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Hyperspherical calculations of H(1s)+u™ rearrangement collision cross sections
from threshold to 2 eV
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Using hyperspherical close-coupling method cross sections for charge-transfer reaction $p#d(1
collisions are calculated from threshold up to 2 eV. It is shown that partial-wave cross sections can be obtained
using a rotor model which is similar to the standard perturbed stationary-state approximation for ion-atom
collisions. The results are compared td PH(1s) collisions to examine the dependence of transfer cross
sections on the masses of the collision partners. Feshbach and some shape resonances are also examined.

PACS numbds): 34.70+e, 31.15.Ja, 36.10.Dr

I. INTRODUCTION resonances below the first excited threshold and some shape
resonances.
The charge-transfer procegs”+B—A+B™ is one of The only other calculation for this collision system that

the most fundamental reactions in a three-body Coulomive are aware of is the work of Matveenkbl]. He started
system. Various quantum-mechanical formulations for suchvith the PSS model in a two-state approximation. By match-
reactions have been proposed in the past, and one of the wéld the solutions from the inner region to the correct
developed approaches is the hyperspherical close-couplif@pymptotic solutions he was able to circumvent the mh_ergnt
method[1]. This method has been used extensively for thdimitations of thg PSS model that has an mcorrect description
collisions of electrons or positrons with atomic hydrogen©f the asymptotic solutions. His results will be compared to
[2—7], and in collisions involving muonic atoni]. In these ~ OUrS: In Sec. Il we briefly summarize the method used. The

applications the collision system consists of two light par-ma" results are presented in Sec. ll. A short summary in
?ec. IV concludes this report.

ticles and a heavy one, or of three particles of nearly equa
masses. The hyperspherical method can in principle be ap-

plied to prototype ion-atom collisions, consisting of two

heavy particles and a light one. In practice the method has \e use mass-weighted hyperspherical coordinates to de-
never been applied to ion-atom collisions until a very recentcribe the three charged particlgs!, H", ande™. In the
publication[9]. For ion-atom collisions, the number of par- center-of-mass frame, we choose the first Jacobi coordinate
tial waves needed to reach a converged cross section easiy iy pe the vector fromuw™ to H*, with the reduced mass

runs into hund'reds or thousands even for colllspns at SUbdenoted byuy; and the second Jacobi coordinatéom the
therm'al energies. In the s’Fandard hypersp.her!cal CIO,Sec'enter-of—mass ofs™ and H" to the electron, with the re-
coupling approach, each partial wave calculation is done iNguced massu,. For this work we define the hyperradips
dependently, including the calculation of hyperspherical

potential curves and coupling terms. Performing such calcu"flnd the hyperangle by

lations accurately for all the partial waves is an undesirable (

Il. DESCRIPTION OF THE THEORETICAL METHOD

numerical burden. In the recent arti¢®|, however, two of p=1\/R*+
us have shown that for ion-atom collisions one can perform

hyperspherical close-coupling calculations using the rotor

model. This model is similar to the standard perturbed Mo T ©)
stationary-stat€PSS approximation[10] traditionally used
for atom-atom and ion-atom collisions where the potential
curves and coupling terms only have to be calculated oncdJsing this definition, the hyperradiysis very close to the
Calculations of cross sections for the higher partial wavegnterparticle separation R between the muon and the proton,
can be obtained simply by solving the hyperradial equationgnd the reduced mass for the motiorpiis given byu,. By

by adding a centrifugal potential terd(J+1)/(2up?) for  treatingp as the adiabatic parameter, the calculation in hy-
each higher partial wavé (u is the reduced mass apdthe ~ perspherical coordinates can be carried out in an essentially
hyperradius In [9] the validity of this rotor model is dem- identical manner to the familiar Born-Oppenheimer approxi-
onstrated for the D+H(1s)—D(1s)+H" collisions. In  mation where the internuclear separation R is treated as the
this paper, we demonstrate the application of the same modédiabatic parameter. For each partial wayéne full Hamil-

to H(1s)+u ™ rearrangement collisions. By comparing the tonian of the collision system is written %,6]

results with the D +H(1s) collisions it allows us to assess

ﬂ)rz, &)

the mass dependence of the reaction cross sections for this H=— i( d? +2 ]t hay(p.Q) 3)
class of elementary reactions. We also search for Feshbach 21 W p dp ad\p
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with
? 0.4
hadzm‘l'V(p,Q), (4) )

where A? is the five-dimensional grand angular momentum
operator and the variabl@ represents the set of five angles
in the hyperspherical space. The& operator takes the form

potential (a.u.)
|
o
(9]
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where/; and/, are the orbital angular momentum opera-  f|G. 1. The lowest twd=0 hyperspherical potential curves for
tors for rotational motion associated with each radius vectorine ;,* + H system.

The total Coulomb interaction among the pairs of charged
particles is represented by V. The adiabatic basis functions For the present problem, we consider only the two lowest

are the eigenfunctions of,

15
h -=(U- - ) i
adPi i(p) 8#192 b
Substitution of the expansion

Fi
V=2 %dn(p;ﬂ)

I
into the scattering equation
(H=-E)¥(p,Q2)=0
gives a set of coupled equations

1 d?
C 2pp dp?

e e

where
d
Pij= ¢i$¢j :

d2
Qij:<¢i W¢j>.

o=l s g2

AP
ad 8/-L1P2

Here F is a column vector whos¢h component is the

(6)

(@)
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scattering channels. Using atomic units, the mass of the
muon is 206.768262, the mass of the proton is 1836.152701,
and the mass of the electron is 1.0. The ground states of
H(1s) and of Mu(1s) are separated by 58 meV, where we
use Mu to indicate the bound state @f ande™. The first

two adiabatic potential curves fdr=0 are shown in Fig. 1.
Since there is no sharped avoided crossing, the present cal-
culations were performed under the standard adiabatic ex-
pansion method, including all the nonadiabatic couplings be-
tween the two channels. Note that the diabatic-by-sector
method which is used for multichannel scattering problems
when there are sharped avoided crossings is not used for the
present simple situation. The eigenvalues and the eigenfunc-
tions of (6) were obtained by diagonalizing the adiabatic
Hamiltonian at eaclp in terms of Sturmian orbitalg5].

Ill. RESULTS AND DISCUSSION

In Fig. 1 the two lowes=0 potential curves are shown.
They resemble the two lowest Born-Oppenheimer potential
curves of H*. This is not surprising since the hyperspherical
potential curves would reproduce the BO curves of Hn
the limit that the mass of each of the heavy particles goes to
infinity. One important difference, however, is in the
asymptotic region where the hyperspherical potential curves
approach the correct limits of the separated systems, with
energies—0.49972784 a.u. for H(¥) and —0.49759347
a.u. for Mu(1s). In the BO approach, the two thresholds are
degenerate at 0.5 a.u.

To illustrate the asymptotic potential curves in the hyper-
spherical approach, we show in Fig(a the lowest two
curves for the present system and for later comparison, also

function R(p). Equation(9) is integrated to a large hyperra- the two lowestJ=0 hyperspherical potential curves for
dius pe,g Where the solution in hyperspherical coordinates isHD™. In HD* the two curves are separated by 3.7 meV
projected onto the analytical solutions for the dissociatedisymptotically, with a pronounced avoided crossing near
states expressed in Jacobi coordinates. From the projectichl2 a.u. In fact, the nonadiabatic coupling Pas shown in
the reactance matrix is extracted and the partial wave cross Fig. 2(b), shows a Lorentz shape with the center mt
sections are obtained. This matching procedure is detailed is 11.8 a.u. For the presept” + H system, the larger energy

[6,1].

gap in the asymptotic region results in an avoided crossing
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HYPERSPHERICAL CALCULATIONS OF H($)+u™ ...
TABLE I. Comparison of partial wave cross sections fof
+H(1s)— u™ +H(1s) calculated from the exact hyperspherical

-0.497 T ; ;
'-; (@)
\ approach(bottom line with those calculated from the rotor model

~0.498 I | (top line) for J# 0. Energies are measured from thelbl threshold
’ \ in a.u. and the cross sections are given in atomic u#ifst B)
=\ ~—= HD’ =AX1C.

—0.499 -

potential (a.u.)

-0.500 -

-0.501

\ — uH

0.4

hyperradius (a.u.)

E
1.00(- 6)

1.00(-5)
1.00(- 4)
1.00(- 3)

1.00(-2)

J=1
5.4680(¢+ 02)
5.4079(+ 02)
2.9401(¢ 03)
2.9362(+ 03)
5.7772600)
5.7009(+ 00)
2.7758(01)
2.7857(-01)
4.3686(+ 00)
4.3799(+00)

J=2
1.4307¢-01)
1.4305¢-01)
1.6933(-02)
1.6919¢ 02)
1.0868(-02)
1.0764¢ 02)
9.9380¢-01)
9.9094¢-01)
1.5256(- 00)
1.5142¢-00)

J=10
3.1434( 12)
2.1913¢ 12)
6.2951( 02)
6.2910( 02)
8.0712¢01)
8.0454(01)
8.6902¢- 00)
8.6554¢ 00)
4.0630¢01)
3.9653¢ 01)

()

0.3 . — : .
each partial wave, but the parametrization of the semiclassi-

A cal theory offers a qualitative interpretation of the results
obtained from quantal calculation.

From the adiabatic potential curves in Fig. 1 and the cou-
pling term in Fig. Zb), the elastic and charge exchange cross
sections for the]=0 partial wave are obtained by solving
the coupled hyperradial equatiof®. In the standard hyper-

\ spherical approach, the same procedure has to be carried out
for each partial wave. In other words, new hyperspherical
potential curves and coupling terms have to be calculated
and the resulting coupled hyperradial equations be solved to
obtain the scattering cross sections for edchlowever, as

FIG. 2. (8 Comparison of the two lowest=0 hyperspherical shown in[_9], for a §y_stem CQnsisting of two heavy particles_
potential curves for the.* + H system and the HDsystem at large  @Nd one light one, it is possible to employ the rotor approxi-
hyperradial distancesb) Comparison of the nonadiabatic coupling Mation. In this approximation, the potential curves and the
Py, between the two lowesi=0 hyperspherical channels for the coupling terms for each nonzedodo not have to be calcu-
ut+H system and the HD system. lated again. To calculate cross sections for a nondgome

needs only to add to eadh=0 adiabatic potential a centrifu-
occurring at a smaller hyperradius. In FigbPthe nonadia- gal potential termJ(J+1)/(2u.p%) and then solve the re-
batic coupling shows a Lorentz shape with the pealp at sulting hyperradial equations. This approximation is similar
=7.88 a.u. to the one employed in the PSS approximation for atom-

In Fig. 2@ we note that the second curve for the atom and ion-atom collisions. The PSS approximation, how-
+H system has a shallow well atnear 8.0. Similar shallow ever, has many intrinsic limitations since the equations do
well has been seen for the HDsystem. Such a shallow well not satisfy the correct asymptotic scattering conditip®j.
may support Feshbach resonances. We have searched fdsing the rotor approximation, the hyperspherical close-
Feshbach resonances for the present system by solving tleeupling calculations can be carried out with the same ease
coupled equations and found one and only one resonance a¢ the PSS approximation but without its intrinsic limita-
—0.3864x 10 ¢ a.u. below the Mu($) threshold, and the tions.
width was calculated to be 2610 ¢ a.u. We are not aware To check the validity of the rotor model for the present
of other calculations for this resonand®Ve have searched system, we compare in Table | some partial wave cross sec-
for Feshbach resonances for otld&s but none were foung. tions carried out using the rotor model and those obtained

Note that outside the avoided crossing region each pair drom the actual hyperspherical calculations. The discrepan-
potential curves remain very flat. These curves are typicaties are small except for small partial waves at low energies,
examples showing Demkov couplifii2]. In a semiclassical such as the comparison at=H.0x10 ® a.u. for J=1.
theory the Demkov coupling predicts transition probabilitiesHowever, at this energy thie=0 partial wave has the partial
that depend sensitively on the rafig,/v, whereE,, is the  cross section of 3.12¥10%, much larger than thé=1 par-
asymptotic energy separation amds the collision speed. In tial wave. Anyway, at such low energies the partial wave
the present work we are interested in the low energy regioconvergence is very rapid so a true hyperspherical calcula-
where we need to calculate the transition cross section faiion can be carried out directly.

0.2

P, (a.u.)

0.1 ¢

0 5 10 15 20
hyperradius (a.u.)
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FIG. 3. Comparison of the energy dependence of the total FIG. 4. Same as in Fig. 3 but plotted against the momentum of
charge exchange cross sections f@rD" +H(1s)—~D(1s)+H";  the incident particle, showing more details in the higher energy

(b) H"+D(1s)—H(1s)+D"; (c) H'+Mu(ls)—H(1s)+u";  region. The crosses are results obtained by Matve¢hkpat se-
and(d) u* +H(1s)—Mu(1s)+H™. The energy is measured from |ective energy points.
the ground state of the target for each system.

In Fig. 3 the number of oscillations is fewer fqr™

Using the rotor model, we have calculated the" +H(1s)—Mu(1s)+H* than for H"+D(1s)—H(1s)
+H(1s)—Mu(1s)+H" cross sections from threshold to 1 p* reactions. Such structures have been seen previously in
about 0.1 a.u. in energies. At the highest energy we neeghe PSS-type calculations and are the results of contributions
about 200 partial waves to achieve good converged reafrom higher partial wave§l4]. They are influenced by the
rangement scattering cross sections. The final results akhape resonances from the higlepartial waves, but the
shown in(d) of Fig. 3. Cross sections for the reverse processpeaks cannot be attributed to individual shape resonances.
Mu(1s)+H"—u"+H(1s), which can be obtained from ~ To understand the origin of these oscillatory structures, in
the principle of detailed balanCing, are ShOWT(dhOf Flg 3. F|g 5 we d|sp|ay the calculated cross section for NB)(]_
In this figure, we also show the cross section for the D +H*—u*+H(1s) and the contributions from the domi-
+H(1s)—D(1s)+H" reaction and its time-reversed pro- pant partial waves. We will focus on the origin of the first

cess, respectively, i) and(b). The comparison shows that peak in the total cross section. In the figure, partial wave
cross sections near the threshold do indeed depend sensi-

tively on the energy gap in the asymptotic region. We cau-
tion that the energy scale is measured from the ground state
of the target for each collision.

For the two exothermal reactions, the small energy defect
in DT +H(1s)—D(1s)+H™" results in a much larger cross 30
section near the threshold. The cross section tends to drop

40

with increasing energies, but not without structures(dh =
and (c), in fact, both show a small kink at energies near 6 <® 20
X 1078 a.u. This kink was found to be due to the large con- =
tribution from theJ=4 partial wave. Below 10* a.u. the ©

number of partial waves contributing to the total cross sction

is still small and thus the structure of a dominant single 1B
partial wave may result in observed structure in the total
cross section.
In Fig. 3 several fine oscillating structures in the cross 0 —
section near 10? a.u. can be observed. These structures are 681 0,82

more clearly displayed in Fig. 4 where the cross sections are E(au)

shown against the momentum of the incident particle(c)n FIG. 5. Analysis of the oscillatory structures of the total cross
we also compare our results from the calculation bygections (uppermost solid ling for the H"-+Mu(1s)—H(1s)
Matveenko[11]. In the energy region covered, the two cal- 1, reaction. The bottom four frames give the partial wave cross
culations agree quite well. The approximations used by th@ections forJ=12-15. Each vertical bar indicates the position of
latter author have no effect on the calculated cross sections @e top of the barrier of the effective potentiabe text The lowest

the energies shown, but they may have some effects on thgished lines gives the partial cross sections summed Up-f®.
cross sections near the threshold which were not availablehe next two dashed lines give the sums uglte13 andJ=14,

from [11]. respectively.
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cross sections faF=12, 13, 14, and 15 are shown. For eachof the potential barrier of the lower channel when the nona-
J, the vertical line indicates the position of the top of thediabatic effect is included. In this respect at least the first
barrier of the effective potentidl (p)+J(J+1)/(2u.p?),  broad peak in each of the=12—15 partial wave may still be
whereU is the lowest potential curve of Fig. 1. According to viewed as a broad shape resonance. Looking at the partial
the classical model, orbiting is expected to occur at this enwave contributions to the peaks in the total cross sections, it
ergy and contributes to a large classical cross section. In Figs clear that it is not possible to associate each peak to a
5, the lowest dashed lines gives the total partial cross sespecific partial wave.

tions summed up tdd=12. Adding to it the contribution

from J= 13 gives the first indication of the peak, as shown in IV. SUMMARY

the second lowest dashed lines. By adding the contribution

from theJ= 14 partial wave, shown by the dashed lines rlghtFlering cross section for the ™ + H(1s) collision at energies

below the total cross section curve, gives the structure Whicfrom threshold 10 0.1 a.u. using the hvoerspherical close cou-
is close to the final result. From the eigenphase shift sum o ) ypersp

X . pling method. Using the rotor model we show that the adia-
sharp shape resonance like the 14 partial wave has been . : X
- batic potential curves and coupling terms need to be calcu-
observed forJ=12 also. No effort was made to search for

the sharp resonances for other partial waves since they are éﬁlltEd only once, and partial wave cross sections for higher
b P Y can be obtained with the same ease as the standard perturbed

much narrower than the peaks observed in the total CrOSStationary—state approximation for ion-atom collisions, yet

. - ) S
section. Based on the relative widths we can state that th\(/avithout the inherent limitations of the latter. For collision

nar;?(\)/vmsr;?gpesreilc:;a:lr; Cfrfedt?rgg:j Crzgtgf:r:ietﬁilizes?riil'ﬁfe senergies very close to the threshold, however, hyperspherical
from J=12, 13, 14, and 15 contribute to the first peak eVencalculatlons are still needed but convergence in total cross

though other partial waves contribute to the “background.”secuons can be achieved by only a few partial waves. Clearly

Whether we want to identify these broad resonance-likethe method can be extended to multichannel collisions.

structures as shape resonances is a matter of semantics. AII ACKNOWLEDGMENTS

of these broad structures have energies above the potential
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In summary, we have calculated the rearrangement scat-
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