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Hyperspherical calculations of H„1s…¿µ¿ rearrangement collision cross sections
from threshold to 2 eV
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Using hyperspherical close-coupling method cross sections for charge-transfer reaction for H(1s)1m1

collisions are calculated from threshold up to 2 eV. It is shown that partial-wave cross sections can be obtained
using a rotor model which is similar to the standard perturbed stationary-state approximation for ion-atom
collisions. The results are compared to D11H(1s) collisions to examine the dependence of transfer cross
sections on the masses of the collision partners. Feshbach and some shape resonances are also examined.

PACS number~s!: 34.70.1e, 31.15.Ja, 36.10.Dr
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I. INTRODUCTION

The charge-transfer processA11B→A1B1 is one of
the most fundamental reactions in a three-body Coulo
system. Various quantum-mechanical formulations for s
reactions have been proposed in the past, and one of the
developed approaches is the hyperspherical close-coup
method@1#. This method has been used extensively for
collisions of electrons or positrons with atomic hydrog
@2–7#, and in collisions involving muonic atoms@8#. In these
applications the collision system consists of two light p
ticles and a heavy one, or of three particles of nearly eq
masses. The hyperspherical method can in principle be
plied to prototype ion-atom collisions, consisting of tw
heavy particles and a light one. In practice the method
never been applied to ion-atom collisions until a very rec
publication@9#. For ion-atom collisions, the number of pa
tial waves needed to reach a converged cross section e
runs into hundreds or thousands even for collisions at s
thermal energies. In the standard hyperspherical clo
coupling approach, each partial wave calculation is done
dependently, including the calculation of hyperspheri
potential curves and coupling terms. Performing such ca
lations accurately for all the partial waves is an undesira
numerical burden. In the recent article@9#, however, two of
us have shown that for ion-atom collisions one can perfo
hyperspherical close-coupling calculations using the ro
model. This model is similar to the standard perturb
stationary-state~PSS! approximation@10# traditionally used
for atom-atom and ion-atom collisions where the poten
curves and coupling terms only have to be calculated on
Calculations of cross sections for the higher partial wa
can be obtained simply by solving the hyperradial equati
by adding a centrifugal potential termJ(J11)/(2mr2) for
each higher partial waveJ (m is the reduced mass andr the
hyperradius!. In @9# the validity of this rotor model is dem
onstrated for the D11H(1s)→D(1s)1H1 collisions. In
this paper, we demonstrate the application of the same m
to H(1s)1m1 rearrangement collisions. By comparing th
results with the D11H(1s) collisions it allows us to asses
the mass dependence of the reaction cross sections for
class of elementary reactions. We also search for Fesh
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resonances below the first excited threshold and some s
resonances.

The only other calculation for this collision system th
we are aware of is the work of Matveenko@11#. He started
with the PSS model in a two-state approximation. By mat
ing the solutions from the inner region to the corre
asymptotic solutions he was able to circumvent the inher
limitations of the PSS model that has an incorrect descrip
of the asymptotic solutions. His results will be compared
ours. In Sec. II we briefly summarize the method used. T
main results are presented in Sec. III. A short summary
Sec. IV concludes this report.

II. DESCRIPTION OF THE THEORETICAL METHOD

We use mass-weighted hyperspherical coordinates to
scribe the three charged particles,m1, H1, and e2. In the
center-of-mass frame, we choose the first Jacobi coordi
RW to be the vector fromm1 to H1, with the reduced mass
denoted bym1; and the second Jacobi coordinaterW from the
center-of-mass ofm1 and H1 to the electron, with the re-
duced massm2. For this work we define the hyperradiusr
and the hyperanglef by

r5AR21S m2

m1
D r 2, ~1!

tanf5Am2

m1

r

R
. ~2!

Using this definition, the hyperradiusr is very close to the
interparticle separation R between the muon and the pro
and the reduced mass for the motion inr is given bym1. By
treatingr as the adiabatic parameter, the calculation in h
perspherical coordinates can be carried out in an essent
identical manner to the familiar Born-Oppenheimer appro
mation where the internuclear separation R is treated as
adiabatic parameter. For each partial waveJ, the full Hamil-
tonian of the collision system is written as@1,6#

H52
1

2m1
S d2

dr2 1
5

r

d

dr D1had~r,V! ~3!
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with

had5
L2

2m1r2 1V~r,V!, ~4!

whereL2 is the five-dimensional grand angular momentu
operator and the variableV represents the set of five angle
in the hyperspherical space. TheL2 operator takes the form

L2~V!52
1

sin2f cos2f F d

df
~sin2f cos2f!

d

dfG1
lW 1

2

cos2f

1
lW 2

2

sin2f
, ~5!

wherelW 1 and lW 2 are the orbital angular momentum oper
tors for rotational motion associated with each radius vec
The total Coulomb interaction among the pairs of charg
particles is represented by V. The adiabatic basis functi
are the eigenfunctions of had

hadf i5S Ui~r!2
15

8m1r2Df i . ~6!

Substitution of the expansion

C5(
i

Fi~r!

r5/2
f i~r;V! ~7!

into the scattering equation

~H2E!C~r,V!50 ~8!

gives a set of coupled equations

S 2
1

2m1

d2

dr2 2EDF5S 2U1
1

2m1
P

d

dr
1

1

2m1
QDF,

~9!

where

Pi j 5 K f iU d

dr
f j L , ~10!

Qi j 5 K f iU d2

dr2 f j L , ~11!

Ui j 5 K f iUhad1
15

8m1r2Uf j L . ~12!

Here F is a column vector whosei th component is the
function Fi(r). Equation~9! is integrated to a large hyperra
dius rend where the solution in hyperspherical coordinates
projected onto the analytical solutions for the dissocia
states expressed in Jacobi coordinates. From the proje
the reactance matrixK is extracted and the partial wave cro
sections are obtained. This matching procedure is detaile
@6,1#.
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For the present problem, we consider only the two low
scattering channels. Using atomic units, the mass of
muon is 206.768262, the mass of the proton is 1836.1527
and the mass of the electron is 1.0. The ground state
H(1s) and of Mu(1s) are separated by 58 meV, where w
use Mu to indicate the bound state ofm1 ande2. The first
two adiabatic potential curves forJ50 are shown in Fig. 1.
Since there is no sharped avoided crossing, the present
culations were performed under the standard adiabatic
pansion method, including all the nonadiabatic couplings
tween the two channels. Note that the diabatic-by-sec
method which is used for multichannel scattering proble
when there are sharped avoided crossings is not used fo
present simple situation. The eigenvalues and the eigenf
tions of ~6! were obtained by diagonalizing the adiaba
Hamiltonian at eachr in terms of Sturmian orbitals@6#.

III. RESULTS AND DISCUSSION

In Fig. 1 the two lowestJ50 potential curves are shown
They resemble the two lowest Born-Oppenheimer poten
curves of H2

1. This is not surprising since the hyperspheric
potential curves would reproduce the BO curves of H2

1 in
the limit that the mass of each of the heavy particles goe
infinity. One important difference, however, is in th
asymptotic region where the hyperspherical potential cur
approach the correct limits of the separated systems, w
energies20.49972784 a.u. for H(1s) and 20.49759347
a.u. for Mu(1s). In the BO approach, the two thresholds a
degenerate at20.5 a.u.

To illustrate the asymptotic potential curves in the hyp
spherical approach, we show in Fig. 2~a! the lowest two
curves for the present system and for later comparison,
the two lowestJ50 hyperspherical potential curves fo
HD1. In HD1 the two curves are separated by 3.7 me
asymptotically, with a pronounced avoided crossing near
512 a.u. In fact, the nonadiabatic coupling P12, as shown in
Fig. 2~b!, shows a Lorentz shape with the center atr
511.8 a.u. For the presentm11H system, the larger energ
gap in the asymptotic region results in an avoided cross

FIG. 1. The lowest twoJ50 hyperspherical potential curves fo
the m11H system.
6-2
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occurring at a smaller hyperradius. In Fig. 2~b! the nonadia-
batic coupling shows a Lorentz shape with the peak ar
57.88 a.u.

In Fig. 2~a! we note that the second curve for them1

1H system has a shallow well atr near 8.0. Similar shallow
well has been seen for the HD1 system. Such a shallow we
may support Feshbach resonances. We have searche
Feshbach resonances for the present system by solving
coupled equations and found one and only one resonan
20.386431026 a.u. below the Mu(1s) threshold, and the
width was calculated to be 2.631026 a.u. We are not aware
of other calculations for this resonance.~We have searched
for Feshbach resonances for otherJ’s but none were found.!

Note that outside the avoided crossing region each pa
potential curves remain very flat. These curves are typ
examples showing Demkov coupling@12#. In a semiclassica
theory the Demkov coupling predicts transition probabilit
that depend sensitively on the ratioE12/v, whereE12 is the
asymptotic energy separation andv is the collision speed. In
the present work we are interested in the low energy reg
where we need to calculate the transition cross section

FIG. 2. ~a! Comparison of the two lowestJ50 hyperspherical
potential curves for them11H system and the HD1 system at large
hyperradial distances.~b! Comparison of the nonadiabatic couplin
P12 between the two lowestJ50 hyperspherical channels for th
m11H system and the HD1 system.
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each partial wave, but the parametrization of the semicla
cal theory offers a qualitative interpretation of the resu
obtained from quantal calculation.

From the adiabatic potential curves in Fig. 1 and the c
pling term in Fig. 2~b!, the elastic and charge exchange cro
sections for theJ50 partial wave are obtained by solvin
the coupled hyperradial equations~9!. In the standard hyper
spherical approach, the same procedure has to be carrie
for each partial wave. In other words, new hyperspheri
potential curves and coupling terms have to be calcula
and the resulting coupled hyperradial equations be solve
obtain the scattering cross sections for eachJ. However, as
shown in@9#, for a system consisting of two heavy particle
and one light one, it is possible to employ the rotor appro
mation. In this approximation, the potential curves and
coupling terms for each nonzeroJ do not have to be calcu
lated again. To calculate cross sections for a nonzeroJ, one
needs only to add to eachJ50 adiabatic potential a centrifu
gal potential termJ(J11)/(2m1r2) and then solve the re
sulting hyperradial equations. This approximation is simi
to the one employed in the PSS approximation for ato
atom and ion-atom collisions. The PSS approximation, ho
ever, has many intrinsic limitations since the equations
not satisfy the correct asymptotic scattering conditions@13#.
Using the rotor approximation, the hyperspherical clo
coupling calculations can be carried out with the same e
as the PSS approximation but without its intrinsic limit
tions.

To check the validity of the rotor model for the prese
system, we compare in Table I some partial wave cross
tions carried out using the rotor model and those obtai
from the actual hyperspherical calculations. The discrep
cies are small except for small partial waves at low energ
such as the comparison at E51.031026 a.u. for J51.
However, at this energy theJ50 partial wave has the partia
cross section of 3.1173104, much larger than theJ51 par-
tial wave. Anyway, at such low energies the partial wa
convergence is very rapid so a true hyperspherical calc
tion can be carried out directly.

TABLE I. Comparison of partial wave cross sections form1

1H(1s)→m11H(1s) calculated from the exact hyperspheric
approach~bottom line! with those calculated from the rotor mode
~top line! for JÞ0. Energies are measured from the H~1s! threshold
in a.u. and the cross sections are given in atomic units.A(1B)
5A310B.

E J51 J52 J510
1.00(26) 5.4680(102) 1.4307(101) 3.1434(212)

5.4079(102) 1.4305(101) 2.1913(212)
1.00(25) 2.9401(103) 1.6933(102) 6.2951(202)

2.9362(103) 1.6919(102) 6.2910(202)
1.00(24) 5.7772(100) 1.0868(102) 8.0712(201)

5.7009(100) 1.0764(102) 8.0454(201)
1.00(23) 2.7758(201) 9.9380(101) 8.6902(100)

2.7857(201) 9.9094(101) 8.6554(100)
1.00(22) 4.3686(100) 1.5256(100) 4.0630(101)

4.3799(100) 1.5142(100) 3.9653(101)
6-3
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Using the rotor model, we have calculated them1

1H(1s)→Mu(1s)1H1 cross sections from threshold t
about 0.1 a.u. in energies. At the highest energy we n
about 200 partial waves to achieve good converged r
rangement scattering cross sections. The final results
shown in~d! of Fig. 3. Cross sections for the reverse proce
Mu(1s)1H1→m11H(1s), which can be obtained from
the principle of detailed balancing, are shown in~c! of Fig. 3.
In this figure, we also show the cross section for the1

1H(1s)→D(1s)1H1 reaction and its time-reversed pro
cess, respectively, in~a! and~b!. The comparison shows tha
cross sections near the threshold do indeed depend s
tively on the energy gap in the asymptotic region. We c
tion that the energy scale is measured from the ground s
of the target for each collision.

For the two exothermal reactions, the small energy de
in D11H(1s)→D(1s)1H1 results in a much larger cros
section near the threshold. The cross section tends to
with increasing energies, but not without structures. In~a!
and ~c!, in fact, both show a small kink at energies near
31026 a.u. This kink was found to be due to the large co
tribution from theJ54 partial wave. Below 1024 a.u. the
number of partial waves contributing to the total cross sct
is still small and thus the structure of a dominant sin
partial wave may result in observed structure in the to
cross section.

In Fig. 3 several fine oscillating structures in the cro
section near 1022 a.u. can be observed. These structures
more clearly displayed in Fig. 4 where the cross sections
shown against the momentum of the incident particle. In~c!
we also compare our results from the calculation
Matveenko@11#. In the energy region covered, the two ca
culations agree quite well. The approximations used by
latter author have no effect on the calculated cross section
the energies shown, but they may have some effects on
cross sections near the threshold which were not avail
from @11#.

FIG. 3. Comparison of the energy dependence of the t
charge exchange cross sections for~a! D11H(1s)→D(1s)1H1;
~b! H11D(1s)→H(1s)1D1; ~c! H11Mu(1s)→H(1s)1m1;
and~d! m11H(1s)→Mu(1s)1H1. The energy is measured from
the ground state of the target for each system.
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In Fig. 3 the number of oscillations is fewer form1

1H(1s)→Mu(1s)1H1 than for H11D(1s)→H(1s)
1D1 reactions. Such structures have been seen previous
the PSS-type calculations and are the results of contribut
from higher partial waves@14#. They are influenced by the
shape resonances from the higherJ partial waves, but the
peaks cannot be attributed to individual shape resonance

To understand the origin of these oscillatory structures
Fig. 5 we display the calculated cross section for Mu(1s)
1H1→m11H(1s) and the contributions from the dom
nant partial waves. We will focus on the origin of the fir
peak in the total cross section. In the figure, partial wa

al FIG. 4. Same as in Fig. 3 but plotted against the momentum
the incident particle, showing more details in the higher ene
region. The crosses are results obtained by Matveenko@11# at se-
lective energy points.

FIG. 5. Analysis of the oscillatory structures of the total cro
sections ~uppermost solid line! for the H11Mu(1s)→H(1s)
1m1 reaction. The bottom four frames give the partial wave cro
sections forJ512–15. Each vertical bar indicates the position
the top of the barrier of the effective potential~see text!. The lowest
dashed lines gives the partial cross sections summed up toJ512.
The next two dashed lines give the sums up toJ513 andJ514,
respectively.
6-4
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HYPERSPHERICAL CALCULATIONS OF H(1s)1m1 . . . PHYSICAL REVIEW A 62 042706
cross sections forJ512, 13, 14, and 15 are shown. For ea
J, the vertical line indicates the position of the top of t
barrier of the effective potentialU(r)1J(J11)/(2m1r2),
whereU is the lowest potential curve of Fig. 1. According
the classical model, orbiting is expected to occur at this
ergy and contributes to a large classical cross section. In
5, the lowest dashed lines gives the total partial cross
tions summed up toJ512. Adding to it the contribution
from J513 gives the first indication of the peak, as shown
the second lowest dashed lines. By adding the contribu
from theJ514 partial wave, shown by the dashed lines rig
below the total cross section curve, gives the structure wh
is close to the final result. From the eigenphase shift s
sharp shape resonance like theJ514 partial wave has bee
observed forJ512 also. No effort was made to search f
the sharp resonances for other partial waves since they a
much narrower than the peaks observed in the total c
section. Based on the relative widths we can state that
narrow shape resonances do not contribute to the peaks

From Fig. 5, clearly the broad resonance-like structu
from J512, 13, 14, and 15 contribute to the first peak ev
though other partial waves contribute to the ‘‘background
Whether we want to identify these broad resonance-
structures as shape resonances is a matter of semantic
of these broad structures have energies above the pote
barriers as indicated by the vertical bars for each par
wave. On the other hand, for eachJ the nonadiabatic cou
pling between the two channels can effectively raise the
04270
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of the potential barrier of the lower channel when the no
diabatic effect is included. In this respect at least the fi
broad peak in each of theJ512–15 partial wave may still be
viewed as a broad shape resonance. Looking at the pa
wave contributions to the peaks in the total cross section
is clear that it is not possible to associate each peak
specific partial wave.

IV. SUMMARY

In summary, we have calculated the rearrangement s
tering cross section for them11H(1s) collision at energies
from threshold to 0.1 a.u. using the hyperspherical close c
pling method. Using the rotor model we show that the ad
batic potential curves and coupling terms need to be ca
lated only once, and partial wave cross sections for highJ
can be obtained with the same ease as the standard pert
stationary-state approximation for ion-atom collisions, y
without the inherent limitations of the latter. For collisio
energies very close to the threshold, however, hypersphe
calculations are still needed but convergence in total cr
sections can be achieved by only a few partial waves. Cle
the method can be extended to multichannel collisions.
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