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Linear-least-squares fitting method for the solution of the time-dependent Schidinger equation:
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An alternative theoretical approach for solving the time-dependent Giciger equation for atoms in an
intense laser field is presented. In this method the time-dependent wave function is expanded in a basis set but
the expansion coefficients are determined by linear-least-squares fitting of the wave function on discrete mesh
points in configuration space, thus avoiding the need of evaluating a large number of matrix elements. We
illustrate the method by computing wave functions, above-threshold ionization spectra, and harmonic genera-
tion spectra of a model atom and compare the results with those obtained using the split-operator method.

PACS numbgs): 42.50.Hz, 32.80.Qk, 32.80.Rm, 32.80.Wr

[. INTRODUCTION in a laser field, it is perceived as simpler because it is a
single-center problem. This perception is correct if the “la-
When atoms are exposed to an intense laser field, multser” is a half-cycle puls¢18] (or quarter-cycle pulsgl9]),

photon phenomena such as the above-threshold ionizatid?tt not when it is a long pulse consisting of many cycles. In
(ATI) and harmonic generatiaitiG) have been observed in @ longer pulse the electron experiences many back-and-forth

experiments[1_3]_ In order to describe these phenomenaosci”ations of the laser f|e|d, resulting in Complicated inter-
theoretically, perturbative approaches are not useful wheference of _the electronic wavefu.nctions.which are not easily
the laser field strength is comparable to the atomic field€*Panded in a small set of basis functions. The representa-

Among the nonperturbative methods that are commonl;}'on of the wavefunction of an atomic electron in a laser field
used, the important ones are the Floguet thedrf], the In general requires a larger primitive basis set, much larger

direct solution of the time-dependent equation on numericaﬁha_lr_'hroseerczmt'ia(l)?qyg? tﬂgrgfégegs'%?ﬁ]tgrga?g'z'gtnz;( ansion
grid points[6-10Q], and the basis set expansion method. In P P P

the basis set expansion method. the time-dependent Wavrrlethod in ion-atom collisions in fact is misguided. It is due
P ' P .ﬁ]ostly to the lack of detailed experimental studies of the

function is expandeq in some basis set an(_:i the probl_em omentum distributions of the ionized electrons so far, es-
red.uced to t,he SQIUt_'On of a set O,f couplgd first-order differ- ecially at lower energies. In recent years, with the advent of
ential equat!ons in time. The pa3|s functions that haveT beefhe COLTRIMS apparatuf20,21), detailed ejected electron
used so far include the set of field-free bound and continuuny,omentum distributions have been measured and the limita-
states[11-13, a set of states generated from #esplines oy of the basis set expansion method became apparent.
[14] or the set of Sturmian functiorjd5,16. In other cases, New theoretical approaches have to be developed in order to
Volkov states which are eigenstates of a free electron in @ddress the electron momentum distributions. In the method
laser field have also been used as basis funcfidédb The  of Sidky and Lin[22], the time-dependent wavefunction is
basis function approach in general can be tailored more diexpanded in basis functions in momentum space. The propa-
rectly to the physical problems on hand, however, it doegjation of the wavefunction is carried out in configuration
require the evaluation of a large number of matrix elementspace where the expansion coefficients, instead of being
which is very time consuming, especially those elements befound by solving the coupled equations as in the standard
tween continuum states. Solving the time-dependent problerpproach, were obtained by a linear-least-squares fitting pro-
on the numerical grids would avoid the need of evaluatingcedure on a set of grid points. When the number of grid
matrix elements. However, the accurate representation of points goes to infinity the result of the linear-least-squares
rapidly oscillating function requires relatively dense grid fitting procedure is formally identical to solving the close-
points and thus memory and CPU requirement becomes subeupling equations exactly. However, the goal of the linear-
stantial. least-squares fitting method is to solve a large set of coupled
From the mathematical viewpoint the interaction betweerequations approximately. Clearly this method offers no ad-
an intense laser field with atoms is not very different fromvantages if the number of coupled equations is small since
the interaction of a charged particle with atoms in that oneone may just solve the coupled equations exactly. On the
has to solve the time-dependent Salinger equation non- other hand, there are situations where one intrinsically has to
perturbatively. In general the theory of ion-atom collisions isdeal with a large number of coupled equations. Exact solu-
perceived as more difficult because of the two-center naturdion of such close-coupling equations would be rather time
where one needs to describe charge transfer processes in ansuming and impractical. With the fitting procedure, it is
dition to the excitation and ionization processes. For atomanticipated that the large number of coupled equations can be
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solved approximately to certain degrees of accuracy. Thisnethod. A short summary and discussion of the future ex-

alternative method is attractive since it removes the need dé&nsion of the method is given in Sec. IV.

the most time-consuming part of evaluating matrix elements

where the CPU requirement goes roughly witf to N4,

whereN is the basis size. The fitting procedure is expected to

increase roughly linearly with the basis size. A. Basic formulation
Above-threshold ionization and harmonic generation are

fascinating observable phenomena in laser-atom coIIisiontche dipole approximation the time-dependent Sdimger
and they are easily calculated from theory once we can o Squation in the length gauge iatomic units are used

tain accurate repre_sentation of .the fast ogcillating time'throughout this paper
dependent electronic wave function. If the time-dependent
wave function is to be expanded in some basis set, clearly
continuum basis functions are needed in order to represent _IP(X,t)
ionization. In such calculations, as stated before, the evalua- I =HXD P, @
tion of matrix elements between continuum functions is
rather problematic. If square-integrable basis functions are
used, then reflected waves from the boundaries would provhereH(x,t) is the full Hamiltonian
duce complicated interference and introduce unphysical os-
cillations. To eliminate these interferences, one of the com- 1 g2
monly used approaches is to introduce absorber near the H(X’t):_§F+V(X)_xe(t)’ 2
boundaries to inhibit these reflections. For example, absorber X
are used in the split-operator methd@s].
Numerical methods which do not require the evaluation ofandv/(x) is the model potential of the atom. In this paper we
matrix elements are often based on calculating the waveill consider the soft Coulomb potentif24]
function at the grid points in configuration space. In order to
be able to use efficient algorithms, the grid points in most
cases are required to be equally spaced. This limits the flex-
ibility of the method since fine-spaced meshes are needed to
represent the atomic core region where the atomic potential
changes rapidly, but relatively larger spaced meshes can be
used to describe the ionized electron in the outer regio@nly in order to be able to compare with other theoretical
where the potential is weak and flat. results. In Eq.(2), €(t) is the electric field of the the laser
In the present approach, the time-dependent electronigulse. The time-dependent solutigifx,t) can be expanded
wavefunction in a laser field is expanded in a basis set. Iin a basis set
solving the time-dependent equations for the expansion co-
efficients, however, we used a linear-least-squares fitting N
rocedure. We will show how the “accuracy” of the fittin
gan be controlled by the basis functions an?jlthe range ofgthe lﬁ(X,t)—ngl Cn(1) @n(X). @
numerical integration or the “box” size. The fitting proce-
dure can remove high-frequency interferences which tend to
come from reflections at the boundaries. In fact, by choosingubstitution of Eq(4) into Eq. (1) leads to
the basis functions judiciously the need of introducing ab-

Il. THEORETICAL METHODS

We consider a one-dimensional atom in a laser field. In

1
V(X)=— e (3

sorber on the boundaries can be avoided. N de (1) N
The rest of this paper is arranged as follows. In Sec. Il we i n X) = H(x,t)c,(t X S)
discuss the present numerical method tailored for the laser- n§=:1 dt #n(x) ”241 G ) ®

atom collision system. The formulation will be limited to a

one-dimensional problem but generalization to three- ) . ) o
dimensional systems is straightforward. In Sec. Ill weThe “standard” approach in solving EgS) is to project it
present a number of test calculations and the results are cofiito the basis functiong,(x) to obtain a set of coupled
pared to those obtained from the split-operator method. Thérst-order differential equations foc,(t). The number of
latter method is considered to be well-established for thénatrix elements needed to be evaluated then is of the order
one-dimensional problem. Thus the present calculations a@f N? if Niis the size of the basis set. The first-order coupled
compared with the split-operator method results in order t@quations are then integrated to obtain the expansion coeffi-
establish the reliability of the fitting method. Our goal is to Cients to extract the scattering amplitudes.

generalize the present method to full three-dimensional prob- An alternative approach, as first employed by Sidky and
lems and to arbitrary fields and potentials. The harmonid-in [22], is to solve Eq(5) on the discretized space coordi-
generation spectra and the ATI spectra calculated for theatex, (¢=1,2,... M). Define the column matrice&S and
model problem are used to show the validity of the presenf, and a rectangular matri by
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dcy(t)/dt ®1(X1)  @aXq)
_ dcy(t)/dt _ e1(X2)  @aX2)
dey(t)/dt e1(Xm)  @2(Xm)

the resulting algebraic equations frdi®) on the discretized
points can be expressed as

N

de,(t
iy an£=Am, m=12,...M (M>N)
n=1 dt
(7
or in matrix form
iBC=A. (8)

The matrixB is often called the design matrix. Since the

number of equationM is greater than the numbét of un-

knowns[dc,(t)/dt], this equation is overdetermined. Thus

instead of searching for equality on the two sideg®f we
look for the least squares,

den(t)

N
InZl anT Am .

©)

M
X= >
m=1

The set of linear coefficienfdc,(t)/dt] which makeX the
smallest then satisfy the equatiofsee Presst al. [25])

N M de, (1) M
i :S ( ES BntnwV) __%T__': :Sv BnmAm
n=1 m=1 m=1
n=1,2,...N. (10
In matrix form, this is
i(BTB)C=BTA, (1D

whereB' is the transpose dB. Equation(11) is a set ofN
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; H(xq,)Cn(t) @n(Xy)

on(Xq)
en(X2) > H(xg,Den(t) @n(X2)

A= n (6)
on(Xm)

; H (X ,)Cn(t) @n(Xp)

This method allows us to integrate the time-dependent
wave functiony(x,t) till the time when the laser pulse is
turned off. Once the wave function is available, it is a simple
matter to evaluate the following experimental quantities:

1. Harmonic generation

Harmonic-generation spectra are proportional to the
modulus-squared of the Fourier transfoetw) of the ex-
pectation value of the acceleratiaft). By means of Ehren-
fest’s theorem,

X
a(t)=(¥(x.t) —W—G(t)W(XJ))- (12

(
2. ATI spectrum

The ATI spectrum can be obtained by projecting the time-
dependent wave function & Ty, onto the field-free con-
tinuum statesp(x),

P(E)=[{o5(x)| (X, t=Trina)))|? (13)

3. Total ionization probabilities

The total time-dependent ionization probability is defined
as

Pion<t>=1—b02 [{@nO) (X, 1)?, (14)

und

where the summation is over all the bound staig$x)

algebraic equations dff unknowns which can be solved di- when the field has been turned off.

rectly. Thus the linear-least-squares fitting procedure pro-
vides a way to calculatdc,(t)/dt without the need of com-

puting the matrix elements. It is understood that the method ] )

is an approximate solution to the coupled equations and one TO implement the present method we need to specify the
can show formally that as the number of discretized pointd@sis functions and the range of the variablghich is con-
goes to infinity, the fitting procedure gives the same resultdined t0 (= Xmax, +Xmay). In order to represent the con-

as the original coupled equations. Once the coefficient§nuum functions adequately it is desirable to have dense
ci(to)(i=1,2,...N) are given atty, the best values of distribution of pseudostates. To this end each basis function

B. Basis set

dc;(tp)/dt are sought based on the dataBo&dndA using the

standard LU decomposition and back substitution procedure.
After the _tlme derivatives are ob_talned, the propagation tO(PJ'(X): Z A, bo(X) + 2
the next time ste;(ty+ ot) is straightforward. We used the n=1 n

fourth-order Runge-Kutta method.

is expanded as

ny n

nx [ nax
B,co +C,sin
Xma Xma

(15

2
=1
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where the¢,(x) are the bound state wavefunctions of the
field-free Hamiltonian, constructed from tligspline basis,

and the sine and cosine functions are members of a truncate
Fourier series. The basis functiong;(x), with energyE;,

are obtained by diagonalizing the field-free Hamiltonian and
thus are orthogonal. The energies of the lowest 20 eigen-_ ,
states thus obtained are identical to those given by Eberlyz
et al. [26]. The diagonalization also gives a spectrum of 3
states where the energies are above the field-free thresholé_’
These are the pseudostates and their density can be col
trolled by the size of the box.

The basis functions thus generated are then used to pel
form time-dependent calculations as outlined in the previous ]
SubseCtlon. 108 'I'I'I'I'I'I'I'I'I'I'I'I!\I'
-350 -300 -250 -200 -150 -100 -50 O 50 100 150 200 250 300 350

X(a.u.)

III. NUMERICAL RESULTS AND DISCUSSION

To illustrate th ¢ ical thod h th FIG. 1. Probability(or modulus squared of the wave function
0 lllustrate the present numerical method we Chose NGq , caicylated for a model 1D atom in a laser field of strength

one-dimensional(1D) model problem with the modified Ey=0.1,w=0.148, and=16 T. Each calculation is confined to the

Coulomb potential Eq(3) and laser field profile boundaries defined by X4 andX,ax. The solid line is from the

¢ present least-squares fitting method, and the dotted lines are from

T o . i

Eosir12 —Isinwt, 0<t=3T the split-operator method Wlth an absorber at the boundésies
6T (16) text). The present calculations used two sets of paramete)s:
Xmax= 300 andN=600; (b) x,ax=400 andN=_800 but the results
agree and are indistinguishable on the graph.

e(t)=
Egsinwt, t>3T,

whereE, is the amplitude of the laser field. First we consider

these laser parametefSg=0.1 a.u.,0=0.148 a.u. (=3.5 In Fig. 2 we show the normalized harmonic generation
X 10" w/cn?) and T=2m/w. At this frequency it takes spectra. The peaks occur at the odd harmonic orders only and
about five photons to ionize the model atom from the groundhey are quite visible up to the 13th harmonic. The agree-
state. In the calculation, the density of states, as seen fromment between the present two calculatigaslid lines and

Eq. (15), is essentially determined by the intervat X ax. dotted lineg are quite good, and they also agree with the
Xmax) - FOr Xmax Of the order of 150 a.u. the basis functions calculation using the split-operator meththshed lines

are adequate for a good fitting of the time-dependent wave- |n Fig. 3 we compare the ATI spectrum calculatedt at
function. In our calculations we typically take;=3, n,  =16.257. For the ATl spectrum, we have averaged over the

=200, 300, and 400 fokp,,=200, 300, and 400, respec- population of the even and odd discrete states as done in Ref.
tively [see Eq(15)]. Thus the maximum energy of the pseu- [24]

dostates is fixed roughly at 4.9 a.u. For the present soft Cou-
lomb potential problem, we used equally-spaced grids of
spacing of 0.3 or 0.4. The incremental step of the time-
integration is 0.06 to 0.08. For the harmonic generation we
propagate the time to 16 cycles and for the ATI to 16.25 21
cycles. The electron is initially in the ground state. 1

'S

A. Results for E;=0.1 a.u. andw=0.148 a.u.

In Fig. 1 we show the modulus-squared or the probability %o
of the wavefunction calculated &t 16T. Two calculations g
with X,.x=300 and 400 have been carried out. The two ~
calculations vyield results that are not distinguishable in the
figure. These results are compared to the calculations usini 61
the split-operator metho@lashed lineswith an absorber of 1

the fOI‘m f(X):[1+ exp(lZRi 350)]71 When the bound' -8 T T T T T T T T T

aries are set at,,,= +400. Comparing the present results 0o & 4 68 M0 2 e 18 20

with those from the split-operator method, we note that the Hamonic order

agreement is quite good farbetween—150 and 150. Note FIG. 2. Harmonic generation spectra calculated using the wave

that the wavefunction obtained using the present methoginctions generated with the parameters indicated in Fig. 1. Solid
vanishes foix less than—250 andx greater than 250, even |ine, present method, cagk) X,,=400 andN==800; dotted line,

though the boundaries were set further out. We will comepresent method, casa) x,,4,= 300 andN= 600; dashed line, split-
back to discuss this point later. operator method.
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E,=0.1
»=0.148
1=16.25T

P(E) (arb. units)

S,
(3

T T T T T T T T T T T T
0 2 4 6 8 10 12 14 16

Energy/e®
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We now return to discuss the probability of the wave
function shown in Fig. 1. The present method and the split-
operator method give essentially identical results in the inner
region, while they disagree in the outer region. The probabil-
ity is much larger from the split-operator calculation. It van-
ishes only near the boundaries and the sharp drop to zero
near the boundaries clearly is a consequence of the absorber
adopted. With the absorber, one can still see the effect of
interference, as evidenced by the rapid oscillation of the
probabilities in the outer region in the split-operator results.
These fast oscillations from the interference may be the
cause of the higher ATI peaks in the higher energy region.
On the other hand, the present fitting procedure removes all
the higher oscillations, thus basis functions with higher
eigenenergies are not populated. This explains why our cal-
culated probabilities are smaller in the outer region and why

FIG. 3. ATI spectra calculated using the parameters of Fig. 1the high-energy ATI peaks are weaker.

Symbols as in Fig. 2.

So far in the present calculation we did not need to intro-
duce any absorber to remove reflections from the boundaries.
However, whenx,,,x was chosen to be 200 a.u. we found

ci(1)|? Ciia(t)|? .
PG(Ei_1+E+E 1 +Ei,,),D)= el Gi+1(V] . strong interference and the results were not acceptable. The
Eiva—Ei-1 Eiva—E interference is similar to what one would get from using the
(17 split-operator method without the absorber. Within this

smaller range, the fitting procedure was not able to remove

Clearly the present two calculations give essentially identicathe effect of reflection from the boundaries. Of course one
results, and they agree very well with the split-operatorcan introduce absorbers into the present fitting method as
method results for up to about the sixth peak. From there oM€ll. In Fig. 5 we show the probability calculated with the
the high-energy ATI peaks obtained from the split-operatoPresent least-squares fitting method with,.=200, one
methods have higher intensities than those from the presemithout the absorber, and the other with the absorber, where
method. The discrepancy is likely due to the different methihe functional form of the absorber is the same as the one
ods of treating the loss of the flufor probability at the used in the split-operator method. Clearly without the ab-
boundaries. Note that in the split-operator method the absorber the probabilitydotted lineg oscillates rapidly show-
sorber changes the probability near the boundaries only. THag the effect of reflection and interference. By introducing
present method, with the least-squares fitting, apparently réhe absorber, the probabilitysolid line) becomes much
moves the probabilities over a larger region near the boundsmoother. We next compare the harmonic generation spectra
aries. In Fig. 4 we show the calculated ionization probabilityobtained from calculations usingm,a=200 with the ab-

as a function of the laser interaction time. The results fronsorber(dotted line$, with the results from using, =400

the present methotsolid line) agree quite well with those Without the absorbegsolid line). The results in Fig. 6 show

from the split-operator metho@lashed lines

Probability

T T T T T T T T T T T T T T T
-200 -150 -100 -50 0 50 100 150 200

10° T T T T T T T T T T T T T T T
0 2 4 6 8 10 12 14 16

Time/Period

X (a.u.)

FIG. 5. The probability of the wave function calculated using
FIG. 4. Comparison of total ionization probability as a function boundaries ax,,,,=200 andN=400. The dashed lines are calcu-
of time calculated using the present method with,,=400 and lated without the absorber and solid line is obtained using an ab-

N=800 and the result from the split-operator method. sorber identical to the one used in the split-operator method.
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10" 4 E,=0.08
3 ©=0.06

t=16T

o =
2 2 3
1] ©
=] o
2 ne_ i
2 44 10° 3 E
b
1074
6
10° 4
8 —r -t r 11 1 1 1 T 1 L[ o e o I B m e wo e o e e e e
0 2 4 6 8 10 12 14 16 18 20 -850 -300 -250 -200 -150 -100 -50 O 50 100 150 200 250 300 350
Harmonic order X(a.u.)

FIG. 6. Comparison of the harmonic generation spectra obtained FiG. 8. Probability of the wave function calculated for the 1D
using the present method but with different parameters. Solid linemodel atom in a laser field witE,=0.08, w=0.06, andt=16 T.
Xmax=400 andN=800 without the absorber; dashed line&.ax  The solid line is from the present calculation usig,,=300 and
=200 andN =400 with the absorber. N=600 and the dotted lines are from the split-operator method and

that the agreement is quite acceptable. Figure 7 shows tH¥th an absorber.

comparison for the ATI spectra from the two calculations . . . . .
and they again agree quite well. Thus we can use a Sma”éirlmensmnal model atom in a laser field. The method is based

range ofx,,, to achieve the same results if the absorber" the eigenfunction expansion method but the resulting
were added at the boundaries. time-dependent coefficients are calculated using the linear

least-squares fitting procedure. In the process the wavefunc-
tions at discrete grid points are evaluated, thus eliminating
) ) . the need to calculate matrix elements involving the basis
~ We next give another example for calculations carried oUknctions. We summarize what we consider the highlights of
in the tunneling region where the Keldysh parameter is lesg,ig method:(1) The choice of basis functions is very flex-
than one and where ionization is dominated by the tunneling,e. They can be tailored to particular physical syste(@s.
of the electron in the oscillating laser field. In Fig. 8 we showTpe calculation does not require evenly spaced grid points.
the proba_tb_ility distribution (_:alculated a=16 T from the  Thus denser mesh points can be used for the region where
present fitting procedure withya,=300 and compare the the atomic potential is strong while sparse mesh points can
results to the spl_lt—operator method w_|th absorb_ers. Again thge sed for the outer region where the atomic potential is
results agree quite well. The harmonic generation spectra, @sentially zero(3) There is no need to introduce absorbers
shown in Fig. 9 also agree quite well to very high order.  ear the boundaries of the integration region. By restricting
basis functions to a certain energy range, the fitting proce-
IV. SUMMARY AND DISCUSSION dure removes the highly oscillating components of the the
time-dependent wavefunctions to damp out the oscillations

B. Harmonic generation for E=0.08 a.u. ande=0.06 a.u.

In this paper we have illustrated a different method of

solving the time-dependent Schiinger equation for a one- 4

P E,=0.08
®=0.06
t=16T
o]
) =
= g 5
5 = 2
g =
& )]
= o 4]
w
o
-6 4 !
i
-8 T T T T T T T T T T 'g 1
10° 0 10 20 30 40 50 60
0 2 4 6 8 10 12 14 16 Harmonic order
Energy/e® ] ] ]
FIG. 9. The harmonic generation spectra calculated using the
FIG. 7. The same as Fig. 6 but for the ATI spectra. wave functions of Fig. 8.
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due to the reflection from the boundari€d) From the re- sets and the grid points is rather flexible, they can also be
sults shown in Figs. 5-8, it appears possible to reduce thadjusted to simplify calculations depending on the specific
range of the “box” by introducing absorbers on the bound-physical system.
aries. This allows the use of a smaller basis set and smaller
number of grid points to save computational time and
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