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Abstract
We compute the full three-dimensional momentum space distribution of ejected
electrons resulting from alpha particle impact ionization of hydrogen. At low
impact velocities the transverse momentum distributions are shown to exhibit
strong oscillations with energy. For the longitudinal component, the momentum
distribution peaks near the target at high energies, shifts towards the projectile
centre at intermediate energies and then back towards the target at low energies.
The shift of the longitudinal momentum distribution towards the target at low
energies gives the experimental signature of the importance of potential saddle
for impact ionization at low energies.

The saddle point mechanism (Winter and Lin 1984, Sidky et al 2000) for single ionization by
ion impact has attracted much attention because of its potential to give a universal explanation
for electron ejection in low energy ion–atom collisions. Briefly, the idea states that the active
electron in an ion–atom collision can find itself balanced on the internuclear potential saddle
during the collision. As the nuclei recede from each other the electron will remain at that point
since the Coulomb forces from both nuclei balance at the saddle point, and the electron will
be promoted up to the continuum as the saddle is pushed upward. Not only is this a simple
explanation of an otherwise complicated three-body break-up process, but this mechanism can
also explain single ionization of multi-electron atoms since the saddle point is far from the
influence of any structure in either target or projectile ionic core. Moreover, this mechanism
was thought to provide a unique signature in the distribution of ejected electrons; namely, the
ejected electrons should move with the saddle velocity in the lab frame of reference. On the
face of it the saddle point mechanism for ion impact ionization seems to be a well-defined,
easily verifiable concept. But after its introduction in the early 80s, this mechanism has been
the centre of much controversy (Stohlterfoht et al 1997).

Theoretically, it is clear that the saddle point promotion must occur, but the disagreement
in the literature has centred on what range of impact velocities the saddle point mechanism
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is important. More critically, is it possible to make a semi-quantitative estimation for its
importance? Olson and co-workers have been promoting the idea that the saddle point
mechanism is most important for intermediate energy ion–atom collisions, where the total
ionization cross section is the largest (Olson 1983, 1986, Olson et al 1987). Their identification
of saddle point electrons was based on examining the longitudinal momentum distribution
from classical calculations. They found that the distribution peaked at v/2, half the projectile
velocity, coinciding with the potential saddle point velocity. It is not clear, however, that a v/2
peak uniquely identifies the saddle point mechanism, since the centre of charge and the saddle
point coincide for singly charged ions impacting on neutral targets. Indeed, Sidky et al (2000)
showed, using a combined quantum and classical analysis, that the saddle point mechanism is
a low energy phenomenon and that the v/2 peak does not necessarily indicate that saddle point
ionization is significant. This conclusion leads to the question of what happens in a system
of asymmetric collisions such as α-particles impacting on a hydrogen atom, where the saddle
point and centre of charge do not coincide.

Earlier classical work by Illescas et al (1998) explored the asymmetric α–H collision
system. They concluded that the saddle point mechanism is important only at low impact
energies. In this letter we explore theα–H system with both the quantum two-centre momentum
space discretization (TCMSD) and classical trajectory Monte Carlo (CTMC) method, and we
show quantitatively what the role of the saddle point mechanism is for ionization. Furthermore,
we examine the longitudinal distribution and show that for this asymmetric system a shift, at
low impact velocity, of the electron’s longitudinal momentum distribution towards the saddle
velocity does indicate saddle point ionization.

Another motivation for exploring ionization in α–H collisions stems from recent experi-
mental results by cold target recoil ion momentum spectroscopy (Dörner et al 1996, Abdallah
et al 1998a, b, 2000). Such experiments have measured the ejected electron momentum distri-
bution (EEMD) for many ion–atom collision systems. An interesting feature that appears to be
common to many ion–atom collision systems is the ‘ubiquity of π structure’ in the continuum
(Abdallah et al 1998a). The asymmetry or symmetry of the transverse momentum distribution,
however, varies greatly from system to system. For example, the transverse momentum distri-
butions turned out to have strong energy dependence for some systems, e.g. p + He collisions,
and little energy dependence for other systems, such as He+ on He.

In this letter we explore ionization for an asymmetric, one-electron system, namely alpha
particles on hydrogen. After a brief review of the TCMSD theory we will begin this letter by
examining the EEMDs for α on H collisions and their energy dependence. We then outline the
role of the saddle point mechanism for the α on H system, and finally derive a general scaling
law for the range of saddle point ionization for arbitrary ion–atom collision systems. Our study
of the He2+ + H system focuses primarily on impact velocity dependence of the transverse and
longitudinal momentum distributions of the ejected electrons, and the dynamics of the ejected
electron cloud are studied both quantum mechanically and classically. We select an impact
parameter of two atomic units, since it is near the maximum of ionization probability and a
previous CTMC study, with which we compare, concentrated on the impact parameter b = 2 au
(Illescas et al 1998).

In the TCMSD theory, the electron wavefunction in the ion–atom collision is represented
by a two-centre expansion in momentum space:

�( �p, t) =
∑

l,m

T̃l,m(p, t)Yl,m(p̂) + e−i( �p· �R− 1
2 v2t)

∑

l,m

P̃l,m(q, t)Yl,m(q̂),

�q = �p − �v
(1)

where the spherical harmonic Yl,m is defined with respect to each centre in the momentum
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space expansion and the phase factor in front of the second sum on the right is the plane-wave
electron translation factor in momentum space. We have carried out a partial wave expansion
on each centre and the radial functions, T̃l,m(p, t) and P̃l,m(q, t), are in turn expanded in B-
splines. The details of the theory and the method of analysing the resulting wavefunction are
described in previous references (Sidky and Lin 1998, 1999). The two-centre feature of the
expansion in equation (1) allows an accurate representation of the electronic wavefunction
with very few harmonics about each nuclear centre. In fact, including harmonics up to and
including l = 2 on both centres was sufficient, just as was the case for the proton–hydrogen
calculation (Sidky and Lin 1999).

In figure 1 we show the ejected electron momentum distribution for impact velocities
v = 0.5, 0.6 and 0.7 au at vt = 20 au. We show the incoherent superposition of the
ejected electron cloud from each nuclear centre, since doing so averages over the rapid time
oscillation in the electron wavefunction (Sidky and Lin 1999). The distributions in the figure
have been projected down onto the collision plane, and the curves shown on the right result from
integrating over the longitudinal momentum in order to focus on the transverse momentum
distribution. Interestingly, the behaviour of the α–H system at low velocity shows a rapid
velocity dependence similar to what has been seen experimentally for the proton–helium and
alpha–helium systems (Dörner et al 1996, Abdallah et al 1998a, b, 2000). The distribution is
skewed to the opposite side of the projectile at v = 0.5 au, is almost symmetric at v = 0.6 au
and finally goes towards the projectile at v = 0.7 au.

An interpretation of the rapid transverse oscillations at low impact velocities based on
the molecular orbital concept has been addressed in terms of the hidden crossings theory
of ion–atom collisions (Solov’ev 1989, Pieksma et al 1994). According to this model, one
of the main mechanisms for ionization, called T -promotion, occurs through promotion of
molecular states into the continuum as the target and projectile nuclei recede from each other.
At small internuclear separations rotational coupling transfers population from σ orbitals to π

orbitals and both types of orbitals are promoted to the continuum through T00 and T01 series
of hidden crossings. The σ orbitals have no node across the internuclear line, while the π

orbitals have one node transverse to the internuclear vector. The rapid velocity dependence is
expected to come from the interference of σ and π amplitudes. But the hidden crossings theory
cannot give the relative phase of the amplitudes. To obtain the phase information Macek and
Ovchinnikov (1998) developed a two-state Sturmian model for the proton–hydrogen system
where the relative phase between σ and π amplitudes has a rapid 1/v dependence. Thus, for
p+H they predicted a strong velocity dependence for impact velocities below 1 au. In contrast,
no such oscillations were predicted from our TCMSD and CTMC calculations for the p + H
collisions (Sidky et al 2000).

The fact that we find a strong low velocity dependence on the transverse momentum
distributions for the α–H system but not for the p + H system prompted us to investigate a
possible interpretation in terms of σ–π interference. Within the framework of TCMSD we
cannot uniquely determine a phase between σ and π amplitudes, since we do not expand the
wavefunction in terms of molecular orbitals. Furthermore, there is an open question as to
which translation factor to use for such orbitals. Using our two-centre expansion equation (1)
in momentum space, we can easily inspect the atomic σ and π components on each centre
where the axis of quantization is the collision axis. A prerequisite for interference is that
σ and π amplitudes should be of the same order of magnitude. Since the relative phase
is expected to vary as 1/v, rapid oscillations in transverse momentum distributions at slow
collision velocities are possible if the magnitudes of the σ and π components are comparable.
In table 1, we compare the atomic probabilities on each centre for the α–H system at vt = 20 au.
Clearly the σ and π amplitudes are of comparable magnitude for v = 0.5, 0.6 and 0.7 au
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Figure 1. Quantum ejected electron momentum distributions, projected onto the collision plane,
for α on hydrogen collisions at low impact velocity. Graphs on the right represent the projection
of the total momentum distribution on to the transverse direction in the collision plane.

(This figure is in colour only in the electronic version, see www.iop.org)

making the interference to produce the rapid oscillations possible. Also, in table 1 we show
the corresponding probabilities for p + H collisions at vt = 20 for v = 0.45, 0.63 and
0.78, or for collision energies of 5, 10 and 15 keV, respectively. For this system, the π

component is much smaller than the σ component. Thus, σ–π interference plays little role
in the velocity dependence of the EEMD, and we can understand quantitatively why rapid
transverse momentum shifts do not occur in p + H collisions at low impact velocities.

According to the Sturmian model by Macek and Ovchinnikov, the σ–π phase is given by
1/v multiplied by an integral of the energy difference over the internuclear distance R. Thus
we can expect oscillation in the transverse momentum to occur as a function of the internuclear
separation R. In figure 2 we isolate the v = 0.5 au collision, and indeed from the TCMSD
calculation (left column in the figure) oscillation does occur in the the transverse momentum as
a function of vt . Note that at vt = 5 there is a very strong asymmetry in the transverse direction,
which is a direct indication that the σ and π amplitudes are comparable in size and their relative
phase is near zero. As vt increases, the transverse momentum distribution becomes symmetric
(near vt = 15), corresponding to a relative phase near π/2. For increasing vt , the transverse
momentum distribution then shifts to the other side as the phase increases towards π .
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Table 1. Integrated probabilities of ionization into S (l = 0) and P (l = 1) harmonics on the
target and projectile centres for α–H and p–H collisions. Pσ refers to the real l = 1 harmonic
aligned along the collision axis and Pπ refers to the real l = 1 harmonic aligned perpendicular to
the collision axis and in the collision plane. All probabilities are multiplied by 103.

Target Projectile

α–H S Pσ Pπ S Pσ Pπ

v = 0.5 7.51 5.67 4.67 3.18 3.98 1.30
v = 0.6 6.84 5.52 3.01 2.32 7.79 1.67
v = 0.7 13.93 5.37 5.44 1.67 12.83 7.01

p–H

v = 0.45 31.64 1.85 1.22 37.17 1.24 3.49
v = 0.63 44.83 5.25 6.03 48.16 4.82 5.55
v = 0.78 55.87 7.20 5.93 50.15 6.36 6.22
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Figure 2. Evolution of the transverse momentum distribution of ejected electrons, resulting from
an α–H collision at v = 0.5 au, as a function of internuclear separation after closest approach. The
left column shows the quantum calculation, and the right column shows the classical calculation.

As in the previous study for p + H collisions (Sidky et al 2000) we have also carried
out a CTMC calculation for the present collision system. In figure 2 we show the resulting
transverse momentum distribution of ejected electrons. The classical distribution clearly shows
the oscillation with respect to vt . However, the oscillation is shifted from the quantum result,
going through a region where the distribution is nearly symmetric near vt = 20, and then
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swinging to the other side at vt = 25—see figure 2, right column. It is interesting to interpret
the oscillation of the transverse momentum distributions classically. Recall that the potential
in the transverse direction near the saddle is an attractive well. Classically, an electron under
such a potential is expected to oscillate back and forth. This oscillation should occur for
any collision system at low energies for each individual electron. The important feature of the
CTMC calculation, shown in figure 2, is that the ensemble of ejected electrons oscillates, which
follows from the fact that the transverse momentum distribution starts off highly asymmetric
at vt = 5. A similar classical investigation of the p + H system at low impact velocity showed
that the momentum distribution remains symmetric about p⊥ = 0 as a function of vt , while
the individual electron trajectories oscillate (Sidky et al 2000).

One of the signatures of the saddle point ionization mechanism that experimentalists have
been searching for is the so-called ‘v/2’ peak in singly charged ion–atom collisions. Electrons
promoted into the continuum by the potential saddle should have the same velocity as the
saddle point—namely half the projectile velocity ‘v/2’. In a previous paper (Sidky et al
2000), however, we have shown that for protons on hydrogen collisions, the ‘v/2’ peak does
not provide sufficient evidence for claiming the existence of this ionization mechanism. It has
been shown that for impact energies from 5 to 50 keV the longitudinal momentum distribution
of ejected electrons peaks at v/2, while the saddle point mechanism is important only in the
5–15 keV region, accounting for about 1/3 of the total ionization according to the analysis of
the classical calculations.

The α–H system allows us an opportunity to re-examine the correspondence between the
saddle mechanism and a peak at the saddle velocity for a system where the saddle point is
located at a different point to the centre of charge. In figure 3 the longitudinal momentum
distributions of ejected electrons is plotted at low, intermediate and high impact velocities. At
R = 20 both classical and quantum calculations are available, and they agree fairly well on
the main features. At low impact velocity, v = 0.5, the classical calculation shows a well-
focused peak at the saddle velocity. The quantum results also peak at the saddle velocity, but the
distribution is markedly broader. (The difference in the ‘sharpness’ of the saddle peak between
the classical and quantum calculations at low impact velocities comes from the fact that there
is a sharp border in momentum between bound and continuum electrons classically, while no
such well-defined border exists quantum mechanically). For the intermediate impact velocity,
v = 1.0, the peak in the longitudinal momentum is slightly shifted towards the projectile at
R = 20.

Looking to the CTMC curves corresponding to vt = 500 (the full curves in figure 3),
the intermediate velocity collision changes dramatically with the longitudinal peak shifting
towards the projectile velocity. The dramatic shift occurs at intermediate velocity, because the
bulk of the ionization occurs shortly after the collision and the long-range Coulomb interaction
pulls the continuum electrons closer to the higher charge. The low impact velocity collision
shows a broader longitudinal distribution, stretched more towards the higher charge of the
α-particle, but no significant shift in the peak position. The reason for this is that the saddle
point mechanism is primarily responsible for ionization at v = 0.5, and there is no net force
in the longitudinal direction that can pull the electrons away from the saddle point.

For the high velocity case in figure 3(c), v = 3.0, our calculations show the longitudinal
peak to be near the target since soft electron emission is known to dominate for high energy
collisions. To summarize, at high impact velocity we expect the longitudinal momentum
distribution to peak near the target, and as the impact velocity is lowered towards the matching
velocity ejected electrons longitudinal velocity should migrate towards the higher charged
nucleus. Finally, as the impact energy is lowered even more the bulk of the ejected electrons
should come away at the saddle velocity. For protons on hydrogen there is no shift between the
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Figure 3. Comparison of quantum and classical longitudinal momentum distributions for all ejected
electrons in an α on hydrogen collision at (a) v = 0.5, (b) v = 1.0 and (c) v = 3.0 au. The dotted
curve is the quantum distribution at vt = 20; the dashed curve is the classical distribution at vt = 20
and the full curve is the classical distribution at vt = 500.

intermediate and low impact velocity case, since the centre of charge coincides with the saddle
point. For He2+ colliding with hydrogen, the tell-tale shift of the longitudinal distribution going
from intermediate to low impact velocities (the full curves in figures 3(a) and (b)) reveals the
action of the saddle point mechanism.

Having revealed the effect of the saddle point mechanism in the final momentum
distribution of ejected electrons in He2+–H collisions, we now examine saddle point ionization
as a function of internuclear distance during the collision. In our previous work (Sidky et al
2000) we found it useful to separate the ejected electrons into two categories as a function
of internuclear distance: kinetic and saddle electrons. Kinetic electrons are those that have
positive energy with respect to both nuclei, while saddle electrons are bound to one or other
charge centre at the current R. The distinction between the two categories is physically
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motivated. The kinetic electrons exhibit primarily a free expansion from the collision centre
while the saddle electrons have a more complicated trajectory due to the confining transverse
potential. In Sidky et al (2000) the saddle electrons were mainly found to be within a minimum
momentum

pion = (2Zv/R)1/3

of either nuclear centre (Z is the core charge of the respective nuclear centre). Since the
minimum ionization momentum decreases with internuclear separation, the evolution of the
ejected electron cloud separates into two distinct phases: first, at low R the circles of minimum
ionization momentum overlap and the saddle velocity is less than pion away from both nuclear
centres; second, as R increases, these circles shrink, eventually separating from each other.
The transition between the two phases occurs at R∗ which is the internuclear separation where
the two circles touch and pT

ion + pP
ion = v. It is not difficult to calculate the formula for the

transition radius

R∗ = 2

v2
(Z

1/3
T + Z

1/3
P )3. (2)

R∗ marks the internuclear separation where the saddle fraction decreases most rapidly. For
internuclear separation less than the transition radius the saddle mechanism is still in play and
the ejected electron distribution is still evolving, and for R > R∗ the basic shape of the EEMD
is determined, though it may get distorted slightly by the long-range Coulomb forces.

Since R∗ selects a common feature during the evolution of the EEMD of any ion–atom
collision, it provides a natural scale for the internuclear separation. This scaling is demonstrated
in figure 4, where the fraction of saddle electrons is plotted against the internuclear separation
scaled to the transition radius. The curves shown result from low velocity collisions with α and
proton projectiles impacting on hydrogen. Indeed the curves are all similar, differing only by a
multiplicative factor on a log plot. The p+H collisions all show about the same saddle fraction,
while the saddle fraction decreases with impact energy for He2+ + H. It is clear from figure 4
that saddle point ionization for He2+ + H is more important at low velocity than it is for p + H;
we note that the total ionization cross section for the former collision system is lower by about
a factor of two than the latter (Illescas and Riera 1999). Thus, we speculate that saddle point
ionization has about the same effect in both systems, but prompt ionization is more difficult
in the He2+ + H case since the electron must escape from a higher charge in the united atom
limit. The scaling rule, equation (2), provides us with a simple way to know how far one must
propagate the ejected electron distribution to establish its basic features. If one propagates
the collision to three times R∗, for example, the saddle fraction is reduced to a negligibly
small number. This is an extremely important law, since in practice it is not possible to extend
numerical calculations to infinite internuclear separation, but with equation (2) one knows the
minimum internuclear separation for establishing the structure of saddle point ionization.

In summary, we have applied the TCMSD method to finding the ejected electron
distribution in alpha particle on hydrogen collisions. We find that the low energy behaviour of
the ejected electron distributions are qualitatively different from the proton–hydrogen system;
the former has a strong velocity dependence in the transverse momentum distributions and
the latter a weak energy dependence. We have attributed this basic difference to the fact that
the α–H system has comparable σ–π amplitudes in the continuum, while the p–H system has
a much larger σ amplitude than π in the continuum. Interestingly, the classical calculations
also show an oscillatory feature in the transverse momentum. As in the p + H system both
the classical and quantum calculations agree on the general features of the ejected electron
momentum distribution in α–H collisions. We have employed the classical calculation to see
if the saddle point mechanism shows a distinguishing feature in the longitudinal momentum
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Figure 4. The ratio of the number of saddle electrons to all ejected electrons as a function of scaled
internuclear separation. The thin full curves represent protons on hydrogen at impact energies
5 keV (v = 0.45 au), 10 keV (v = 0.63 au) and 15 keV (v = 0.78 au). (The same line type is used
since these curves are nearly indistinguishable.) He2+ on hydrogen is shown for impact velocities
0.5 au (thick full curve), 0.7 au (dashed curve) and 1.0 au (dotted curve). The internuclear distance
has been scaled by 16/R∗, where 16 au is the critical internuclear separation, indicated in the figure
by the vertical dotted line, for protons on hydrogen at v = 1 au. The ordinate is plotted on a
logarithmic scale to illustrate that all the curves are the same apart from a multiplicative constant.

distribution at large internuclear separation. Indeed, for this asymmetric system we find that
the momentum distribution peaks at the saddle for low velocity, and shifts away towards the
higher charge at intermediate impact velocity when the saddle point mechanism is no longer
important. Using the data from the p + H collision together with the α–H collision we have
deduced a general scaling of the internuclear separation for ion–atom collisions which indicates
when the saddle point mechanism can be considered to be over.
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