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Full Ambiguity-Free Quantum Treatment of D11 H���1s��� Charge Transfer Reactions
at Low Energies
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Cross sections for the nonresonant charge transfer process D1 1 H�1s� ! D�1s� 1 H1 at low
energies are calculated in hyperspherical coordinates. The method is free from all the inherent
ambiguities associated with the conventional Born-Oppenheimer approach, such as the incorrect
asymptotic energies and spurious couplings. However, like the Born-Oppenheimer approach, we show
that hyperspherical potential curves and coupling terms have to be calculated only once to obtain
results for all partial waves. Feshbach and shape resonances of HD1 near the H�1s� threshold are also
calculated.

PACS numbers: 34.70.+e, 31.15.Ja, 33.20.–t, 33.80.Eh
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Our understanding of molecular structure is current
based on the Born-Oppenheimer (BO) adiabatic appro
mation. To see the limitation of this commonly used ap
proach, consider the simplest molecular ions, H2

1, HD1,
and D2

1. The BO potential curves for all three are iden
tical and the asymptotic energies of the two lowest curv
are all equal to21�2 a.u., whereas the correct limits
should be2�1�2�mH a.u. or2�1�2�mD a.u., wheremH
(mD) is the reduced mass of H1 1 e2 (D1 1 e2). Since
the reduced mass is close to unity, this deficiency does
cause a serious problem unless high precision is requi
for bound-state calculations, or when isotope effects a
important. Clearly, the BO approximation is not a con
venient starting point for treating HD1 since a great deal
of effort is needed in order to obtain the energy diffe
ence of 3.7 meV between the D1 1 H�1s� limit and the
D�1s� 1 H1 limit.

The failure of the BO approximation is especially se
vere when it is employed to describe ion-atom or atom
atom collisions at low energies. The problems have be
well documented [1]. They include the incorrect bound
ary conditions, the existence of spurious couplings, a
the calculated cross sections not being Galilean invaria
Despite these fundamental ambiguities, the BO approa
has been used for more than five decades to describe s
ion-atom and atom-atom collisions since other satisfacto
theories have not been found. For collisions at higher en
gies where the semiclassical impact parameter descript
is used, the difficulty is partially overcome by introduc
ing somewhatad hoc electron translational factors [2–4].
These factors, defined in terms of nuclear velocities, ha
no quantum equivalents. Although generalized reacti
coordinates which are functions of electronic and nucle
coordinates have been suggested [1], they are quite com
cated to implement and have not been applied in scatter
calculations except for a recent application in calculatin
the bound state energies [5]. For the HD1 system, meth-
ods which do not startexactly from the BO approxima-
tion have been employed for the vibrational energies of t
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HD1 ions [6–9] and for the D1 1 H�1s� ! D�1s� 1 H1

charge transfer cross sections [10].
In this Letter we present calculations of the abov

charge transfer process at center-of-mass energies f
threshold to 0.1 a.u. The goal of this Letter is twofold
(i) We show that calculations using hyperspherical coo
dinates are free of all the problems associated with t
conventional BO approaches [11]. It avoids the use
complicated reactive coordinates [1] or the equivalent
electron translational factors [12,13]. (ii) We show tha
many of the adiabatic BO simplifications are also valid
the adiabatic hyperspherical approach. The most imp
tant of which is that there is no need to calculate hype
spherical potential curves for states of higher total angu
momentum J, since they can be obtained by addin
the centrifugal potential energies to theJ � 0 potential
curves, as in the BO approach. This makes the hyp
spherical calculation for ion-atom collisions as simple a
the BO approach.

The first point above is well known to practitioners o
hyperspherical methods, even if they are not as familiar
the general collision physics community. Note that HD1

is just a special example of the general Coulomb thre
body system that also includes familiar members like H2,
He, Ps2, and e1 1 H [14]. In these cases the hyper
spherical approach has been used very successfully
obtain their structure and scattering properties [14–1
However, in these systems the masses of all three p
ticles are comparable or two of the three are lighter th
the third such that there is no need to deal with high a
gular momentum states in low-energy collisions. In ion
atom collisions, on the contrary, hundreds or thousands
partial waves are needed to achieve a converged calc
tion even for collisions at thermal energies. In the exa
hyperspherical formulation, the potential curves and co
pling terms have to be calculated for eachJ separately.
We show in this Letter, however, that the hypersphe
cal potential curves and coupling terms for the prese
HD1 system need to be calculated only once in practic
© 1999 The American Physical Society 4041
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applications, just as in the BO approach. This observation
makes it possible to perform hyperspherical calculations
for ion-atom collisions with the same ease as in the BO
approach, yet free from all the problems and ambiguities
encountered in the BO approach.

We use mass-weighted hyperspherical coordinates to
describe the three particles in HD1. In the center-of-mass
frame, we choose the first Jacobi coordinate �R to be the
vector from H1 to D1, with the reduced mass m1; and
the second Jacobi coordinate �r from the center-of-mass of
H1 and D1 to the electron, with reduced mass m2. For
this work we define the hyperradius r and the hyperangle
f by

r �

s
R2 1

µ
m2

m1

∂
r2 , (1)

tanf �
r

m2

m1

r
R

. (2)

Using this definition, the hyperradius r is very close to the
internuclear separation R, and the reduced mass for the mo-
tion in r is also given by m1, as in the BO approximation.
By treating r as the adiabatic parameter, the calculation in
hyperspherical coordinates can be carried out in an essen-
tially identical manner to the familiar BO approach. Thus,
for each fixed r, a set of hyperspherical potential curves
and their nonadiabatic couplings are calculated. There are
many different numerical methods available nowadays to
calculate the hyperspherical potential curves. In this work,
we used a method that is analogous to the linear combi-
nations of atomic orbitals in the standard BO approach.
The “atomic orbitals” are Slater-type orbitals expressed in
their respective Jacobi coordinates [17–19]. Thus for ba-
sis functions representing the D1 1 H arrangement, the
Jacobi coordinates are the vector from H1 to the electron
and the vector from the center of mass of (e2 1 H1) to
D1. Another set of Slater-type orbitals representing the
H1 1 D arrangement is also used. These “ two-center”
basis functions have been used to calculate hyperspheri-
cal potential curves for other three-body collision systems
[17–19]. They are easily implemented for solving the hy-
perspherical equations for any J . In this work we include
about ten Slater-type orbitals for each angular momentum
� � 0, 1, and 2, where � is the orbital angular momentum
of the electron with respect to H1 or to D1. Such a two-
center basis set allows us to obtain the lowest few poten-
tial curves and coupling terms accurately. For the present
work, we consider collision energies up to 0.1 a.u., so that
only the two lowest curves and the coupling between them
are needed. The bound state properties and charge transfer
cross sections reported below were calculated from solv-
ing the hyperradial equations including these two chan-
nels only.

1. The adiabatic hyperspherical potential curves and
the bound vibrational levels of HD1.—In Fig. 1 we show
in the inset the two lowest J � 0 potential curves and the
nonadiabatic coupling term �1j d

dr j2�, where j1� and j2�
4042
FIG. 1. Hyperspherical potential curves for HD1, J � 0. The
main figure details the two lowest curves in the asymptotic
region. In the inset, the two curves (solid lines) and the
nonadiabatic coupling term (dashed line) in the full range are
shown where the potential curves have been rescaled by setting
the H�1s� threshold at zero.

are the hyperspherical wave functions of the two lowest
curves and the integration is over all the angles except for
the hyperradius. This figure is used to demonstrate that
in the outer region the two potential curves do reach the
correct dissociation limits.

The lowest curve has a deep potential well and was
found to support 23 bound states, in agreement with the
approximate hyperspherical calculation of Macek and Jer-
jian [20] and with the accurate calculation of Hara et al.
[21]. From our potential curve, we obtained the lowest
state at 21 515.04 cm21 below the D�1s� 1 H1 threshold.
This is to be compared to the result of 21 515.9 cm21 of
Hara et al. within the same approximation. We comment
that the vibrational energies of HD1 have been reexam-
ined recently by Esry and Sadeghpour [9] using a differ-
ent method. More detailed discussions of the vibrational
states supported by this curve can be found there.

2. Feshbach and shape resonances near the H�1s�
threshold.—In Fig. 1 we notice that the second J � 0
curve has a shallow potential well near r � 12. Using
the single channel approximation, this curve was found
to support two bound states, at 5.929 and 0.1023 cm21

below the H�1s� threshold. When channel coupling is in-
cluded the two states become Feshbach resonances. By
fitting the calculated partial wave cross sections to the
Breit-Wigner formula with a linear background, we ex-
tracted the position of the first resonance as 5.827 cm21

and its width as 4.26 cm21. We were unable to analyze
the second resonance since it is too close to the threshold.

We have also carried out hyperspherical calculations
for higher J ’s and searched for resonances near the H�1s�
threshold. The results are summarized in Table I and com-
pared to other available calculations. For J � 0 3, the
resonance positions and widths from the present calcula-
tion are in good agreement with those from Wolniewicz
and Orlikowski [6]. The widths for these resonances are
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TABLE I. Energies and widths for Feshbach resonances
(J � 0 3) and shape resonances (J � 4 6). The present
hyperspherical calculations are shown in the first two columns.
All the energies are given in units of cm21 measured from the
H�1s� threshold at 20.499 727 84 a.u.

Energy Width Energy Width a Energy b Widthc

J � 0 25.827 4.26 25.868 5.261 25.840 9.4
J � 1 25.190 3.71 25.196 4.632 24.974 8.8
J � 2 23.839 2.79 23.769 3.336 23.304 7.1
J � 3 21.496 1.56 21.478 1.707 20.987 4.6
J � 4 1.190 0.55
J � 5 4.080 2.81
J � 6 7.249 7.62

aReference [6]; bRef. [21]; cRef. [22].

quite broad and thus the discrepancy is probably due in
part to the different procedures used in fitting the reso-
nance parameters from the calculated phase shifts. On the
other hand, we notice large discrepancies with the earlier
calculations [22,23]. For J � 4 6, we found one shape
resonance for each J . For J greater than 6, no more reso-
nances associated with the second curve were found.

The Feshbach resonances discussed above become
true bound states for H2

1 and D2
1 ions and they are

stable against predissociation. They have been observed
experimentally using laser spectroscopy [24]. Note that
these states are supported by the very weak attractive well
at large internuclear separations. Similar states have also
been observed recently in photoassociation experiments
in laser-cooled diatomic alkali-metal atoms [25,26]. The
present calculations imply that the spectra of these cold
dimers would have an interesting isotope dependence.

3. Charge transfer cross sections.—The D1 1

H�1s� ! D�1s� 1 H1 charge transfer reaction cross sec-
tions cannot be calculated using the “standard” BO formu-
lation. Calculations based on the modified BO expansion
have been used by Hunter and co-workers in a series of
papers [10], but their results have not been tested critically
in experiments except at energies above 2 eV. We have
used the hyperspherical approach to carry out the calcu-
lations for center-of-mass energy ranging from threshold
to 0.1 a.u. The final results are presented in Fig. 2.

Before discussing the total charge transfer cross
sections, the nature of the present calculation should be
addressed. In the rigorous hyperspherical approach the
potential curves and coupling terms have to be calculated
separately for each partial wave J. Since the number of
partial waves needed in a converged calculation in ion-
atom collisions runs into hundreds or thousands even at
subthermal energies, hyperspherical calculations are per-
ceived to be impractical. In the BO approach, the potential
curves and coupling terms have to be calculated only
once, for example, for J � 0. For other J ’s, the potential
curves are obtained from the J � 0 curves by adding to
each curve a centrifugal potential term J�J 1 1���2mR2�.
Meanwhile, the same nonadiabatic coupling terms are
used for all J ’s. In the following we show from actual
FIG. 2. Total charge transfer reaction cross sections for D1 1
H�1s� ! D�1s� 1 H1 at low energies. The present results are
shown in solid lines; the results of Hunter and Kuriyan are
shown in open circles connected by dotted lines.

calculations that this simplification in the BO approach is
also valid in the hyperspherical approach for the present
system, and likely for all ion-atom collision systems. We
emphasize that this simplification is not valid in general
for three-body systems; it is approximately valid only
when two of the three particles are much heavier than the
third one, i.e., when the system is more “molecular.”

To demonstrate that hyperspherical calculations for
J fi 0 can indeed be obtained by adding a centrifugal po-
tential term J�J 1 1���2m1r2� to each J � 0 potential
curve and use the same J � 0 coupling terms, we com-
pare the partial wave charge transfer cross sections calcu-
lated using this model (the rotor model) with the results
from actual hyperspherical calculations for several values
of J and energies. The results are shown in Table II.
Clearly the rotor model and the actual hyperspherical cal-
culations are in good agreement. (We also checked the
model for the resonances of Table I and the results agree
to better than four digits.) This confirms that we can use
the rotor model in the hyperspherical approach to perform
scattering calculations for all the partial waves, just as
one would do in the BO approach. This drastic simpli-
fication makes it practical to carry out ion-atom collision
calculations using the hyperspherical approach at the same
degree of ease as the BO approach but free from all the
inherent difficulties of the latter.

We have used the rotor model to obtain the total charge
transfer cross sections for D1 1 H�1s� ! D�1s� 1 H1

for energies between 1025 and 2.7 eV. The results are
shown in Fig. 2 where we also compare with the calcula-
tion of Hunter and Kuriyan [10] above 1023 eV. Note that
the cross section drops rapidly at energies below 1023 eV.
Above 1022 eV, it drops at a slower rate. The inset is
a replot of the cross section on a linear scale. One can
clearly see the oscillatory structure in the cross section for
collision energies between 1022 and 1 eV. In this en-
ergy region, the cross section for each partial wave for
J between 20 and 80 has one or more shape resonances,
4043
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TABLE II. Comparison of partial wave charge transfer reaction cross sections calculated from the exact hyperspherical approach
(top line) with those calculated from the rotor model (bottom line) for J fi 0. Energies are measured from the H�1s� threshold in
a.u. and the cross sections are given in atomic units. A�1B� � A 3 10B.

E J � 1 J � 2 J � 10 J � 50

1.00�26� 3.3820�13� 2.7047�13� 8.3154�212�
3.3821�13� 2.7050�13� 7.3900�212�

1.00�25� 3.0748�12� 4.5821�12� 9.2317�210�
3.0748�12� 4.5825�12� 8.5130�210�

1.00�24� 3.0013�11� 4.3884�11� 5.6740�22�
3.0013�11� 4.3889�11� 5.7728�22�

5.00�24� 5.0629 6.8596 8.4297
5.0632 6.8610 8.4979

1.00�23� 2.1316 2.7411 5.1382 9.3278�215�
2.1317 2.7418 5.1761 9.4616�215�

5.00�23� 1.6927 1.5330�22�
1.7017 1.5333�22�

1.00�22� 1.2964 5.4821
1.3012 5.4835
as well as some oscillatory structures due to the phase
shift going through multiples of p. The latter oscillations
are analogous to the Stückelberg oscillations in near-
resonace charge transfer processes. Summation over the
contributions from many partial waves does not smooth
out these structures. (The oscillations are seen also in the
elastic cross sections.) We comment that the peak near
2 3 1024 eV has been identified to be due to the local
maximum in the J � 4 partial wave cross section.

It is interesting that the present results are in reasonable
agreement with the calculations of Hunter and Kuriyan
[10] above 1023 eV. Nonetheless, the discrepancy is
clearly visible if one looks at the comparison in the inset
where their results are about 15% lower. Their cross
sections do not show oscillations, but that could be due
to the fact that their calculations were not done at dense
enough points. In their calculations, they started with a
modified BO expansion to take into account some of the
reduced mass effect (thus the potential curves for HD1 and
H2

1 are no longer identical), but their lowest two adiabatic
potential curves are still degenerate in the asymptotic
region. By taking the sum and difference of these two
adiabatic states, they obtained in the new representation
two potential curves separated by the energy difference
between H�1s� and D�1s� for all internuclear separations,
including the asymptotic limit. Therefore their approach is
almost like a “diabatic” representation and the BO spirit is
lost altogether. In the present hyperspherical approach, the
adiabatic picture is retained and the conceptual framework
is very close to the BO approach. The present approach
can also be easily generalized to include more channels.

In summary, we have performed the charge transfer
cross section calculation for the elementary rearrangement
process D1 1 H�1s� ! D�1s� 1 H 1 at energies below
0.1 a.u. Using hyperspherical coordinates we showed
that the calculation is as straightforward as the traditional
Born-Oppenheimer approach but without all the inher-
ent limitations of the latter. It is demonstrated that the
4044
hyperspherical approach is a practical method for per-
forming accurate calculations for ion-atom collisions at
low energies.
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