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Abstract
We identify the elementary normal modes of the collective motion of three
electrons in intrashell triply excited states of atoms. By modelling the atom
as consisting of three electrons on the surface of a sphere with the nucleus at
the centre, we analysed the calculated wavefunctions in the body-fixed frame.
Using contour surfaces in appropriate coordinates, the nodal surfaces and the
normal modes of the collective motion of the three electrons can be visualized.
Three elementary normal modes and their excited modes are identified, thus
allowing the new classification of intrashell triply excited states.

(Some figures in this article are in colour only in the electronic version; see www.iop.org)

Since the beginning of quantum mechanics, the basic conceptual framework for describing the
structure of a many-electron atom is the independent electron model. In the past few decades,
it has been well established that the independent electron model fails to describe multiply
excited states. For the simpler doubly excited states, alternative equivalent descriptions have
been found [1–4] and a new set of approximate quantum numbers have been obtained. In all
of these descriptions, the motion of the two electrons is treated together and the correlation of
the two electrons is understood as analogous to the bending vibrations and the symmetric or
antisymmetric stretch motion of a floppy linear triatomic molecule. It is fair to say that the
basic properties of correlations in doubly excited states are now well understood.

As a natural extension, the next major step is to understand the correlated motion of triply
excited states of an atom. Experimentally, triply excited states have been explored recently
at synchrotron radiation facilities [5, 6] and in experiments involving collisions of multiply
charged ions with atoms, molecules, and surfaces [7]. Calculations based on the R-matrix
method [8] or the general configuration mixing method [9–11] have been able to give a very
accurate description of individual triply excited states. However, the nature of how the three
electrons are correlated is still not understood and there is no global knowledge of these states.
Unless the basic normal modes of the collective motion of the three electrons are delineated,
classification of triply excited states in terms of a new set of quantum numbers is not possible.

Various aspects of electron correlations in selected triply excited states have been examined
in the past, by partial display of the calculated wavefunctions [12, 13]. In our recent works
[14, 15] we have solved the three-electron atomic Hamiltonian in hyperspherical coordinates
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and examined the correlations of triply excited states of Li. Since these triply excited states lie
above both the singly and the doubly excited states, the analysis has been limited only to the
lowest eight 2l2l′2l′′ intrashell states. We have found that these eight states can be separated
into three groups, and each group is characterized by a certain normal mode of a symmetric
top.

To elucidate other possible normal modes, triply excited states such as those in the higher
3l3l′3l′′ manifold have to be examined. A full hyperspherical calculation of these states would,
however, be too tedious and too complicated since these states lie further above the 2lnl′ml′′

(n,m � 2) triply excited states. We have thus studied the correlation of 3l3l′3l′′ triply excited
states of a model atom where the three electrons are confined to the surface of a sphere, with
the nucleus at the centre. For the 2l2l′2l′′ states, the density distributions obtained using this
model are similar to those obtained from the full solution using hyperpsherical coordinates
when the three electrons are at the same distance from the nucleus [15].

The model Hamiltonian (in atomic units) we used is

H = 1

2r2

3∑

i=1

�̂2
i − 3Z

r
+

∑

i>j

1

|ri − rj | (1)

where �̂i is the angular momentum operator of each electron with respect to the nucleus, Z is
the nuclear charge, ri is its position vector from the centre: ri = r r̂i . In the present calculation,
we set Z = 2 and r = 6.326 au to simulate the intrashell states of He− in the N = 3 manifold
[12]. The eigenstates of the Hamiltonian (1) are labelled by the good quantum numbers L, S,
and π—the total orbital angular momentum, the total spin, and the parity, respectively. The
total wavefunction must be antisymmetric under exchange of any two electrons and can be
written as

ψ =
∑

S12

�
S,S12
LM (�)χ

S
S12

(2)

where � = {r̂1, r̂2, r̂3} denotes, collectively, the six spherical angles of the three electrons in
the laboratory-fixed frame and χSS12

= [{χ(1)χ(2)}S12χ(3)]S is the coupled spin function

of the three electrons with intermediate spin S12. The eigenfunctions �S,S12
LM (�) are

obtained by diagonalizing a basis of [{Yl1(r̂1)Yl2(r̂2)}l12Yl3(r̂3)]LM which is the coupled orbital
angular momentum eigenstate for the three electrons. To obtain accurate eigenenergies and
eigenfunctions, the maximum value of each li has been set to 7 in the calculation.

The wavefunctions thus obtained are expressed in the laboratory-fixed frame. Since we
are interested in the internal shape of the model atom, the overall rotation of the three electrons
with respect to the laboratory-fixed frame must be removed. Thus we analyse the wavefunction
in the body-fixed frame. Following Watanabe and Lin [12] and Bao et al [13], the body-fixed
frame z-axis is chosen to be perpendicular to the plane of the three electrons (the σ plane, see
figure 1). This plane makes an angle θ with respect to the nucleus. The shape of the triangle
of the three electrons on the σ plane is specified by two angles, η and φ. Here, 2η is the angle
between electrons 1 and 2, choosing along the arc including electron 3, and φ is the angle
between electron 3 and the line bisecting electrons 1 and 2. The ranges of the internal angles
are (0 � θ � π , 0 � η � π , −η � φ � η).

The wavefunction in the laboratory-fixed frame �S,S12
LM (�) can be expressed in terms of

the body-fixed frame wavefunction ϕS,S12
LQ (�I ) by the general rotation,

�
S,S12
LM (�) =

L∑

Q=−L
ϕ
S,S12
LQ (�I )D

(L)
QM(ω) (3)
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Figure 1. (a) Definition of the three internal angles used to describe the relative positions of the
three electrons on a sphere. (b) Side view and (c) top view of the contour surface plots of the
distribution of the three-electron shape density ρT (θ, η, φ). The ranges of the internal angles are
(0 � θ � π , 0 � η � π , −η � φ � η).

where D(L)QM(ω) is the rotation matrix; Q and M are the azimuthal components of L in
the body-fixed frame and in the laboratory-fixed frame, respectively. Here ω represents
the three Euler angles defining the orientation of the body-fixed frame with respect to the
laboratory-fixed frame, and �I is the set of three angles {θ, η, φ} defined in figure 1. From
the symmetry properties of the rotation matrix, the Q and −Q components of the body-fixed
frame wavefunctions are identical except for a phase factor. Thus, we need to examine the
Q � 0 components only. We define T = |Q| and 0 � T � L. For each rotational component
wavefunction, one can define the density distribution, or the shape density, averaged over the
Euler angles,

ρT (�I ) =
∑

S12

|ϕS,S12
LQ (�I )|2 (4)

where the summation is over the intermediate spin S12 and over Q = +T and −T if T is
nonzero. For a rigid body, T is a good quantum number. If the three electrons are highly
correlated, its shape density ρT (�I ) would be quite localized, and the summation over Q in
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Figure 2. Representative contour surfaces of the shape densities illustrating the different normal
modes of the collective motion of the three electrons.

equation (3) would be dominated by a single T -component. In such a case, this T can be
used as an approximate quantum number. Furthermore, the shape density of such a localized
function of three variables can be visualized by displaying the contour surfaces. As an example,
figure 1(b) is a contour surface where the shape density is at 60% of the maximum. A contour
surface of higher density would fit inside the surface shown.

We can now identify the basic normal modes of the collective motion of the three electrons
in 3l3l′3l′′ triply excited states. They are extracted from the dominant T -components of the
shape densities among the states examined. The first three normal modes have contour surfaces
as shown in figures 2(a), (b) and (c). We will use A, B and C to designate these normal modes.
These contour surfaces have been found already in the 2l2l′2l′′ triply excited states [14].

In figure 2(a), the maximum density occurs when the three electrons form a coplanar
equilateral triangle with the nucleus at the centre, i.e. at (θ = π/2, η = 2π/3, φ = 0) in the
figure, which is the intersection of the three diagonals. There are no nodal surfaces in this
mode. It follows that states dominated by this mode would have lower energies. We further
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note that the potential energy is smallest when the three electrons form a coplanar equilateral
triangle. The lowest 4Pe state is represented by this mode. We have counted all 14 states
in the 3l3l′3l′′ manifold, represented by this mode, altogether. These 14 states, each further
identified by an approximate T, form a rotational multiplet similar to the rotational levels of
an oblate symmetric top (not shown). Using a familiar molecular example, the model atom in
the A-mode has a shape similar to the planar BF3 molecule.

In figure 2(b), the shape density vanishes at the equatorial plane θ = π/2, that is, this plane
is a nodal surface. Above or below this plane the three electrons prefer to form an equilateral
triangle. Thus in the B-mode, the model atom resembles an ammonia molecule NH3 where
the wavefunction vanishes when the plane of the three H atoms coincides with the N atom.
The lowest 4So state is represented by such an example. In this mode there is a fixed nodal
surface at θ = π/2, thus the internal energy of this B-mode is higher than that of the A-mode.

In figure 2(c), the maximum of the shape density occurs at the equator plane, but the
equilateral triangle configuration is not allowed. This is identified as the C-mode, and the
T = 1 component of the lowest 4Po state exhibits this mode. In the C-mode, the three electrons
cannot form an equilateral triangle, so that the potential energy is higher. We emphasize that
the B- and C-modes have inherent internal nodal surfaces imposed by the quantum symmetry
[12, 13] and that their rotational level structure differs from that of the A-mode.

Among the eight 2l2l′2l′′ triply excited states, four were identified to belong to the A-mode,
two to the B-mode, and two to the C-mode [14]. There are 64 intrashell 3l3l′3l′′ triply excited
states, and we have identified additional excited normal modes. In figure 2(d) we have the
Ab-mode; and in figure 2(e) the Ac-mode. It has been found that the rotational level structure
of these two groups follows the pattern of the A-mode. In the Ab-mode, there is an antinode
at the coplanar equilateral triangle configuration, but two nodal surfaces perpendicular to the
internal θ -axis can be seen. Since there is one nodal plane perpendicular to the θ -axis for the
B-mode, the two nodal planes in this case can be considered as an excited B-mode. We use
small letters to designate excited modes such that the Ab-mode involves an excited B-mode
in combination with the rotational level structure of the A-mode. Similarly in the Ac-mode,
a maximum occurs at the coplanar equilateral triangle configuration, but this maximum is
separated from the other three ‘islands’ by additional nodal surfaces perpendicular to the η–φ
plane. (More explicit exhibitions of the nodal surfaces can be seen in figure 3.) Note that the
three lowest 4Pe states are described by the A-, Ab-, and Ac-modes, respectively.

We have also identified a Bb-mode as shown in figure 2(f ). The rotational level structure
of this group follows the pattern of the B-mode. The shape density has a nodal surface at the
equator characteristic of the B-mode and two other nodal planes perpendicular to the θ -axis,
thus the mode is designated as the Bb-mode. The second 4So state is characterized by this
mode. Recall that the first 4So state is characterized by the B-mode. This shows that 4So

intrashell triply excited states are characterized by the vibrational excitation of the σ plane
with respect to the nucleus.

We have also identified a CB-mode as shown in figure 2(g). In this mode, the shape
density consists of two sets of three ‘islands’, as in the C-mode of figure 2(c), one set above the
equator plane and one set below the equator plane, but the equatorial plane is a nodal surface
characteristic of the B-mode. The nodal surfaces in this example are from conditions imposed
by quantum symmetry, and thus we use both capital letters to designate this mode. Note that
these Ab-, Ac-, Bb-, and CB-modes have more nodal surfaces, and states characterized by
these modes would have higher internal vibrational energies.

In the normal modes identified in figure 2 the T -component shape densities are relatively
localized such that a contour surface can be used to display the characteristic shape of the
positions or the correlation of the three electrons. For the higher excited states, we have found
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Figure 3. (a)–(c) Density plots of the partial wavefunctions of the three 2Se states. (d)–(f ) Density
plots of the imaginary part of the Q = 1 component of the internal wavefunctions of the 1st, 4th,
and 6th 2Po states. The plots are for θ = π/2 and for the triplet components of the wavefunctions,
see text.

density distributions that are more diffuse. These diffuse functions are not easily represented
by single contour surfaces. However, it is still possible to address the degree of excitation in
terms of nodal surfaces. In figures 3(a)–(c) we show the internal wavefunctions ϕS,S12

LQ (�I )

of the lowest three 2Se states in the N = 3 manifold. Only the triplet components (S12 = 1)
are shown since the singlet components are related to the triplet components according to the
S3 permutation group. Also, only the real part of the function is shown since the imaginary
part is identically zero. These three states are identified with the C-, Cc-, and Ccc-modes,
respectively. In figure 3, all the wavefunctions are shown on the equatorial plane. Clearly
the number of nodal lines increases by one in going from the C-mode to the Cc-mode, and
from the Cc-mode to the Ccc-mode. Note that the nodal line can be in φ (figure 3(a)), in η
(figure 3(b)), or in the combination of φ and η (figure 3(c)). The Hamiltonian is not separable
in these angular coordinates, so the nodal lines are not straight lines in the figures.

A clearer exhibition of the nodal structure of the Ac- and Acc-modes can also be seen
by displaying the wavefunctions at the equator plane. We compare the Q = 1 component of
the 1st, 4th, and 6th 2Po states (there are seven such intrashell states in the N = 3 manifold)
in figures 3(d), (e) and (f ). They belong to the A-, Ac-, and Acc-modes, respectively. The
triplet component wavefunction has both a real part and an imaginary part. The real part has
one more nodal surface than the imaginary part, and thus its component weight is smaller. We
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only show the imaginary part. For the A-mode, there are no nodal lines for the imaginary part.
For the Ac-mode, the imaginary part has one nodal line and the maximum is at the equilateral
triangle configuration, which is characteristic of the A-mode. For the Acc-mode, the imaginary
part acquires one additional nodal line as compared to the Ac-mode. Thus, even though the
wavefunctions for these higher excited states are not localized and cannot be easily visualized
by single contour surface plots, they can still be identified by the number of nodal surfaces in
their component wavefunctions.

We have found that the dominant T -component for each of the 64 intrashell 3l3l′3l′′ triply
excited states can be identified with one of the modes presented in figures 2 and 3. For the lower
states, the body-fixed frame wavefunction is dominated by a single T -component in general.
For the higher states the admixture of other T -components is not small, but a dominant T -
component can still be recognized. A detailed analysis of the admixture of T -components and
the classification of all 64 states will be presented elsewhere.

In summary, we have identified all the normal modes of the 64 intrashell 3l3l′3l′′ triply
excited states of a model atom where the three electrons are confined to the surface of a
sphere. Using collective coordinates, the shape densities of the three electrons are calculated
and visualized. We have identified three basic modes, A, B and C, where the B- and C-modes
have inherent internal nodal surfaces imposed by the quantum symmetry. These nodal surfaces
are the consequence of requiring that each state be characterized by well-defined L, S, and π
and that the wavefunction be antisymmetric under the exchange of any two electrons. For the
3l3l′3l′′ triply excited states we have also identified additional excited normal modes. We have
found the Ab-, Ac-, Bb-, Cc-, CB-, Ccc-, and Acc-modes, where each small letter represents
one additional excitation of the corresponding mode. Even though each triply excited state is
not represented by a single mode only, the dominant mode of each state can be used to designate
the state, and serve to classify intrashell triply excited states. By comparing the classification
of 2l2l′2l′′ and 3l3l′3l′′ triply excited states, clearly intrashell triply excited states for the higher
manifolds are similarly classified except that higher excited normal modes will appear.
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