+ + H(1s) → D(1s) +H+ and the results are shown in
Fig. 2. Note that the cross section shows interesting
structures at low energies. We comment that the stan-
dard PSS model cannot handle this process since the
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isotope effect is not included in that model. However,
with special treatments the PSS model can be modified
to describe this process except close to the threshold.

Figure 2 Charge transfer cross sections for D++H(1s) →
D(1s)+H+ collisions at low energies calculated using the hy-
perspherical approach. Taken from Igarashi and Lin (1999).

§ 3. Time-Dependent Approaches

In the time-independent approach for describing ion–
atom or ion–molecule collisions it is necessary to em-
ploy partial wave expansion in order to obtain the
scattering cross sections. Even at thermal energies the
number of partial waves needed for a converged cal-
culation easily runs into several thousands. For colli-
sion energies greater than a few kiloelectronvolts per
atomic mass unit it is possible to treat the motion of
the heavy particles classically. The electron is moving
in the field of a time-dependent potential and its mo-
tion is governed by the time-dependent Schrödinger
equation

Helφ (r;R) = i(∂/∂t) φ(r;R) , (24)

where Hel is the electronic Hamiltonian. Thus in the
time-dependent approach, the goal is to solve Eq. (24)
to extract the electronic transition probability Pi(b)
for each impact parameter b. The total cross section
is obtained by integrating the probabilities over the
impact parameter plane.

The Molecular Close-Coupling Method

The time-dependent Schrödinger equation (24) can be
solved by expanding in a basis set

φ(r, t) = ∑
s

as(t) φs(r, t) exp
(

−i
∫t

Es(t ′)dt′
)

, (25)

where φs has energy eigenvalues Es, and the functions
form an orthonormal complete set at each internu-
clear separation R(t). From (24) and (25) one can
obtain a set of coupled equations for an(t):

i ȧn(t) = ∑
s

as(t) < φn|Hel − i d/dt | φs

> exp
{

−i
∫t

(Es −En) dt′
}

. (26)

This set of coupled equations are to be solved un-
der proper initial conditions. It is desirable to choose
basis functions that reduce to the eigenstates in the
separated-atom limit. This would allow a precise
specification of the initial state and as(t→∞) can then
be identified as the scattering amplitudes directly.

The differential operator d/dt in (26) operates in
a space-fixed collision frame (x, y, z). A convenient
alternative frame is the molecular frame where z′ is
along the internuclear axis.

From Eq. (26) a number of analytic results can be
obtained for certain two-channel models.

Two-Channel Models

The Landau–Zener Model In this model the Hamil-
tonian takes the form

Hel =

[

H11 H12

H21 H22

]

, (27)

where H12 = H21. As a function of R, H11 and H22
cross at Rx, and in the coupling region, H12 is ap-
proximated as a constant. Furthermore, let d(H11 −
H22)/dt = d(∆E12)/dt = α, then the two-channel ver-
sion of Eq. (26) is solved to obtain the probability
for making transitions from one channel to the other.
The Landau–Zener probability for making such a sin-
gle transition is

P = e−2πj, (28)

where

j = H2
12/α =

H2
12

| vd (∆E12)/dR |
(29)

and v = dR/dt is the relative radial velocity of the two
heavy particles at Rx. In a full collision there are
two possible paths for making the transition from one
channel to the other and the probability is 2P(1−P).
Thus transition is most probable when P is near 1/2.
When P is large the crossing can be treated as dia-
batic. When P is small, the crossing is adiabatic. If
the interference between the two passages is included
in the Landau–Zener model the resulting probability
will show oscillations with respect to the collision ve-
locity or the impact parameter. Such oscillations are
known as Stückelberg oscillations.

The Demkov–Meyerhof Model This model is useful
when two channels are nearly degenerate in the disso-
ciation limit and the coupling between the two chan-
nels is H12 = βexp(−αt). The probability for making
the transition between the two channels is

P = sech2
{

π∆E12

2α

}

sin2
{
∫

H12dt
}

, (30)

where ∆E12 = H11 −H22. The oscillating sine func-
tion is due to the interference from the two paths.
This result is known as the Demkov model. If a single
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passage is used the probability for making the transi-
tion is

P1 = (1+ e2x)−1, (31)

where x = π∆E12/(2α). This is known as the Meyer-
hof model.

The Rotational Coupling Rotational coupling ex-
ists between two states when their magnetic quantum
numbers along the internuclear axis differ by one unit.
If the rotational coupling matrix element is approxi-
mated as a constant and the energy difference between
them is zero, then the transition probability is calcu-
lated to be

P = sin2 θ0, (32)

where θ0 is the scattering angle.
These three simple two-channel models, together

with models like the Rosen–Zener model, the Nikitin
model, and the multichannel Landau–Zener model
(Bransden and McDowell, 1992), have been used re-
peatedly to interpret qualitatively or semiquantita-
tively many ion–atom and atom–atom collisions in
the absence of detailed dynamic calculations. On the
other hand, it is desirable to perform full ab initio cal-
culations to obtain inelastic scattering cross sections.

Multichannel Close-Coupling Methods In Eq. (25),
it is assumed that the basis functions form an orthog-
onal set at each time step or at each internuclear sep-
aration. The most commonly used basis functions in
actual ab initio calculations consist of either molecu-
lar orbitals (MO) or atomic orbitals (AO) in general.
When adiabatic molecular orbitals are used, the basis
functions are orthogonal and one must solve Eq. (26).
However, as explained under Molecular Orbital Ex-
pansion Method, the molecular basis functions do
not satisfy the asymptotic boundary conditions and
switching functions must be introduced. By multiply-
ing orbital-dependent switching functions to individ-
ual adiabatic molecular orbitals, the resulting basis
functions are not orthogonal and such nonorthog-
onality must be taken into account in deriving the
coupled equations. ( Orthogonality can still be re-
tained if a common translational factor is applied to
all molecular orbitals.) Similarly, in calculations us-
ing atomic orbitals, those orbitals belonging to the
different centres are not orthogonal. Thus, instead
of (25), in the general close-coupling description of
atomic collisions, the motion of the electron in config-
uration space is spanned in a finite set of nonorthogo-
nal basis functions ψk(r, t), k = 1, . . . , N (Bransden and
McDowell, 1992; Fritsch and Lin, 1991). In such
a truncated expansion the time-dependent electronic
wave function is approximated as

Ψ(r, t) =
N

∑
k=1

ak(t)ψk(r, t) (33)

with the time-dependent coefficients ak(t). Instead of
(26), the system of coupled equations is

N

∑
k=1

Njk(t)
dak(t)

dt
= i

N

∑
k=1

Mjk(t)ak(t), j = 1, . . . , N (34)

from which the amplitudes can be solved. This equa-
tion contains the overlap matrix elements Mjk(t) =
〈ψj | ψk〉 and the coupling matrix elements Njk(t) =
〈ψj | i(∂/∂t) − Hel | ψk〉. In the case of the AO ex-
pansion, the basis functions for the bound states in
atomic centres A and B are chosen to have the correct
asymptotic form

ψA
k (r, t) = φA

k (rA)exp
(

ivA · r−
1
2

i
∫t

dt′ v2
A − ieA

k t
)

,

ψB
k (r, t) = φB

k (rB)exp
(

ivB · r−
1
2

i
∫t

dt′ v2
B − ieB

k t
)

, (35)

where φi
k and ei

k (i = A, B) are the eigenstates and the
eigenenergies of the atomic states on centre i. Note
that plane-wave electron translational factors are in-
cluded in each basis function to account for the fact
that the electron is moving with A(B), which has a
velocity vA(vB) with respect to the origin of the coor-
dinate system.

In either the AO or MO expansion method there is
no standard procedure to incorporate basis functions
to represent the ionisation events. In actual numeri-
cal applications, pseudostates have been used. These
are positive energy states whose wave functions have
finite range. The sum of the modulus squared of am-
plitudes associated with these pseudostates gives the
total probability for ionisation. Other methods make
use of discretisation techniques that provide L2 inte-
grable representations of continuum states with the
proper delta function normalisation for any desired
value of energy. In the latter case, the differential (in
energy) ionisation probability can also be computed.
The latter technique has been successfully used in the
case of single centre AO expansions, i.e., when all AO
states are centred either in A or B. In general, single-
centre expansions are adequate at high collision ener-
gies. The use of discretisation techniques in this con-
text has been discussed in MartAn and Salin (1995).

In recent years elaborate close-coupling calcula-
tions based on either AO or MO basis functions have
been shown to be capable of predicting reliable excita-
tion and charge transfer cross sections, as well as ion-
isation cross sections, in a broad range of energies, if
the collision system can be described by a reasonable-
size basis function. As an example, in Fig. 3 the
total charge transfer cross sections for C3+ + H col-
lisions obtained by close-coupling calculations based
on the atomic and molecular orbitals are shown to
compare well with the experimental results from dif-
ferent groups (Tseng and Lin, 1999). Many other
similar collision systems have been investigated in the



Fast and Slow Collisions of Ions, Atoms and Molecules 7

past two decades and more examples can be found
in monographs (Bransden and McDowell, 1992) and
in review articles (Fritsch and Lin, 1991; Kimura and
Lane, 1990).

Figure 3 Comparison of experimental total electron capture
cross sections with results from close-coupling calculations for
the C3++ H system. Solid line is from using AO basis set, and the
two dashed lines are from using MO basis set. See Tseng and
Lin, (1999).

The multichannel close-coupling method, despite
its well-known success, cannot be easily applied to
collisions involving atoms initially prepared in Ry-
dberg states, or for collisions when many Rydberg
states are populated. In these cases the number of
states needed to be included in the calculation is too
large to be handled in the coupled-channel methods.
The only theoretical approach available for such sys-
tems is the classical trajectory Monte Carlo method,
which treats the motion of the electron classically.

Hidden Crossing Theory In recent years a new ap-
proach for ion–atom collisions at low energies, called
hidden crossing theory (Solov’ev, 1990), has been
proposed. It is best illustrated first for the avoided
crossing of two adiabatic potentials. Starting with a
diabatic Hamiltonian as in Eq. (27) where all the ma-
trix elements are real quantities, the energy eigenval-
ues of this Hamiltonian is given by

E1, 2(R) =
H11 +H22

2
±

1
2

√

(H11 −H22)2 + 4H2
12, (36)

where E1 and E2 are the adiabatic potentials. Accord-
ing to the noncrossing rule of Neumann and Wigner,
these two adiabatic curves do not cross in the real-R
axis, where R is the internuclear distance. However,
these two adiabatic curves do cross if R is allowed to
take complex values. In fact, they cross at a complex
Rc satisfying

H11(Rc)−H22(Rc) = ± 2iH12(Rc). (37)

For the Landau-Zener model the complex energy dif-
ference becomes

E1(R) − E2(R) ∝
√

R−Rc. (38)

This equation shows that Rc is a branch point. Thus
instead of two adiabatic potential curves in the real-

R axis, in the complex-R plane the potential sur-
face is a single surface with two sheets joined at the
branch point. The transition matrix element has a
pole and the transition probability can be derived us-
ing Cauchy’s theorem by performing contour integra-
tion on the complex-R plane. The transition proba-
bility between the two levels is

P12 = exp
(

−
2
v

∆12

)

, (39)

where

∆12 =
∣

∣

∣

∣

Im
∫Rc

Re Rc

[E1(R)−E2(R)]
(vR/v)

∣

∣

∣

∣

(40)

with vR being the radial velocity and v is the collision
velocity.

This simple two-channel model can be extended
to multichannel problems and used to obtain ionisa-
tion cross sections at low energies. Thus for the basic
H+ +H collisions, the potential surfaces for the H+

2 ion
are calculated to search for the branch points. Two
classes of branch points have been identified. The first
class belongs to the so-called S promotion, which is a
series of branch points located at essentially the same
small real values of R. Promotion through this series
of branch points is identified as prompt ionisation oc-
curring when the two nuclei are close to each other.
There is another class belonging to the T promotion
where the branch points occur at increasingly larger
real-R values. Promotion to the continuum along this
T series is identified with electrons straddling near the
top of the potential saddle from the two nuclei. As
the two nuclei separate, the top of the saddle is raised
and the electrons are ejected into the continuum. This
is the saddle point mechanism for ionisation at low
energies, analogous to the Wannier theory for elec-
tron impact ionisation of atoms at threshold energies.
In calculating the probability for ionisation via each
mechanism, it is taken as the product of the probabil-
ities of Eq. (39) for each branch point encountered.

The hidden crossing theory provides a simple in-
tuitive description of the mechanism of ionisation for
ion–atom collisions at low energies. At present the
phase information has not been included and the the-
ory for treating differential cross sections is not com-
plete yet.

Direct Integration of the Time-Dependent

Schrödinger Equation

With the advent of powerful vector and parallel com-
puters that are becoming increasingly available, an-
other approach for ion–atom collisions is the di-
rect numerical integration of the time-dependent
Schrödinger equation on lattice grid points. Due to
the long-range nature of the Coulomb force, however,
a full 3D lattice solution has been made possible only
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very recently (Wells et al., 1996).

The formal solution of the time-dependent
Schrödinger equation for small time intervals (∆t =
t− t0) is given by

ψ(t) = U(t, t0)ψ (t0). (41)

A number of different approximations may be em-
ployed for the time-evolution operator U(t, t0)

U(t, t0) = exp
{

−iH∆t
}

, (42)

where H = H[(t + t0)/2]. If the lattice grids are given
in Cartesian coordinates, then at each time point, the
spatial wave function is represented by its values at
the discretised N = NxNyNz lattice points, where Nj is
the number of points in coordinate j. When the wave
function is represented in the configuration space, the
potential energy operator is diagonal and the Carte-
sian kinetic energy operator is represented by a simple
matrix. All algorithms used are iterative in nature and
based on matrix multiplications. The lattice methods
that have been used include the finite-difference repre-
sentation, the Fourier collocation method and others.

As a common practice in the lattice-based method,
the time-dependent wave function is often calculated
inside a box of finite size where errors are intro-
duced. For example, an ad hoc absorbing potential
−iW(x, y, z) is often employed to remove flux reflec-
tions from the boundaries. Ideally one would like to
make the box as large as possible and the spacing be-
tween the grids as small as possible, but memory con-
straints limit a typical 3D calculation to a grid size of
about 125×125×125 for calculations carried out on
present massive parallel computers.

The lattice-based methods in principle can be ap-
plied to ion–atom collisions at any energies. In reality,
its applications so far have been limited to simple sit-
uations. It is more conveniently applied to excitation
processes or target ionisation since the electron clouds
for these processes are localised near the target. Elec-
tron capture to the low-lying bound states can be cal-
culated so long as the electron cloud for these states
does not lie near the box edge. While total ionisa-
tion cross sections can be estimated from the flux loss,
information on the ejected electron momentum dis-
tributions is not available. In comparison with the
close-coupling methods, the lattice-based methods do
not provide advantages so far. The best results from
both approaches are quite comparable but the lattice-
based methods in general take many more computing
resources.

The time-dependent Schrödinger equation can be
solved directly also in momentum space (Sidky and
Lin, 1998). For ion–atom collisions, the solution in
momentum space appears to offer some advantages.
Unlike the coordinate-space wave function, which ex-

tends over a large volume when the two nuclei are well
separated at the end of the collision, the momentum-
space wave function remains finite throughout the
collision. In fact the two nuclei are fixed in the
momentum space and since high-momentum com-
ponents of the wave function are small, reflections
from the wall in the momentum space are negligible.
While it is possible to use grid-based methods to cal-
culate the momentum-space wave function, computa-
tionally it is less taxing to employ the two-centre ex-
pansion in the momentum space. The angular parts
of the basis functions are spherical harmonics and
the radial momentum functions are expanded at lat-
tice grid points. Since the integral equations in mo-
mentum space are difficult to calculate, the time in-
tegration is performed in the coordinate space. By
using a least-squared fitting procedure and Runge–
Kutta fixed time-step integration, such calculations
can be carried out on personal computers instead of
on shared supercomputers. By projecting out the
bound states on each centre, excitation and charge
transfer probabilities can be extracted as in the close-
coupling methods. Using this approach the momen-
tum distributions of the ejected electrons can also be
obtained directly. This method offers a direct non-
perturbative approach for calculating the momentum
distributions of the ionisation cross sections in ion–
atom collisions.

Perturbation Approaches

For collisions at higher energies perturbative ap-
proaches may be used to obtain the scattering cross
sections. Consider the Hamiltonian of one electron
in the field of a target of charge ZT and projectile of
charge ZP again. Take the position vector of the elec-
tron with respect to the target and the projectile to be
x and s, respectively. One can write the Hamiltonian
in the “prior” (i) and the “post” (f) form,

Hel = Hi +Vi = Hf +Vf (43)

and introduce the unperturbed initial and final state
wave functions

(

Hi − i
∂
∂t

)

ΦFBA
i (r, t) = 0 (44)

(

Hf − i
∂
∂t

)

ΦFBA
f (r, t) = 0.

For ionisation, which is the dominant process at high
energies,

Hi = Hf = −
1
2
∇2

r −ZT/x (45)

Vi = Vf = −ZP/s

and the initial and final state wave functions of (45)
are given by the hydrogenic ground state and con-
tinuum Coulomb functions, respectively, multiplied
by the plane–wave phase factor. The first-order per-
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turbation theory for the ionisation amplitude is then
given by

AFBA
ik (b) = −i

∫+∞

−∞
dt

〈

ΦFBA
k

∣

∣

∣

∣

−ZP

s

∣

∣

∣

∣

ΦFBA
i

〉

, (46)

for each impact parameter b. This formulation is
valid for direct ionisation where the continuum elec-
tron sees the Coulomb field of the target ion. The
expression (46) is the semiclassical version of the first
Born approximation. Clearly the cross section scales
with Z2

P within the first Born approximation.
The first Born approximation neglects the influence

of the Coulomb field from the projectile charge on
the initial and final state wave functions. While such
influence can be partially accounted for by calculating
the higher order terms of the Born series, these higher
Born amplitudes are difficult to evaluate. Instead it is
preferable to introduce distorted wave models where
such influence can be included partially in the first-
order theory.

For this purpose, one rewrites the Hamiltonian for-
mally as

Hel = Hi +Vi = Hi +Ui +Wi = Hd
i +Wi (47)

Hel = Hf +Vf = Hf +Uf +Wf = Hd
f +Wf

to introduce the distortion potentials Ui and Uf for
the initial state and the final state, with Wi and Wf
the residual interactions, respectively. The distortion
potentials are chosen such that the Schrödinger equa-
tions

(

Hd
i − i

∂
∂t

)

χ+
i (r, t) = 0 (48)

(

Hd
f − i

∂
∂t

)

χ−
f (r, t) = 0

have solutions of the form

χ+
i (r, t) = ΦFBA

i (r, t)L+
i (r) (49)

χ+
f (r, t) = ΦFBA

k (r, t)L−
k (r). (50)

This imposes on the distortion term the condition

ΦFBA
i

(

−
1
2
∇2

s −
ZP

s
+ iv ·∇s

)

L+
i

= ΦFBA
i (∇x lnφi(x) ·∇sL+

i ). (51)

If the right-hand side of (51) is neglected, then the
above equation can be solved analytically to obtain

L+CDW
i (r) = N(ν)1F1(iν;1; ivs+ iv · s), (52)

where N(a) = exp(πa/2)Γ(1− ia), ν = ZP/|k− v| and
1F1 is the confluent hypergeometric function; i.e., (52)
is a Coulomb function of momentum k− v with re-
spect to the projectile centre. This approximation is
called the continuous distorted wave (CDW) approx-
imation. If the Laplacian in (51) is also neglected,
then

L+EIS
i (r) = exp

(

−iν ln(vs+v · s)
)

(53)

and the resulting approximation is called the eikonal
initial state (EIS) distortion. By using the CDW wave
function for the final state and the EIS wave function
for the initial state, the so-called CDW–EIS theory has
been widely used to calculate the ionisation cross sec-
tions, both integral and differential, for a wide range
of collision systems. In the intermediate- to high-
energy region, such calculations have been found to
work well, accounting for most of the two-centre ef-
fects that are not present in the first Born approxi-
mation. In Fig. 4 the ionisation of H2 molecules by
30-MeV C6+ ions is used to illustrate that the CDW–
EIS theory is capable of predicting the details of the
differential cross sections for such systems (Tribedi et
al., 1996). More details of ionisation processes can be
found in the monograph by Stolterfoht et al. (1997).

Figure 4 Single differential cross sections for ionisation for
C6++H2 collisions at 30 MeV and comparison to the predictions
from the first Born approximation and from the CDW–EIS theory.
Adopted from Tribedi et al . (1996).

Relativistic Ion–Atom Collisions

Relativistic atomic collisions involving highly charged
ions with charge number up to Z=92 and energies
ranging from 100 MeV/amu upwards constitute a
new field where the quantum electrodynamics (QED)
vacuum plays a role. For relativistic collisions, in ad-
dition to the well-known atomic processes such as
excitation, electron capture and ionisation, the in-
tense electromagnetic fields make the creation of free
electron–positron pairs and other processes from the
QED vacuum possible. The nonradiative electron
capture process, which is the dominant mechanism
for electron capture at lower energies, becomes less
important at high energies than the radiative elec-
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tron capture process. At still higher energies, elec-
tron capture from the pair production (CPP), which
does not exist at lower energies, becomes the domi-
nant electron capture processes at extreme relativisitic
energies. The CPP process was first observed experi-
mentally in 1992. It is a bound-free pair production
where the electron–positron pair is created from the
vacuum with the end result that the electron is cap-
tured to the bound states of the incident ion and a free
positron is ejected into the continuum. For high-Z
target atoms, CPP cross section has been observed to
increase with increasing relativistic energies, in con-
trast to the rapid decrease with increasing energies
for the electron capture processes. Note that CPP can
proceed between two bare ions colliding at relativistic
energies with the end results that the ion charge state
decreases by one unit. This mechanism has been pre-
dicted to account for more than half of the beam loss
for bare ions in the Relativistic Heavy Ion Collider
(RHIC) at Brookhaven, and for the bare ions in the
Large Hadron Collider (LHC) at CERN. Interestingly,
this mechanism is also responsible for the production
of antihydrogen when antiprotons are bombarded on
Xe targets at the relativistic momentum of 2–6 GeV/c.

Consider the collision between a fully stripped pro-
jectile ion with charge ZP on a one-electron ion with
charge ZT, in the impact parameter approximation
where the projectile is travelling along a straight-line
trajectory with impact parameter b and velocity v, the
relativistic Dirac Hamiltonian is

HD = H0 +VP(t), (54)

where H0 is the target Hamiltonian

H0 = −iα ·∇+ β−ZTe2/r, (55)

with α and β being the Dirac matrices, and VP is the
time-dependent perturbation by the projectile

VP(r ′) = −ZPαγ (1−vαz)/r′, (56)

where r′ =
√

(x−b)2 +y2 + γ2(z−vt)2, α is the fine
structure constant and γ is the Lorentz factor. This
expression is derived from the Lienard–Wiechert po-
tential of a moving charge. In relativistic theories,
natural units are often used (h- = m = c = 1) as in the
two equations above. According to the intuitive Dirac
hole theory, the initial state can be considered as given
by an electron in the K shell, together with a fully oc-
cupied negative continuum. For describing pair pro-
duction, on the other hand, the initial state is a fully
occupied negative continuum only. For the latter, the
presence of the K-shell electron does not enter. This
simple intuitive picture is valid if the electron–electron
two-body interaction can be neglected and the time
evolution of each electron is independent. This inde-
pendent particle picture allows the reduction of the

many-particle amplitudes in terms of single-particle
amplitudes, and the calculation can be carried out in
the framework of the Dirac Hamiltonian, Eq. (54).

The simplest theoretical method for solving the
time-dependent Dirac equation is to use the lowest
order perturbation theory. The transition amplitude
from an initial state i to a final state f is given by

Af i(b ) = iγZPα
∫∞

−∞
dt ei(Ef−Ei)t

×
∫

d3r ψ+
f (r )

1−vαz

r′
ψi(r ). (57)

Clearly this expression can be used to evaluate the ex-
citation or the direct ionisation of the electron from
the K shell, for example, and it would give the Z2

P de-
pendence of the cross sections. Using the analogy to
the ionisation process, Eq. (57) can also be used to
evaluate pair production cross sections by a charged
particle. The complication lies in the actual calcula-
tion since both the initial and final states are contin-
uum states. A perturbative approach for the CPP can
be obtained by treating it as an electron being trans-
ferred from a negative-energy state in the target field
to a bound state of the projectile. By employing the
first-order theory the charge transfer amplitude is

Af i(b ) = iZTα
∫∞

−∞
dt

∫

d3r ψ+
f (r ′)Ŝ−1

×
1
r

ψi(r ) ei(Eit′−Eft), (58)

where S is a Lorentz boost operator(see Eq. 4.29 of
Eichler and Meyerhof (1995) to transform the final-
state wave function from the projectile to the target
system.

For relativistic collisions by multiply charged
ions, nonperturbative methods for solving the time-
dependent Dirac equation are needed. As in the
nonrelativistic case, close-coupling methods using the
equivalent of atomic or molecular orbitals have been
used. Direct numerical solutions in the coordinate
space or in the momentum space by expanding the
wave functions in lattice points have also been used.
Details can be found in the book by Eichler and Mey-
erhof (1995).

§ 4. Atomic Collisions with Multielec-
tron Targets

The previous two sections describe the basic scatter-
ing theories that have been widely used for treating
the different inelastic processes in atomic collisions
over a broad range of collision energies. The theories
have been presented for the prototype systems consist-
ing of one electron and two heavy particles. Most of
the methods can be formally generalised in a straight-
forward manner for many-electron targets of atoms,
molecules, clusters and surfaces. However, in actual
applications for such collisions many more approxi-
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mations must be implemented since representing the
time-dependent wave function of a many-electron sys-
tem over the whole collision time in terms of basis
functions or on lattice grids is essentially impossible.

There are two situations where approximate cal-
culations on many-electron systems can be made us-
ing ab initio scattering theories. For low-energy col-
lisions, if the number of inelastic channels excited is
limited, then it is possible to use many-electron molec-
ular or atomic wave functions as basis set in a close-
coupling expansion of the time-dependent wave func-
tion.

For collisions at higher energies, multielectron pro-
cesses can occur in addition to the single-electron pro-
cesses. For single ionisation, single-electron capture
or single-excitation processes, it is often possible to
employ the active electron model, with the other elec-
trons that are not involved in the processes treated
as passive electrons. In such models the multielec-
tron system is reduced to a single-electron system
with the active electron being in the screened field of
the target and projectile ions. For multielectron pro-
cesses, for example, double ionisation or electron cap-
ture accompanied by ionisation, full ab initio calcula-
tions are difficult to perform. Thus the independent-
electron models are often used. In this model, the
many-electron wave function is written as the anti-
symmetrised product of the wave functions of individ-
ual electrons, so that electron correlation is neglected.
In such models amplitudes for multielectron processes
can be written as antisymmetrised products of single-
electron amplitudes. Such independent-electron mod-
els have been used to describe multielectron processes
in ion–atom collisions with some success. However,
there are many circumstances where such simple mod-
els fail. A few examples of such calculations can be
found in Fritsch and Lin (1991). A step forward in
including electron correlation in the dynamics of fast
collision processes is provided by the frozen correla-
tion approximation (FCA) (MartAn and Salin, 1996).
In this method, electron correlation is included in
both the initial and final states but it is frozen during
the collision. In this way, a many-electron transition
amplitude can be written as a linear combination of
antisymmetrised products of one-electron amplitudes.

§ 5. Penning Ionisation and Associa-
tive Ionisation

Penning ionisation (PI) is the process in which an
energy donor B∗ collides with a neutral atom or
molecule A whose ionisation energy is less than the
excitation contained in B∗, A looses one of its elec-
trons and B remains in the ground state. It can be
represented by the reaction

A+B∗ → A+ +B +e−. (59)

This process was first suggested by Frans Penning in
1927. Besides PI, another process is associative ioni-
sation (AI) represented by

A+B∗ → AB+(v)+ e−. (60)

PI and AI are only effective at thermal energies.
Therefore, the collision velocities are much smaller
than the typical electron velocities, which suggests
the use of a quasimolecular picture in the framework
of the Born–Oppenheimer (BO) approximation. The
basic mechanism responsible for PI and AI is that of
a bound molecular state (correlated with the entrance
channel A+B∗) that is embedded in a molecular elec-
tronic continuum (correlated with the exit channel
A + B+ + e−) to which the former state is coupled by
the electron–electron interaction (see Fig. 5). Thus, PI
and AI can be interpreted as resonant processes sim-
ilar to those observed in atomic and molecular pho-
toionisation.

Excellent surveys of the different experimental and
theoretical techniques used to study reactions (59)
and (60) have been published by Siska (1993) and
Weiner et al. (1990), respectively. The theory of PI
and AI involves both electronic structure aspects and
collision dynamics aspects. The former include eval-
uation of correlated molecular states and the cou-
pling with the molecular electronic continuum. In this
section only the basic formalism that connects struc-
tural and dynamical aspects will be discussed. Since
PI dominates AI at thermal energies (see below), in
a first step one can assume that the total ionisation
cross section results from reaction (59) almost exclu-
sively. Then one can treat the problem semiclassically
in this sense: the nuclei follow classical trajectories
in the field induced by the effective interatomic po-
tential, whereas the electrons are described quantum
mechanically. Thus, on any given nuclear trajectory,
the electronic wave function is the solution of a time-
dependent Schrödinger equation as that of Eq. (24).

Resonant processes are conveniently described in
terms of a projection operator formalism. With the
picture provided by Fig. 5 in mind, we define a basis
of adiabatic states as follows. Bound electronic states
AB∗ lying above the ionisation threshold AB+ are for-
mally the solutions of

(QHelQ−Ei)ψi = 0 (61)

and unbound (AB+ + e−) electronic continuum states
are the solution of

(PlHelPl −E)ΨE, l = 0, (62)

where l is the angular momentum of the ejected elec-
tron, and Pl and Q are projection operators that sat-
isfy the conditions PlPl′ = δl l ′ , P = ∑l Pl, PQ = 0 and
P + Q = 1 for all R. Notice that Hel is not di-
agonal in the

{

ψi, ψE, l
}

basis because, in general,
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Figure 5 Two-potential energy curve model for Penning ioni-
sation. E is the centre-of-mass kinetic energy of collision, e0 is
the separation of the reagent and product potential asymptotes,
E (R) is the (classical) local heavy-particle kinetic energy and e(R)
is the kinetic energy of the Penning electron when PI occurs at
separation R.

〈ψi |QHelPl |ψE, l〉 and 〈ψE, l |PlHelPl′ |ψE, l′〉 are differ-
ent from 0. Therefore, the

{

ψi, ψE, l
}

basis is adia-
batic in the sense that Eqs. (61) and (62) are ful-
filled for all R. The electronic wavefunction Ψ(t) is
expanded in this basis

Ψ(t) = ∑
i

ci(t)ψi exp
(

−i
∫t

−∞
Eidt′

)

+∑
l

∫

dEcE, l (t)ψE, l exp
(

−i
∫t

−∞
Edt′

)

, (63)

where ψ0 represents the initial state. The initial con-
dition is ci(−∞) = δi0, cE, l(−∞) = 0. Substitution of
Eq. (63) in the Schrödinger equation leads to the sys-
tem of differential equations

i
d
dt

ci(t) = ∑
l

∫

dEexp
(

i
∫t

−∞
(Ei −E)dt′

)

< ψi |QHelPl |ψE, l > cE, l(t) (64)

i
d
dt

cE, l(t) = ∑
i

ci(t)exp
(

i
∫t

−∞
(E−Ei)dt′

)

< ψE, l |PlHelQ |ψi > + ∑
l′ 6=l

∫

dE′cE′, l′ (t)

×exp
(

i
∫ t

−∞
(E−E′)dt′

)

< ψE, l |PlHelPl′ |ψE′, l′ > . (65)

In the latter equations, all dynamical couplings
corresponding to breakdown of the BO approxima-
tion have been neglected. This is a very good ap-
proximation because the dynamical couplings are
proportional to the collision velocity which, in the
case of PI, is on the order of 10−3au. The cou-
plings 〈ψi |QHelPl |ψE, l〉 are responsible for bound-
continuum transitions while the 〈ψE, l |PlHelPl′ |ψE, l′〉
couplings represent continuum–continuum transi-
tions and, therefore, they are responsible for a redis-

tribution of the population within the continuum. As
usual, the total ionisation cross section is given by in-
tegrating the probability

P(b) = lim
t→∞∑

l

∫

dE |cE, l(t) |2 (66)

over the impact parameter plane, where b is the im-
pact parameter.

In most applications, instead of solving the system
of coupled equations (64) and (65), one makes use of
a local approximation. This approximation can be
easily derived from (64) and (65) by assuming that (i)
the entrance channel is well separated in energy from
the remaining Q states (isolated resonance approxi-
mation) and (ii) all continuum–continuum couplings
within P subspace are 0. Using approximations (i)
and (ii) in Eq. (65), integrating over time and substi-
tuting the result into Eq. (64), one obtains

d
dt

c0(t) = −∑
l

∫

dE | < ψ0 |QHelPl |ψE, l > |2

×
∫t

−∞
dt′c0(t′)exp

(

i
∫t

t′
(E0 −E)dt′′

)

. (67)

Let ∆E be the energy interval such that < ψ0 |QHelPl |
ψE, l > barely changes in the interval IE0 = [E0 −
∆E, E0 + ∆E]. If the collision velocity v(t) = v0 −
µ−1 ∫t

−∞∇Vdt′ (where V is the interatomic potential,
µ the reduced mass of the nuclei and v0 the initial ve-
locity) is small enough such that |v| < ∆E for all t,
the integral in Eq. (67) is almost 0 outside IE0 due
to the strongly oscillatory behaviour of the exponen-
tial. Then Eq. (67) can be easily integrated and the
total ionisation probability for a given trajectory can
be written

P(b) = 1− exp
(

−
∫∞

−∞
Γ(t)dt

)

, (68)

where

Γ(t) = 2π∑
l

| < ψ0 |QHelPl |ψE = E0, l > |2. (69)

Equation (68) can also be written as

P(b) = 1− exp
(

−2
∫∞

R0

Γ(R)
vb(R)

dR
)

, (70)

where vb(R) is the radial velocity of the nuclei. In gen-
eral, the value of the width Γ(R) decreases exponen-
tially with R and, therefore, the ionisation probabil-
ity is only important at short internuclear distances.
Similar results have been obtained from purely clas-
sical considerations (Miller, 1970). In many experi-
mental and theoretical studies, the energy donor is a
noble-gas metastable atom. Figure 6 shows the en-
ergy dependence of the Penning ionisation cross sec-
tion in the case of the Ne∗(3P2) + H collision. It can
be seen that the cross sections decreases monoton-
ically with impact energy, which is the typical be-
haviour in most cases. To find the probability distri-
bution P(b, e), so that P(b, e)de is the probability that
the energy of the ejected electron lies in the interval
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(e, e + de), one notes that the transition occurs at in-
ternuclear distance R, then the energy of the ejected
electron must be e(R) = V(R)−V+(R), where V+(R) is
the potential energy curve of the residual molecular
ion AB+. The probabilities P(b, e) and P(R) are re-
lated by P(b, e)de = P(R)dR so that

P(b, e) = ∑
i

P(R)/ |de/dR |Ri , (71)

where the sum is over those Ri (usually no more than
2) that satisfy e = V(Ri)−V+(Ri).

AI can arise only if the potential of the AB+ ion,
V+(R), possesses a well deep enough to support bound
vibrational states. If the energy carried away by the
ionised electron is e = V(R)−V+(R) then the relative
translational energy is E− e, where E is the kinetic
energy E = µv2

0/2 of the collision. Hence, E− e < 0
implies that the final relative motion in the V+ poten-
tial must be that of a bound state of AB+, that is, AI.
The probability for AI is then given by (Siska, 1993)

PAI(b) = 2exp
(

−
∫∞

R0

Γ(R)
vb(R)

dR
)

sinh
(
∫RAI

R0

Γ(R)
vb(R)

dR
)

, (72)

where RAI is the (unique) root of E−e(R) = 0. A simi-
lar theoretical framework has been recently proposed
(MartAn and Berry, 1997) to study electron detach-
ment from negative ions using excited neutrals:

A− +B∗ → A+B + e− (73)

A− +B∗ → AB(v)+ e−. (74)

The processes are called, respectively, Penning detach-
ment (PD) and associative detachment (AD). PD cross
sections are several orders of magnitude larger than
PI cross sections. The explanation is twofold and is

Figure 6 Theoretical prediction of total and AI cross sections
for Ne ∗ + H. As mentioned in the text, the total ionisation cross
section is close to the PI cross section. Taken from Siska (1993).

related to the presence of a negative charge in the pro-
jectile. In the first place, Stark mixing between excited
states of B∗ is induced by the charged projectile A−.
As a result of this mixing, the width Γ(R), which rep-
resents the coupling between the entrance channel and
the continuum, does not decrease exponentially, but
rather Γ∼ R−6, which is typical of dipole–dipole inter-
actions. In the second place, the interatomic potential
V(R) between a negative ion and a neutral is given by
−α/R4, where α is the polarisability, and may be more
attractive than between two neutrals. This attractive
potential may also lead to orbiting of the projectile
around the target.

§ 6. Ion–Molecule Collisions

In this section electronic and vibrational transitions
in ion–molecule collisions are considered. The reac-
tive scattering is being addressed separately in Chap-
ter 2.6.4. Only collisions between ions and diatomic
molecules will be considered, including processes like
charge transfer

A+ +BC(v0) → A+BC+(v′), (75)

electronic and/or vibrational excitation

A+ +BC(v0) → A+ +BC∗(v′) (76)

and dissociative charge transfer

A+ +BC(v0) → A+B +C+ (77)

A+ +BC(v0) → A+B+ +C, (78)

in the impact energy range from a few millielectron-
volts to several kiloelectronvolts. The first significant
attempts to investigate this problem were based on a
classical treatment of all nuclear degrees of freedom
and a quantum mechanical treatment of the electronic
motion (see, e.g., the review of Kleyn et al. (1982)
and the book by Bernstein (1979)). More recently,
fully quantum mechanical and semiclassical methods
have become available. These methods have been ex-
tensively reviewed by Sidis (1990). In this section, the
most common approximations are discussed.

Although not discussed in detail in this chapter,
we should mention another important area of re-
search, namely that of rotational excitation without
any vibrational or electronic transition. Studies on
this topic began in the early 1970s (see, e.g., Pack
(1974) and references therein) and opened up the way
to various approximations, such as the infinite or-
der sudden approximation discussed below, which is
widely used in present computations of vibronic exci-
tations in ion–molecule collisions.

Quantum Mechanical Approach

After removal of the centre-of-mass motion and ne-
glecting the small mass polarisation terms, the non
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relativistic Hamiltonian of the A + BC system can be
written

H = −
1
2µ

∇2
R −

1
2m

∇2
ρ −

1
2

N

∑
i=1

∇2
ri

+V(r, R, ρ, γ), (79)

where the set of electronic coordinates ri is called r, N
is the number of electrons, ρ = BC (see Fig. 7), R = OA,
O is the centre of mass of nuclei B and C, and the
masses µ and M are given by µ = mA(mB + mC)/(mA +
mB +mC), m = mBmC/(mB +mC). In general, the elec-
tronic motion is described in the so-called body-fixed
(BF) reference frame that accompanies the overall ro-
tation of the three nuclei about the nuclear centre
of mass. In contrast, the nuclear motion is usually
treated in the laboratory reference frame. In the quan-
tum mechanical approach, one solves the Schrödinger
equation

HΨ(r, R, ρ) = EΨ(r, R, ρ) (80)

by expanding the wave functions in a basis of adia-
batic states Φn

Ψ(r, R, ρ) = ∑
n
Cn(R, ρ)Φn(r, R, ρ, γ). (81)

The Φn states are eigenfunctions of the electronic
Hamiltonian

Hel = −
1
2

N

∑
i=1

∇2
ri

+V(r, R, ρ, γ), (82)

so that

HelΦn(r, R, ρ, γ) = EnΦn(r, R, ρ, γ). (83)

This is similar to the molecular method in ion–atom
collisions (see Molecular Orbital Expansion Method).
The nuclear wave function can be expanded

Cn(R, ρ) = ∑
v

Fnv(R)Gnv(ρ), (84)

where Gnv is usually written as a product of a vibra-
tional function χnv and a rotational wave function
Yjnmjn

of the isolated BC molecule

Gnv(ρ) =
χnv(ρ)

ρ
Yjn mjn (ρ̂). (85)

The wave functions Φn(r, R, ρ, γ) and Gnv(ρ) form
complete orthogonal basis sets for the variables r and
ρ. Substituting expansions (81) and (84) into the
Schrödinger equation (80), and projecting into the
GnvΦn basis leads to the system of coupled equations

〈GnvΦn |H−E |GnvΦn〉Fnv(R)

= −
′

∑
n′v′

〈GnvΦn|H |Gn′v′Φn′〉Fn′v′ (R). (86)

Solutions of (86) yields for R →∞ the scattering am-
plitudes that determine the state-to-state cross sec-
tions. Even with the nonadiabatic couplings at hand,
evaluation of the transition amplitudes using this gen-
eral formalism is a formidable task due to the large
number of terms contained in Eq. (86). Indeed, to
solve Eq. (86), one usually writes the nuclear wave

functions Fnv as a partial wave expansion

Fnv(R) = ∑
lm

F l
nv(R)
R

Ylm(θ, φ), (87)

where the Ylm spherical harmonics depend on the po-
lar angles associated with the R vector (see Fig. 7).
A way out of this problem appears when (i) the col-
lision time is small compared to the rotational period
of the BC molecule and (ii) the radial relative motion
is faster than the angular relative motion. In this case
the orientations of both the BC molecule and the R
vector can be considered as fixed in space. Assump-
tions (i) and (ii) are called, respectively, the energy-
sudden approximation and the centrifugal-sudden ap-
proximation. Both approximations are the basis of
the infinite order sudden (IOS) approximation, which
consists in replacing all coupled values of j and l by
common values j̄ and l̄ compatible with the value of
the total angular momentum. As a consequence, the
resulting system of coupled equations is partially di-
agonalised, thus leading to a more tractable problem.

Semiclassical Approach

For collisions at higher velocities, the motion of the
projectile can be described classically. In this case,
the Schrödinger equation one must solve is formally
identical to that of Eq. (24) except that now Hel must
be replaced by the internal Hamiltonian Hint,

Hint = Hel −
1

2m
∇2

ρ. (88)

Typically, the semiclassical method is valid for colli-
sion energies above 50 eV/amu. At these collision en-
ergies, the BC rotor remains practically fixed in space
during the collision, so that one can use the energy-
sudden approximation. This is not the case for the
centrifugal-sudden approximation, which can be very
poor at high collision energies. Therefore, from the
two conditions for the validity of the IOS approxima-
tion, only the first one is fulfilled. In addition, when
the collision energy is on the order of 100 eV/amu,
the collision time is shorter than the vibrational pe-
riod of the BC molecule. Consequently, the initial vi-
brational wave function does not appreciably change
in the time interval in which the electronic transitions
take place. This is called the vibrational-sudden ap-
proximation. Thus, the wave function describing the
collisional system can be expressed as

Ψ(r, ρ, t) = ρ−1 Yjmj
(ρ̂)χnv(ρ)ψ(r, ρ, t) (89)

with ψ(r, ρ, t) describing the electronic structure. In
the context of the semiclassical approach, Eq. (89) is
simply called the sudden approximation and should
not be confused with the IOS approximation intro-
duced in the previous section. As mentioned above,
the present sudden approximation is a very good
approximation in almost the entire energy range in
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Figure 7 Set of internal coordinates R, ρ, γ for an A+BC
collisional system.

which the semiclassical treatment is valid. Further-
more, one can use the impact parameter or eikonal
method in which the position vector R of the incident
ion with respect to the centre of the diatom is assumed
to follow classical straight-line trajectories with con-
stant velocity v and impact parameter b: R = b + vt
(Errea et al., 1997, 1999). In a close-coupling molec-
ular approach the electronic wave function ψ(r, ρ, t)
of (89) is expanded in terms of the set of (approxi-
mate) eigenfunctions {φi} of the Born–Oppenheimer
electronic Hamiltonian, Hel:

Hel φi(r;R, ρ) = εi(R, ρ)φi(r;R, ρ). (90)

For each value of ρ, this expansion takes on the form

ψ(r, ρ, t) = ∑
j

aj(t;ρ) φj(r, ρ, R) exp
(

−i
∫t

0
εjdt′

)

. (91)

The expansion coefficients aj(t;ρ) are then obtained
by substituting (89) and (91) into the time-dependent
Schödinger equation. For a given nuclear trajectory
and fixed ρ, one obtains that

i
daj

dt
= ∑

k

ak 〈φj |Hel − i
∂
∂t

∣

∣

∣

∣

r, ρ
|φk〉

×exp
(

−i
∫t

0
(εk − εj)dt′

)

. (92)

The aj coefficients are subject to the initial condition
aj(t → −∞;ρ) = δij. The transition probability Pν′f to
the {ν′f} vibronic state is obtained by projecting the
wave function (89) onto the final state, and summing
over all rotational exit channels. When for a given
j all values of mj are equally probable, the sum over
all initial mj values leads to an orientation-averaged

transition probability of the form

Pν′f(b, v) = (4π)−1
∫

dρ̂
∣

∣

∣

∣

∫

dρ χν(ρ) χν′ (ρ)

× exp
(

−i
∫∞

0
dt(εf −Ef)

)

af (∞;ρ)
∣

∣

∣

∣

2

. (93)

The total cross sections are obtained by integrating
the transition probabilities of Eq. (93) over the im-
pact parameter plane. It is generally assumed that
at high collision energies the population of the vi-
brational states of the BC molecule subsequent to
electronic transitions obeys the Franck–Condon (FC)
principle. The FC expression of the transition proba-
bilities is obtained if one assumes that the coefficients
af(∞;ρ) are slowly varying functions of ρ, and substi-
tutes them with the values at the equilibrium distance
of the BC molecule ρ0:

PFC
ν′f (b, v) =

∫

dρ̂
∣

∣af(∞;ρ0)
∣

∣

2
[
∫

dρ χν(ρ)χν′ (ρ)
]2

.(94)

Calculations of ion–molecule cross sections in-
volve ab initio electronic data, namely potential en-
ergy surfaces, which can be accurately calculated us-
ing state-of-the-art quantum chemistry programs and
couplings, which constitute the real bottleneck for ap-
plications of the theory described above. An illustra-
tion of the importance of the various processes that
take place in ion–molecule collisions is shown in Fig.
8 for the C4+ + H2 collision. The dominant process
is single-charge transfer. However, it can be seen that
dissociative charge transfer becomes competitive with
the nondissociative process at the lower impact ener-
gies. In this reaction, dissociation is due to a transi-
tion from the original vibrational state to the vibra-
tional continuum and not to a direct transition to an
electronic dissociative state. Vibrational excitation is
also a very important process; in fact it is the dom-
inant process at the lower energies. Figure 8 also
shows results obtained within the FC approximation.
The latter approximation is independent of the ini-
tial vibrational state of H2 and cannot describe vibra-
tional excitation.

§ 7. Ion–Cluster Collisions

In the past decade, there has been an increasing inter-
est in the study of collisions between ions and clusters,
especially metal clusters and fullerenes. The processes
that can take place in this kind of collision are simi-
lar to those observed in ion–molecule collisions: they
involve simultaneously electronic transitions (charge
transfer, excitation, ionisation) and nuclear-core ex-
citations (vibration, rotation, fragmentation). As the
number of electronic and nuclear degrees of freedom
is large, the use of fully quantum mechanical methods
is not yet possible. This complexity also explains why,
in contrast with important experimental progress, the
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theoretical understanding of these processes is still
modest. Till the mid-1990s, most theoretical studies
were performed using classical mechanics with phe-
nomenological two- or three-body potentials to de-
scribe the interatomic forces. These purely classical
methods are usually called molecular dynamics (MD)
methods, for which there is an extensive literature and
well-documented computational packages.

Recently theoretical methods that go beyond MD
by including quantum effects have begun to emerge.
To date, quantum theoretical methods can be clas-
sified into two different categories. In the first, for
which most applications have been developed, one
makes use of the jellium approximation to describe
the isolated cluster. In this approximation one re-
places the real ionic distribution of the cluster with a
homogeneous positively charged distribution whose
role is to ensure cluster neutrality. This is a good ap-
proximation for metal clusters such as sodium and ce-

Figure 8 Total cross sections for the following processes
in C4+ +H2 collisions: TCT (total single-charge transfer), FC
(Franck–Condon result for single-charge transfer), CTB (charge
transfer to bound vibrational states), VE (vibrational excitation),
TD (dissociative charge transfer ≡ transfer dissociation), VD
(vibrational dissociation). Taken from Errea et al . (1997).

sium clusters. Therefore, in the dynamical treatment,
the large number of nuclear degrees of freedom is re-
duced to the relative position of the projectile with
respect to the centre of the cluster, R. These meth-
ods have provided reasonable descriptions of elec-
tronic transitions in ion–cluster collisions for clusters
of medium and large size. In the second category,
all the nuclear degrees of freedom are included. This
has been recently achieved (Saalmann and Schmidt,
1996, 1998) through a method that combines self-
consistently an MD description of the nuclear motion
and a time-dependent density functional theory of the
electronic degrees of freedom. This is a very promis-
ing area of research, but, to date, it has been only
applied to the study of very small clusters (typically
including less than 10 atoms).

Jellium Models

The jellium model is a useful approximation when the
collision time is much shorter than the nuclear vibra-
tional periods in the cluster. Indeed, in this circum-
stance, the cluster nuclei remain fixed in space during
the collision, so that one can neglect its detailed inter-
nal structure. In addition, for short enough collision
times one can apply time-dependent theories where
the projectile motion is treated semiclassically. In this
case, R is the only nuclear degree of freedom that must
be considered. Therefore, the semiclassical theory
of ion–cluster collisions does not differ significantly
from that of ion–atom and ion–molecule collisions.
However, at variance with the latter cases, it is ex-
tremely difficult to obtain a set of correlated electronic
wave functions of the ion–cluster compound system
to be used in close-coupling expansions of the time-
dependent wave function. Even a time-dependent
Hartree–Fock approach is far beyond the present ca-
pabilities. For this reason, most methods make use
of the independent electron approximation with dif-
ferent degrees of sophistication. Among them are first
approximations based on the Vlasov equations (Gross
and Guet, 1995). These equations govern the time
evolution of the single-particle classical phase-space
distribution f(r, p, t) and are obtained as the classical
limit of the time-dependent Hartree–Fock equations.
They can be written

[
∂
∂t

+p∇r + (∇pV[ f ]∇r − (∇rV[ f ])∇p] f (r, p, t) = 0, (95)

where V[ f ] is the total self-consistent potential act-
ing on an electron of momentum p at position r. The
initial phase-space distribution is taken as the Wigner
transform of a realistic one-body quantal density ma-
trix, e.g., the one-electron Kohn–Sham density. The
numerical integration of the 6-dimensional Vlasov
equation is not an easy task. For this reason, sev-
eral simplifying strategies must be used, such as the
so-called “test particle” method (see Gross and Guet
(1995) for details). The Vlasov equation suffers from
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Figure 9 Potential energy curves for the σ states of the (Nan–
H)+ systems. Full lines, H-correlated states (capture channels);
full lines with circles, occupied cluster states; dashed lines, empty
cluster states. Taken from MartAn et al . (1999a).

a severe deficiency: it does not take into account the
Pauli exclusion principle. This problem is solved in
practice by introducing a phenomenological exchange
potential analogous to that used in the local density
approximation (LDA).

Also in the framework of the independent electron
approximation, a fully quantum mechanical descrip-
tion has been recently achieved with explicit inclu-
sion of the Pauli exclusion principle. In this method
(MartAn et al., 1999a), the Kohn–Sham formulation
of density functional theory is used to describe the
electron density of the isolated cluster in terms of
single-particle orbitals. Then, from these orbitals,
one obtains the corresponding one-electron poten-
tials, VC, including exchange, correlation and a self-
interaction correction. As a consequence of the qua-
siseparability of the cluster Hamiltonian, the total
N-electron Hamiltonian Ĥ is then written as a sum
of one-electron effective Hamiltonians, Ĥ = ∑N

i=1 ĥ(i)
and thus one must only solve a set of N one-electron
time-dependent Schrödinger equations. Due to the
Pauli exclusion principle, the transition probability to
a specific final configuration (f1, . . . , fN) = ‖ φf1 . . .φfN‖
is written as a (N × N) determinant, Pf1 , . . . , fN =
det(γnn′), where γnn′ is the one-particle density ma-
trix, γnn′ = 〈fn | ρ̂ | fn′〉, and ρ̂ is the density operator that
accounts for the time evolution of the spin -orbitals.
Figure 9 shows the BO potential energy curves for the
one-electron σ states of the (Nan–H)+ systems. As
in ion–atom collisions, transitions between different
“molecular” states are induced by nonadiabatic cou-
plings. These couplings are particularly effective in

Figure 10 Electron capture and excitation cross sections for
H+ +Nan collisions. Numbers indicate values of n. Taken from
MartAn et al . (1999b).

the vicinity of avoided crossings as those shown in
Fig. 9. Thus, using these diagrams, one can explain
the different electronic transitions (electron capture,
excitation, ionisation, etc.) in terms of transitions
between different molecular states. Figure 10 shows
capture and excitation cross sections for H+ +Nan col-
lisions. The capture cross section is much larger than
that observed in H+–Na collisions, but the flat region
is reached much earlier in the present case. It is worth
noting that, at variance with ion–atom collisions, ex-
citation cross sections are only 2–3 times smaller than
electron capture cross sections. Also, multiple elec-
tronic transitions (multiple excitation, ionisation or
capture) are much more important, which prevents
the use of single-particle models.

More recently, some attempts have also been made
in the framework of the time-dependent local density
approximation. In this approximation, the electronic
motion is described by the time-dependent Kohn–
Sham equation in which VC is now explicitly time de-
pendent to take into account the response of the clus-
ter electron density to the presence of the projectile.
Although this is not strictly an independent electron
model, it does not differ too much from it. Indeed,
in practice, the time-dependent correlation potential
is not known and approximate LDA forms must be
used; since most of these forms are only justified for
time-independent situations, their validity relies on
the minor role played by correlation effects during
the collision. Finally, it is worth mentioning a recent
theoretical study of Penning detachment from nega-
tively charged clusters (MartAn et al., 1999b) using
the jellium approximation. The theoretical method
is a combination of the semiclassical approach dis-
cussed above and the local approximation presented
in section §5.

Beyond the Jellium Approximation

Recently, a nonadiabatic quantum molecular dy-
namics method that describes classically the mo-
tion of all nuclei (not only the projectile), simulta-
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neously and self-consistently with electronic transi-
tions, has been developed (Saalmann and Schmidt,
1996, 1999). This approach has been derived on the
basis of the time-dependent density functional the-
ory, whereby the Kohn–Sham formalism within the
time-dependent local density approximation is used.
As an ansatz using linear combination of atomic or-
bitals for the Kohn–Sham orbitals a set of coupled
differential equations for the time-dependent coeffi-
cients, which are used to determine the time evolu-
tion of the electronic density as the consequence of
the classical atomic motion, is obtained. Simulta-
neously, Newton’s equations of motion with explicit
time-dependent forces must be solved reflecting the
possible energy transfer between the classical system
of ionic cores and the quantum mechanical system of
valence electrons. Thus, the nonadiabatic quantum
molecular dynamics approach can be used to study
both charge transfer and fragmentation processes.
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