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Abstract
We have searched for bound states of helium trimers with nonzero angular
momenta. Including only pair interactions between helium atoms, we
solved the Schrödinger equation in hyperspherical coordinates in the adiabatic
approximation. From the resulting potential curves—which are mostly
repulsive for nonzero angular momenta—we conclude that there are no bound
rotational excited states in any of the isotopes of the helium trimer. The
symmetry properties of the trimer wavefunctions in the body-fixed frame are
also analysed.

In recent years the properties of very weakly bound small 4He clusters have been examined in
a variety of studies, both theoretical [1–6] and experimental [7–10]. To set the energy scale for
these systems, the 4He dimer is bound by only about 1.3 mK. For the 4He3 trimer, extensive
calculations [1] have shown that there are two bound states with binding energies of about
105 and 0.808 mK. The excited state has been shown [1,3] to have properties characteristic of
an Efimov state where the binding energy is exponentially small and the size is exponentially
large with respect to a two-body potential parameter such as the scattering length. Practically
all the calculations that have been carried out for helium trimers have dealt with states of zero
total angular momentum, J = 0. Since there are two bound states for J = 0, it has been
speculated [6] that there may exist bound states for nonzero angular momenta and that these
states may exhibit properties of Efimov states as well. In fact, based on the rigid-rotor model,
an estimate of the rotational energy using parameters from the 4He3 ground state suggests
that a state with one unit of angular momentum is close to being bound. Such a simple
estimate, however, can be grossly in error since quantum statistics are not accounted for in
such a perturbative estimate. The behaviour of few-body quantum systems is actually severely
constrained by the symmetries imposed by quantum statistics [11].

In this letter we report the results of a search for the bound states of helium trimers with
nonzero angular momenta. Both 4He3 and 4He2

3He are examined to investigate the effect of
quantum statistics on the calculated energies. We conclude that in both systems there are no
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bound states for nonzero angular momenta. Thus, the only bound states for 4He3 are the two
J = 0 states, and the only bound state for 4He2

3He is the J = 0 ground state.
The calculations were performed using hyperspherical coordinates. Let �ρ1 be the vector

connecting particle 1 to 2, and �ρ2 the vector from the centre of mass of 1 and 2 to particle 3.
For 4He2

3He, the two identical particles are designated as 1 and 2. The mass-weighted
hyperspherical coordinates are defined by

µR2 = µ1ρ
2
1 + µ2ρ

2
2

tan φ =
√
µ2

µ1

ρ2

ρ1
.

We further define the angle between �ρ1 and �ρ2 to be θ . In the equation above, µ1 is the reduced
mass of particles 1 and 2, and µ2 is the reduced mass of particles (1 + 2) and 3. In this letter
we choose the scaling factor µ = √

µ1µ2; the mass of 4He is 7296.2994 au, and the mass of
3He is 5497.8852 au. Atomic units are used unless otherwise specified.

We solve the Schrödinger equation in the adiabatic representation

ψ(R, φ, θ, ω) =
∑
ν

Fν(R)�ν(R;φ, θ, ω),

whereω is the set of Euler angles that defines the body frame with respect to the laboratory-fixed
frame. We choose the body-frame z′-axis to be along �ρ1, and the y ′-axis to be perpendicular
to the plane of the three particles. The x ′-axis lies in the plane such that (x ′, y ′, z′) forms an
orthogonal set of axes. In the adiabatic approach, R is treated as a fixed parameter, and the
adiabatic potential curves are obtained by solving(

�2 − 1
4

2µR2
+ V

)
�ν(R;φ, θ, ω) = Uν(R)�ν(R;φ, θ, ω). (1)

The explicit form of the grand angular momentum operator �2 is given elsewhere [12], and
V = V12 + V23 + V31 where Vij is the pair interaction between particles i and j , taken from
Aziz and Slaman [13] (in their paper, this potential is designated LM2M2 with add-on). For
a state with angular momentum J and parity π , we expand the channel function as

�JMπ
ν (R;φ, θ, ω) =

∑
I

D̄Jπ
IM(ω)ψIν(R; θ, φ)

where I (M) is the projection of J on the body-fixed (laboratory-fixed) quantization axis and
D̄Jπ
IM(ω) is the symmetrized D-function. In the following we will call ψIν(R; θ, φ) the I th

rotational component wavefunction. This expansion allows equation (1) to be reduced to a set
of coupled equations in the two variables (φ, θ), which we solve using the B-spline method.

In figure 1 we show the potential curves for 4He3 obtained for (Jπ) = (0+, 1+, 1−, 2+,
2−, 3+, 3−). For 0+, the potential curve is identical to the one obtained by Esry et al [1].
By solving the hyper-radial equation with this potential (but including the diagonal correction
term − 1

2µ 〈�ν(R)|d2/dR2|�ν(R)〉), two 0+ bound states were obtained by Esry et al [1] at
−105 and −0.808 mK with respect to the dimer threshold, in general agreement with other
calculations. From figure 1 we note that the potential curves for other values of Jπ are all
repulsive. Such repulsive curves do not support any bound states. Based upon these curves, we
can conclude that there are no bound states for 4He3 trimers with nonzero angular momentum.
Although the calculations were carried out using the pair interaction of Aziz and Slaman [13],
the adiabatic hyperspherical potential curves are changed only slightly when other helium pair
interactions are used, as demonstrated by Esry et al [1] for J = 0. Thus, the conclusion that
no bound states exist for nonzero angular momenta is not expected to change for calculations
using other accurate helium interaction potentials. It should be noted that the pair potential
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Figure 1. Lowest adiabatic hyperspherical potential curves for 4He3, for each Jπ symmetry
indicated.

does not include the retardation effect. This effect, however, is estimated [6] to decrease the
binding and hence does not change our conclusion.

Bound states for 4He3 have been sought by Bruch [6] for the 1− and 2+ symmetries.
He used totally symmetric variational trial functions for each symmetry and obtained upper
bounds that lie above the 4He2 threshold. Since the variational wavefunction used was limited,
he concluded that rotational states, if they exist, would have binding energies of less than
1 mK. We note that he found the energy ordering of the 1− and 2+ states to be opposite to
that shown in figure 1, possibly also due to the limitations of the trial wavefunctions. The 1−

symmetry has also been studied by Nielsen [15] using the coordinate space Faddeev approach
coupled with an adiabatic hyperspherical approximation. For 1−, he also found a completely
repulsive potential for 4He3. Based on our adiabatic potential curves for several symmetries,
our conclusion is more definite. The curves in figure 1 have no attractive wells and so do not
support any bound states for J �= 0.

In figure 2 we show the potential curves for 4He2
3He. It is interesting to note that the

order of the Jπ curves differs from that shown in figure 1 for 4He3: in particular, the 1−

curve is the second lowest state for 4He2
3He. This is the result of quantum statistics: the

wavefunction for 4He3 must be symmetric under exchange of any pair of particles; for 4He2
3He,

the wavefunction needs to be symmetric only under the exchange of the two 4He atoms. We
explore the consequences of the different permutational symmetry requirements further below.

In the present calculation, the permutational symmetry is not imposed directly in the
numerical solution of equation (1) primarily because it is not a simple matter to impose this
symmetry a priori in the Delves coordinates. Such a procedure is more easily carried out in
Smith–Whitten-type coordinates [14]. Instead, the permutation symmetry is identified in the
calculated solutions. To illustrate this point, figure 3 shows the potential curves calculated for
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Figure 2. Lowest adiabatic hyperspherical potential curves for 4He2
3He, for each Jπ symmetry

indicated.

1− without imposing the fact that 4He3 is a bosonic system. The eigensolutions consist of
wavefunctions that are totally symmetric, totally antisymmetric, and also of mixed symmetry.
The symmetric solution is, of course, the physical one for the three-boson 4He3. The other three
are relevant for atoms with nonzero spins. The mixed-symmetry states have to be coupled to
spin functions to yield total wavefunctions of the appropriate symmetry. The mixed-symmetry
states can be easily identified since their energies are doubly degenerate. Among the four
curves in figure 3, the mixed-symmetry curves are indicated by dotted lines. The totally
symmetric curve is denoted by a solid curve, and the totally antisymmetric curve is denoted
by a dashed curve. We note that the von Neumann–Wigner non-crossing rule from molecular
structure applies here so that curves of different symmetry can cross.

We can most easily differentiate the totally symmetric state from the totally antisymmetric
state by examining the wavefunction with respect to the interchange of particles 1 and 2.
Under this interchange, the components of the channel function should simply be symmetric
or antisymmetric about θ = π/2. With our choice of quantization axis, an interchange of
particles 1 and 2 gives a phase P(−1)J−I from the D̄ function [16], where P is the reflection
symmetry with respect to the plane of the three particles; P = +1 if π = (−1)J and P = −1
if π = −(−1)J . Since the total wavefunction must be symmetric with respect to the exchange
of particles 1 and 2, the symmetry condition for each I -component, ψIν(R; θ, φ), is also given
by P(−1)J−I . For 1− states, for example, the I = 0(1) component must be antisymmetric
(symmetric) with respect to θ = π/2. This procedure is sufficient to allow us to identify the
curve with the correct symmetry. In figure 3 the correct curve for the bosonic 4He3 is drawn as
a solid line. It is not the lowest curve. (The higher-lying curves of figure 3 were not analysed
since they are irrelevant for the present purpose.)
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Figure 3. Hyperspherical potential curves for 4He3 without imposing any permutational symmetry.
The curve with the correct boson statistics is indicated by the solid curve. The totally antisymmetric
solution is shown with a dashed curve, and the mixed-symmetry solutions are shown with dotted
curves. Only the curves shown were analysed.

For 4He2
3He, the curves are quite close to the curves in figure 3 for which the symmetry

condition is not imposed. However, each pair of degenerate curves now splits into two distinct
curves. The correct curve for 4He2

3He is the lowest one for which the wavefunction is
symmetric under the exchange of particles 1 and 2. The procedure described in the last
paragraph can be used to identify this curve. In this case, the correct curve is the lowest curve.
Consideration of quantum statistics thus explains why the 1− curve for 4He2

3He, shown in
figure 2, is much lower than the 1− curve in 4He3, shown in figure 1. Note that the 1− curve
for 4He2

3He has a small well. Direct solution of the hyper-radial equation for this potential
shows that this well is too shallow to support a bound state since the energy thus obtained is a
rigorous lower bound to the exact ground state energy [17]. Further, our calculations show that
the dimer potential must be made more than 20% deeper before this well will support a bound
state. Neither of the major inaccuracies in the interaction potential used—neglect of three-
body effects and inexact two-body potentials—can account for a change of this magnitude.
These inaccuracies are expected to be on the order of one per cent or less [18, 19].

It is interesting to ask why the 4He3 potential curves for different values of Jπ appear in the
order shown in figure 1. We emphasize that this is the result of quantum statistics. The effect of
boson statistics from exchanging particles 1 and 2 on the rotational component wavefunction
ψIν(R; θ, φ) has been addressed in the last two paragraphs, but the effects of interchanging 1
and 3 or 2 and 3 have not yet been addressed. In fact, the body-frame quantization axis chosen
in our calculation is not the most convenient for addressing the symmetry of three identical
particles. A better quantization axis turns out to be one perpendicular to the plane of the three
particles. Using this quantization axis, Bao et al [11] analysed the symmetry properties of
each rotational component wavefunction. They showed that quantum symmetry often imposes
nodal surfaces on the rotational component wavefunctions. Since each nodal surface implies
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Figure 4. Contour plots of the square of selected rotational component wavefunctions including
the volume element sin θ . At R = 10.2 au, (a) I = 0 for 0+, and at R = 12 au, (b) I = 1 for 1+,
(c) I = 1 for 2+ and (d) I = 1 for 1−.

a higher kinetic energy, the low-lying states are occupied by those states that have the fewest
nodal lines. Even with our choice of body-frame quantization axis, we can still see this effect
in the rotational component wavefunctions, implying that the choice of quantization axis is
not essential. The weights of each body-frame component would certainly change, but the
number of nodal surfaces would remain the same.

In figure 4 we show some examples of the square of the rotational component wavefunction
on the (φ, θ) plane calculated at the R values indicated. In figure 4(a) for J = 0, the density
has no nodal lines and peaks at the equilateral triangle geometry near θ = π/2 and φ = 0.734.
Figure 4(b) for 1+ (I = 1—the I = 0 component is identically zero since P = −1) shows that
this state has three nodal lines in agreement with the analysis of Bao et al [11]. Because there
are three nodal lines, the potential curve for 1+ is very repulsive, as seen in figure 1. In the
two cases above, each wavefunction has only one rotational component, and thus the contour
plots also represent the density distributions of the three particles.

We next consider 2+ and 1−, which have three and two rotational components, respectively.
For 2+, the I = 2 component is nodeless like the 0+ state in figure 4(a). The I = 1 component
has a node, as shown in figure 4(c). The I = 0 component also has no node but is distributed
differently, with the maximum away from the equilateral triangle configuration. The weights
for the three components are given in table 1, showing the predominance of the I = 0 and 2
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Table 1. Weights of the I -components of 4He3. The J = 0 weight is calculated at R = 10.2 au
while the rest are calculated at R = 12 au.

Jπ I = 0 I = 1 I = 2 I = 3

0+ 1.0
1+ 1.0
1− 0.302 0.698
2+ 0.478 0.159 0.363
2− 0.730 0.270
3+ 0.309 0.503 0.188
3− 0.228 0.646 0.073 0.053

components for 2+. For 1−, the I = 0 component is similar to figure 4(c) with a nodal line
at θ = π/2. The I = 1 component is shown in figure 4(d). It has a nodal line at a nearly
constant φ. The fact that there are rotational components that have no nodal lines for 2+ means
that the 2+ curve is lower in energy. For 1−, both components have one nodal line, and thus
its potential curve is higher.

Similar analysis shows that the I = 1 and 3 components of 3− have no nodes, while the
I = 0 and 2 components each have a nodal line along θ = π/2, and the weight is largest for
the I = 1 component (see table 1). For 2−, the I = 1 component is similar to figure 4(d), and
the I = 2 component is similar to figure 4(c). Both components have one node, and thus the
potential curve is higher. For 3+, all three rotational component wavefunctions have one nodal
line, and the 3+ curve is very repulsive.

The origin of the nodal line at θ = π/2 in figures 4(b) and (c) and the two additional nodal
lines in figure 4(b) emerges more clearly as permutational symmetry requirements when the
analysis of Bao et al [11] is adopted. Since these nodal lines are the consequence of quantum
statistics, their locations are independent of the hyper-radiusR. Therefore, this analysis shows
that quantum statistics imposes severe constraints on the rotational component wavefunctions
that are reflected in the ordering of the potential curves. A similar analysis has been used to
investigate the relative positions of the energy levels of triply excited states of atoms [20].

In summary, we have calculated the adiabatic hyperspherical potential curves for the
nonzero angular momentum states for 4He3 and 4He2

3He. From the repulsive nature of these
curves, we conclude that there are no J �= 0 bound states for either system, ruling out the
possibility of finding any bound states for nonzero angular momenta in 4He3. The adiabatic
hyperspherical approximation is a powerful method for searching for the existence of diffuse
bound states since the binding energy need not be directly calculated. Rather, their existence
can often be inferred directly from the calculated potential curves. For 4He3, for example, the
curves have no attractive well for J > 0, while for 4He2

3He a direct solution of the hyper-radial
equation for 1− shows that there are no bound states.
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