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Comprehensive analysis of electron correlations in three-electron atoms

Toru Morishita* and C. D. Lin
Department of Physics, Cardwell Hall, Kansas State University, Manhattan, Kansas 66506

~Received 11 August 1998!

We study the electron correlations in singly, doubly, and triply excited states of a three-electron atom. While
electron correlation in general is weak for singly excited states, correlation plays major roles in determining the
characteristics of doubly and triply excited states. Using the adiabatic approximation in hyperspherical coor-
dinates, we show that the distinction between singly, doubly, and triply excited states is determined by the
radial correlations, while finer distinctions within doubly or triply excited states lie in the angular correlations.
Partial projections of the body-fixed frame wave functions are used to demonstrate the characteristic nodal
surfaces which provide clues to the energy ordering of the states. We show that doubly excited states of a
three-electron atom exhibit correlations that are similar to the doubly excited states of a two-electron atom. For
the triply excited states, we show that the motion of the three electrons resemble approximately that of a
symmetric top.@S1050-2947~99!03902-5#

PACS number~s!: 31.10.1z, 31.15.Ja, 31.25.Jf
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I. INTRODUCTION

The structure of atoms has been studied since the e
days of quantum mechanics. Traditionally, the basic conc
tual framework for describing a many-electron atom is
independent electron model. In this model each electron
occupy one of the many available ‘‘orbitals’’ which are d
termined by a variational procedure such as the Hartree-F
approximation. The deviation of the properties of a man
body system from the independent electron approxima
often is small such that the deviation can be treated by
turbation theories or the configuration-interaction~CI! ap-
proach. In fact, it is a common practice to define correlat
energy as the difference between the ‘‘exact’’ energy fr
the prediction of the Hartree-Fock approximation. This co
mon practice is unfortunate since it fails completely to a
dress the major issue of electron correlation which is
description of how the motion of electrons in the system
interrelated. Such information is contained in the man
electron wave function, not in the ‘‘correlation energy.’’

It is well known that the independent electron approxim
tion fails to describe the doubly excited states of tw
electron atoms such as He and H2. In the past two decades
major progress has been made on understanding the natu
electron correlations in doubly excited states. Equivalent
scriptions for these doubly excited states have been prov
and a set of new approximate quantum numbers has b
proposed@1–5#. In all of these descriptions the motion of th
two electrons is treated together and the correlation betw
the two electrons is understood as analogous to the vibra
and rotation of a flexible linear triatomic molecule. It is fa
to say that correlations in doubly excited states of a tw
electron atom are now well understood.

The success of describing correlations in doubly exci
states in a two-electron atom poses two new questions. F
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do doubly excited states of a many-electron atom resem
those of a two-electron atom? In what way is the descript
to be modified for doubly excited states of a many-elect
atom? Second, can one make the next step to understan
correlation of triply excited states? Both questions can
addressed by studying the doubly and triply excited state
a three-electron atom, such as the Li atom.

From the theoretical viewpoint, doubly excited states a
triply excited states are very difficult to treat. First, the
energies lie way above the ground state and the lower sin
excited states where various variational methods have b
successfully applied. Second, the spectral density of th
multiply excited states is very large. While it is of interest
do specific calculations for individual states, one of the m
urgent needs is to obtain a global understanding and org
zation of these states. This amounts to identifying comm
features as well as features that distinguish them, with
ultimate goal of being able to find a new set of quantu
numbers for their classification. Since electron correlation
known to play a major role in determining the nature
multiply excited states, the delineation of their wave fun
tions is the first step toward this goal. However, this can
be easily done for many-particle systems. For anN-electron
atom, the spatial part of the wave function is described b
3N-dimensional function. Visualization of such a functio
with two-dimensional projection in a manner which wou
reveal information on how the electrons are correlated is t
nearly impossible. We comment that the standard proced
of calculating the two-body or even three-body correlati
functions is not very useful unless one happens to have
‘‘right’’ variables for displaying the essential features. Th
the search for understanding electron correlations amoun
finding the ultimate method of displaying the multidime
sional wave functions. Different variables and different pr
cedures will be used to display the correlation of doubly a
triply excited states.

In this paper we address the correlation properties of d
bly excited states and of triply excited states of a Li ato
within the adiabatic approximation using hyperspherical
ordinates. The hyperspherical approach has been used

ry,
,
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1836 PRA 59TORU MORISHITA AND C. D. LIN
successfully for understanding electron correlations in d
bly excited states of a two-electron atom. Very accurate co
putational procedures have also been developed using a
perspherical approach@6–11#. In Sec. II we first briefly
summarize the computational methods from which the wh
spectrum of the singly, doubly, and triply excited states c
be calculated. In Sec. III we show the calculated adiab
potentials to see global features of three-electron atoms
Sec. IV we show that singly, doubly, and triply excited sta
are distinguished by this nodal structure and the distributi
of the wave function in the two hyperangles. The correlat
properties of doubly excited states will be examined in S
V where it will be shown that their properties are similar
the doubly excited states of a two-electron atom. The co
lation properties of triply excited states will be examined
Sec. VI.

II. HYPERSPHERICAL METHOD
FOR THREE-ELECTRON ATOMS

The details of the computational method have been p
sented previously@12#. In this section we only outline the
essential steps.

The Schro¨dinger equation for a three-electron atom in t
independent particle coordinates is given by~in atomic units!

F(
i 51

3 S 2
1

2
¹ i

22
Z

r i
D1(

i , j

1

ur i2r j u
2EGC~r1 ,r2 ,r3!50,

~1!

whereZ is the nuclear charge andE is the total energy mea
sured from the triple ionization threshold. The hypersphe
cal method replaces the radial distancesr 1 , r 2 , and r 3 of
the three electrons from the nucleus by the hyperradiusR and
two anglesa1 , a2 defined by

r 15R sina2 cosa1 ,

r 25R sina2 sina1 , ~2!

r 35R cosa2 ,

whereR stands for the size of the system, anda1 and a2
measure the relative distances of the electrons from
nucleus—they are the variables for measuring radial corr
tions. In the calculation of the wave functions, we use
spherical anglesr̂ i5(u i ,f i) ( i 51,2,3) of each electron in
the space-fixed frame.~We will use other sets of angles i
the body-fixed frame to analyze the wave functions,
Secs. V and VI.! Thus the nine-dimensional spatial coord
nates of the three electrons in the space-fixed frame are
resented by the hyperradiusR and eight hyperangle

$a1 ,a2 , r̂1 , r̂2 , r̂3%, where we shall useV at times to denote
all the eight hyperangles collectively. In hyperspherical c
ordinates the Schro¨dinger equation for the rescaled wav
function c5Rr1r 2r 3C is

F2
1

2

]2

]R2
1Had~V;R!2EGc~R,V!50, ~3!
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where Had(V;R) is the adiabatic Hamiltonian defined a
fixed hyperradiusR.

Within the adiabatic approximation@13# the total wave
function for thenth state in channelm can be written as

c~R,V!5Fm
n ~R!S (

S12

Fm
S,S12~V;R!xS12

S D , ~4!

whereFm
n (R) is the hyperradial function, which measures t

size of the system;Fm is the hyperspherical adiabatic cha
nel function, which contains all the information about ele
tron correlations for states within channelm; and xS12

S

5@$x(1)x(2)%S12x(3)#S is the total spin function with inter-
mediate spinS12. The channel functionFm and its associ-
ated adiabatic potentialUm(R) are obtained by solving the
adiabatic eigenvalue problem at eachR,

@Had~V;R!2Um~R!#Fm~V;R!50. ~5!

Equation ~5! is a partial differential equation of the eigh
anglesV. To solve this equation, we use the eigenfunctio
of the adiabatic Hamiltonian which contains only th
nucleus-electron attractive potential as the basis set. Th
eigenfunctions can be written in the separable form,

F̃m
g ~V;R!5gm

g ~a1 ,a2 ;R!Y g
LM~ r̂1 , r̂2 , r̂3!, ~6!

where g5$ l 1l 2l 3l 12%, and Y g
LM( r̂1 , r̂2 , r̂3)

5@$Yl 1
( r̂1) Yl 2

( r̂2)% l 12Yl 3
( r̂3)] LM is the coupled angular mo

mentum of the three electrons. The functiongm
g (a1 ,a2 ;R)

satisfies the two-dimensional eigenvalue problem with
spect toa1 and a2 which is then diagonalized using direc
products of discrete variable representation~DVR! basis sets
@14#. In Eq. ~4!, the spatial part of the channel functio
Fm

S,S12 is coupled to the spin functions. In constructing t
total wave functionc the Pauli exclusion principle has to b
accounted for. To obtain the correct symmetry under
change of any pair of electrons, we apply the antisymme
zation operator to the basis functions in Eq.~6!, and then
diagonalize the adiabatic Hamiltonian with these antisymm
trized basis functions. In our calculations, we include angu
configurations ofl i<3 for each electron. The resulting adia
batic potentials and channel functions are accurate eno
for the analysis of electron correlations in the present wo

III. HYPERSPHERICAL ADIABATIC
POTENTIAL CURVES

To see the global features of the eigenstates of a th
electron atom, we first examine the adiabatic potentials
Fig. 1 we show the potential curvesUm(R) as functions ofR
calculated for Li(2Po) as an example. The top figure give
the overall view of the potential curves. At largeR, each
curve approaches the two-electron (Li1) limits. The lowest
curve goes to the ground state of Li1 in the asymptotic limit.
This curve supports the singly excited states of Li. All t
singly excited states which are normally designated
1s2np 2Po are obtained by solving the hyperradial equati
from this curve.

The next group of curves approaches the singly exc
states of Li1 asymptotically. In the lower-left frame we show
the first few of them, where the first six curves converge
the 1s2s 3Se, 1s2s 1Se, 1s2p 3Po, and 1s2p 1Po limits of
Li1 at largeR. These curves support doubly excited sta
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PRA 59 1837COMPREHENSIVE ANALYSIS OF ELECTRON . . .
which are designated as 1s2lnl 8, implying that these state
lie below the 1s2l singly excited states of Li1. The higher
adiabatic potentials of this group support doubly exci
states of the type 1s3lnl 8, 1s4lnl 8, etc.

In the lower-right corner of Fig. 1 we show the thir
group of adiabatic potentials. These potentials exhibit
merous sharp avoided crossings with the curves that sup
doubly excited states. The doubly excited curves drop r
idly with increasing values ofR, while the curves in the third
group show clear attractive wells in the smallR region.
These curves approach the doubly excited states of Li1 as-
ymptotically, and they support triply excited states of Li.
the third group, the lowest nine curves approach the 2l2l 8
doubly excited states of Li1 such that they support 2l2l 8nl9
triply excited states of Li.

From the discussion above it is clear that the hypersph
cal adiabatic potentials can be used to separate singly,
bly, and triply excited states. In fact, for the low-lying mem
bers of doubly excited states and triply excited stat
the adiabatic potentials allow us to separate the eigen
tes into (1,1,n), (1,2,n), (1,3,n), . . . and (2,2,n),(2,3,n),
. . . , (3,3,n) manifolds. Within each manifold, there ar
many channels or Rydberg series. The adiabatic poten
clearly illustrate that there are hierarchical ordering in
energy levels — that the states are separated into manif
and then into different Rydberg series. Our major goal in t
paper is to identify features that characterize the differ
manifolds as well as features that distinguish the differ

FIG. 1. Adiabatic hyperspherical potentials for the2Po symme-
try of Li. Top frame: the complete set; lower-left frame: expand
view of the adiabatic potentials that support 1s2nl8 doubly excited
states and some curves that support 1s3lnl 8 doubly excited states
lower-right frame: expanded view of the adiabatic potentials t
support 2l2l 82l 9 triply excited states and some curves that supp
2l3l 8nl9 triply excited states. These curves have sharp avoi
crossings with steep curves that support doubly excited states.
d
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channels within the same manifold. At this point we need
point out that overlap of states from different manifolds c
happen for the higher manifolds of doubly excited states
of triply excited states. Such overlapping resonances fr
different manifolds are known in doubly excited states of
both experimentally@15# and theoretically@16#.

IV. RADIAL CORRELATIONS

We first define the radial density function which is o
tained by integrating the modulus square of the channel fu
tions over all the six spherical anglesr̂ i ( i 51,2,3) and sum-
ming over the intermediate spinS12, namely,

r rad
m ~a1 ,a2 ;R!5(

S12

E uFm
S,S12~V;R!u2dr̂1dr̂2dr̂3 . ~7!

This function gives the radial distributions of the three ele
trons at each hyperradiusR. We first show that the manifolds
are distinguished by the distributions of the radial dens
function r rad

m (a1 ,a2). In Fig. 2~a! we divide the (a1 ,a2)
plane into six domains, or sextants, which are labeled
~I!–~VI ! and separated by the dotted lines where the ra
distances of two of the electrons are identical@indicated ex-
plicitly in Figs. 2~b!–2~d!#. The point where the three dotte
lines intersect is forr 15r 25r 3 . Since the densities of the
three-electron wave functions are symmetric under the
change of any two electrons, the radial density function d
tribution within each domain is equivalent to that for th
other five.

In Fig. 2~b! we first show the density plot for the 1s2nl
singly excited states atR52 a.u., where the potential~the
lowest curve of Fig. 1! is near the minimum. We will focus

t
rt
d

FIG. 2. Radial density functionsr rad
m (a1 ,a2 ;R) on the (a1 ,a2)

plane at fixedR. ~a! the six equivalent domains where the relati
magnitudes of the radial distances of the electrons are indica
The dashed lines indicate where the radial distances of two of
electrons are equal, see~b!–~d!. The point where the three dashe
lines cross is forr 15r 25r 3 . The radial densitiesr rad(a1 ,a2 ;R)
are shown~b! for the 1s2nl singly excited states atR52 a.u.; ~c!
for the 1s2lnl 8 doubly excited states atR53.5 a.u.; ~d! for the
1s3lnl 8 doubly excited states atR58 a.u.; ~e! for the 2l2l 8nl9
triply excited states atR53.5 a.u.; and~f! for the 2l3l 8nl9 triply
excited states atR57 a.u.
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1838 PRA 59TORU MORISHITA AND C. D. LIN
on sextant~I! or ~VI !, wherer 3 is larger than bothr 1 andr 2 .
The peak of this distribution is at (a1 ,a2)'(p/4,p/12).
Since R52 a.u., this givesr 15r 2'0.4 a.u. andr 3'1.9
a.u., which gives roughly the radial distances of the th
electrons in the 1s22p state.

In Fig. 2~c!, it is more convenient to examine sextant~III !
or ~IV !, where r 3 is the smallest. The peak occurs
(a1 ,a2)'(p/4,17p/36). SinceR53.5 a.u., this givesr 3
'0.3 a.u. and r 15r 2'2.5 a.u., thus representing
1s2l2l 8 doubly excited state. In Fig. 2~d!, the peaks in sex-
tant ~III ! or ~IV ! indicate that the maximum of the density
at r 3'0.3 a.u., r 15r 2'5.7 a.u. Therefore this represen
the radial distribution of a 1s3l3l 8 doubly excited state
Comparing Figs. 2~c! and 2~d! in sextant~IV !, we note that
there is an additional approximate nodal line ina1'p/8 in
Fig. 2~d!. This is easily understood since the 1s3l3l 8 doubly
excited states have one additional nodal line in the hyp
anglea1 .

The same procedure can be used to understand that
2~e! represents 2l2l 82l 9 triply excited states where the den
sity peaks atr 15r 25r 3'1.9 a.u. and that Fig. 2~f! repre-
sents a 2l3l 83l 9 triply excited state, see sextant~I! or ~VI !
where the peak occurs atr 15r 2'4.8 a.u. andr 3'1.8 a.u.

The results in Fig. 2 clearly establish that the differe
manifolds of singly, doubly, and triply excited states can
distinguished by the radial distributions of the wave fun
tions. We have shown the results only for the2Po states, but
the conclusion is expected to be true for other symmetr
Thus to characterize the radial correlations of the three e
trons, meaning to describe the relative distances of the t
electrons from the nucleus, it is possible to use the mani
designations. We note that the hierarchical structure in ra
correlation has been discussed in the sense of the hiera
of the adiabatic separation between the hyperradial varia
@17#.

V. CORRELATIONS
IN DOUBLY EXCITED STATES OF LI

We next address what distinguishes the different chan
in a given manifold. Although there are some differences
the radial density functionr rad

m (a1 ,a2 ;R) among the chan-
nels within the same manifold on the (a1 ,a2) plane, the
major differences are in the relative angles among the e
trons. In this section, we focus on the 1s2lnl 8 doubly ex-
cited states of Li.

From the lower corner of Fig. 1, the lowest six adiaba
potential curves support the 1s2lnl 8 doubly excited states
of Li ( 2Po). The six Rydberg series can be designated
1s2s (3Se) np, 1s2s (1Se) np, 1s2p (3Po) ns, 1s2p (3Po)
nd,1s2p(1Po)ns, and 1s2p(1Po)nd series in the indepen
dent electron approximation. The designation above is in
equate since the mixing of the series is expected to be
strong, as in the case of doubly excited states of He. In f
we can compare the six adiabatic potentials with the th
1Po and three3Po adiabatic potentials of He (N52), where
each curve can be labeled by the (K,T)A quantum numbers
@1–4#. The adiabatic potentials in the two systems are v
similar in the smallR region where the two outer electron
are strongly correlated, and the approximate quantum n
bers used to describe the doubly excited states of He ca
e
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used to label the doubly excited states of Li. However,
the higher states of each Rydberg series, the outermost
tron decouples from the two inner ones which form t
1s2s 3Se, 1s2s 1Se, 1s2p 3Po, or 1s2p 1Po series limits of
Li1. For the helium atom, the asymptotic limit is either th
2s or the 2p states of He1 which are degenerate. Thus th
adiabatic potentials in the largeR region for the two systems
are different.

To show the correlation of the two outer electrons in
three-electron atom, the integrated density pl
r rad(a1 ,a2 ;R) are not the most illustrative. However, w
will show the r rad(a1 ,a2 ;R) plots for all six channels to
demonstrate their similarities and their ‘‘minor’’ difference
In Fig. 3 the first two figures in the left column give th
density plots of the two lowest potentials of Fig. 3~a!. Both
belong to theA5 ‘ ‘ 1 ’ ’ channels. Consider the plots in sex
tant~III ! or ~IV !. In these domains,r 3 is the smallest, and the
maxima of the density plots occur atr 15r 2 , illustrating that
they represent intrashell doubly excited states. Comparin
the two figures in the middle column, the density plots in t
same region show little magnitude along ther 15r 2 line.
These two frames represent the ‘‘2 ’’-type doubly excited
states where the wave function vanishes atr 15r 2 or at a1
5p/4. In Fig. 3 the two frames in the far right column sho
the radial density plots for the twoA5 ‘ ‘0’ ’ channels. These
states have small amplitudes in thea15p/4 region, buta1
5p/4 is not a nodal line.

A clearer illustration of doubly excited states is to sho
the correlation between the two doubly excited electrons
similar illustration has been made by Le Dourneuf and W
tanabe@18# for He2 in the grandparent model where the
treated the effect of the innermost electron by adding a s
face operator to the two-electron Hamiltonian. In our tre
ment, this is done by fixingr 3!r 1 ,r 2 @or fixing a2;0, see
Eq. ~2!# and integrating overr̂ 3 . We define the two-electron
density function for the two excited electrons on t
(a1 ,u12) plane by

r2e~a1 ,u12;a2 ,R!5(
S12

E uFm
S,S12~V;R!u2dr̂3dv, ~8!

FIG. 3. The radial density functionsr rad(a1 ,a2) for the six
1s2lnl 8 2Po channels of Li. The leftmost column shows the tw
A51 channels atR53 a.u. The middle column shows theA5
2 channels atR56 a.u. The rightmost column shows the twoA
50 channels atR56 a.u.
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FIG. 4. The rotation-averaged density of the two excited electronsr2e(a1 ,u12;a2 ,R) on the (a1 ,u12) plane for the six 1s2lnl 8 2Po

channels of Li. Each density is evaluated at the values ofR anda2 shown and labeled by the (K,T)A quantum numbers used previously fo
the doubly excited states of two-electron atoms.
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where u12 is the angle betweenr1 and r2 , and dv is the
volume element for the three Euler angles used to desc
the overall rotation of the whole atom. The resulting tw
electron density plots for the six 1s2lnl 8 doubly excited
series of Li are shown in Fig. 4. They are essentially
same as the correlation patterns of doubly excited states
two-electron atom like He or Li1. The top frame of the left
column resembles the (1,0)1 3Po channel of theN52 dou-
bly excited states of He. It is characterized by having
maximum density ata15p/4 andu125p. The lower frame
of the left column is identical to the (0,1)1 1Po channel of
the N52 doubly excited states of He. The density peaks
a15p/4 but the maximum inu12 is at a smaller angle awa
from p. Other figures in Fig. 4 show the correlation patte
characteristic of the doubly excited states of two-elect
atoms and are labeled by the (K,T)A quantum numbers in
dicated. Le Dourneuf and Watanabe showed similar featu
for doubly excited states of He2 and H2 @18#. The correla-
tion properties of doubly excited states of Li are shown to
similar to those in the doubly excited states in He and can
labeled by the same set ofK, T, andA quantum numbers.

VI. CORRELATION IN TRIPLY EXCITED STATES OF LI

To study the correlation properties in triply excited stat
clearly the three electrons are to be treated on an equal
ing. We first discuss the theoretical framework for displayi
and analyzing the correlations for intrashell triply excit
states. We then show the results for the 2l2l 82l 9 intrashell
states of Li.
be
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e
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A. Body-frame analysis of the channel wave functions

Since correlation is a property of the relative motio
among the electrons, the overall rotation of the system d
not play a role. Thus we analyze the wave functions in
body-fixed frame of the atom.

The channel functionFmLM
S,S12(V;R) in the space-fixed

frame can be expressed in terms of channel functi
wmLQ

S,S12(V I ;R) in the body-fixed frame by a general rotatio

FmLM
S,S12~V;R!5 (

Q52L

L

wmLQ
S,S12~V I ;R!DQM

~L ! ~v!, ~9!

whereDQM
(L) (v) is the rotation matrix for the frame transfo

mation, andQ andM are the azimuthal components ofL in
the body-fixed frame and in the space-fixed frame, resp
tively. Here we usev for the three Euler angles which rep
resent the orientation of the atom, and the notationV I for the
five internal angles which represent the ‘‘shape’’ of the s
tem. There are many different ways to choose the inter
coordinates. Mathematical details on the internal coordina
for the general four-body system have been studied in R
@19#. In the present analysis of the triply excited states o
three-electron atom, we usea1 , a2 , and three relative
angles among the electrons. Let us define the three rela
anglesu, h, andf. For r 15r 25r 3 , the three electrons lie
on the surface of a sphere. We define as plane formed by
the three electrons. This plane makes an angleu with respect
to the nucleus, see Fig. 5~a!. On thes plane, the three elec
trons lie on a circle. The angle between electrons 1 and
defined to be 2h, choosing the arc containing electron 3. T
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1840 PRA 59TORU MORISHITA AND C. D. LIN
angle between electron 3 and the line bisecting electron
and 2 is defined to bef, see Fig. 5~a!. The ranges of the
angles are (0<u<p, 0<h<p, 2h<f<h). These three
angles specify a definite shape of the triangle and the p
tion of the triangle with respect to the nucleus.

To visualize the collective motion of the three electron
we introduce the three-electron density functionr3e

m (V I ;R)
which is defined as the rotation-averaged density distribu
for each channel function,

r3e
m ~V I ;R!5(

S12

E uFm
S,S12~V;R!u2dv. ~10!

This density represents the probability for the three electr
to take specific shapes. From Fig. 2~e! it has been shown tha
each intrashell state wave function peaks atr 15r 25r 3 at the
value ofR where the potential is near the minimum. Thus t
correlation of the three electrons atr 15r 25r 3 is expected to
represent the dominant correlation properties of intrashell
ply excited states. In Fig. 5~c! we show the density for an
intrashell state of Li atr 15r 25r 3 as an example. Since eac
density still depends on three internal angles,u, h, andf,
it is not easily displayed for visualization. To display th
global feature of a function in three dimensions we u
‘‘equidensity surfaces’’ which are a surface of constant el
tronic density. The plots in Fig. 5~b! and Fig. 5~c! represent
the contour surfaces where the density is 60% of the m
mum. A contour surface of higher density would fit insid
the surface. Such contour surfaces would provide inform
tion on the most probable shape of the three electrons in e
intrashell triply excited state.

FIG. 5. ~a! Definition of the three angles used to describe
three electrons on a sphere. The three electrons form as plane. On
the plane~the right figure! the three electrons are confined to
circle. ~b! Side view and~c! top view of the equidensity surfac
plots of the three-electron density functionsr3e

m (V I ;R) for a typical
intrashell triply excited state of Li atr 15r 25r 3 . The surface rep-
resents 60% of the maximum density. Each ‘‘slice’’ represents
whole range of the three angles (0<u<p, 0<h<p, 2h<f
<h).
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Next we consider the rotational decomposition of t
wave functions of triply excited states. In Eq.~9!, the chan-
nel function of eachQ componentwmLQ

S,S12 depends on the
choice of the body-frame axes. Following Ref.@20# we de-
fine our body frame by

Sz5r13r21r23r31r33r1 ,

Sy5
A3

2
~r12r2!, ~11!

Sx5Sy3Sz .

This defines thez axis on the body frame to be perpendicul
to the plane spanned by the three electrons. Namely, we
sider a three-electron atom as an oblate molecule. In
body-fixed frame, the channel functions satisfy the relat
@20#

wmL2Q~V I ;R!5p~21!L1QwmLQ* ~V I ;R!, ~12!

where p561 is the parity of the system. We takeT
5uQu (0<T<L) for analysis in what follows. Quantum
symmetries often impose boundary conditions on each r
tional component wave function. More specifically, ea
quantum state with well-defined rotational symmetry, we
defined parity, as well as Pauli exchange symmetry betw
each pair of electrons has nodal surfaces on the wave f
tions in the body-fixed frame. For the body-fixed frame d
fined by Eq.~11!, Watanabe and Lin@20#, and Baoet al. @21#
have shown the following conditions that the internal wa
functions vanish because of their quantum symmetries.

~1! For

p~21!T521, ~13!

the wave function vanishes at the coplanar geometry of
three electrons with nucleus (u5p/2).

~2! For

T51,2, mod 3 ~S53/2!,
~14!

T50, mod 3 ~S51/2!,

the wave function has a nodal surface when the three e
trons form an equilateral triangle (h52p/3, f50) with
r 15r 25r 3 .

~3! For

p~21!L51 ~T50,S53/2!, ~15!

the wave function has a nodal surface when the three e
trons form an isosceles triangle (f50) with r 15r 25r 3 .

These nodal surfaces will be seen in the density funct
if there is only one rotational component represented by

e
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r3e
m,T~V I ;R!55 (

S12

uwmLT
S,S12~V I ;R!u2 ~T50!

r3e
m,T~V I ;R!5(

S12

~ uwmL2T
S,S12 ~V I ;R!u21uwmLT

S,S12~V I ;R!u2! ~TÞ0!.

~16!
ly
he

e
re
r
W
na
di

ke

m

.
n

re
s-
wo

h
te
o-
ig
60

t
th

n
ar

for

co-
ter.

gle
gle
rly
of

ym-
d

t
s
nal

en-

nal

ate.
We will show the partial densities for a number of trip
excited states in the next subsection, but we note that t
are no examples for condition~3! above for the 2l2l 82l 9
states.

For a rigid bodyT is a good quantum number. One of th
possible measures of how ‘‘rigid’’ the three electrons a
moving together can be obtained by determining whetheT
is nearly a good quantum number for the given state.
define the partial normalization constant of each rotatio
component by integrating over all the five internal coor
nates,

NT~R!5
1

8p2E r3e
m,T~V I ;R!dV I , ~17!

where

(
T50

L

NT~R!51 ~18!

at eachR. For the calculation of the above integral, we ta
the five coordinates to be (a1 , a2 , cosu125 r̂1• r̂2 ,
cosu315 r̂3• r̂1 , f235f32f2),which are different from the
variables for the density plots. In this coordinate syste
dV I5d cosa1da2dcosu12d cosu31df23 and the five-
dimensional ~5D! integration is performed numerically
There is noa priori reason to expect that the three electro
move like a rigid body. However, if there is aT component
which is nearly pure, meaning thatNT(R) is nearly equal to
one, then there is a possibility that the motion of the th
electrons will be close to that of a rigid body. Similar inve
tigations have been done for doubly excited states for t
electron systems@5,18,22#.

B. Demonstration of rotor structure
of intrashell triply excited states

The total three-electron density for each of the eig
2l2l 82l 9 intrashell triply excited states has been repor
previously@23#. In Fig. 6 we show the rotational decomp
sition into theT components for each state. Each plot in F
6 represents the contour surface where the density is
of the maximum at fixed r 15r 25r 352.02 a.u. (R
53.5 a.u.). The fraction of eachT-component with respec
to the total density for each state is also indicated in
figure. @This is done by integrating the partial densityr3e

m,T

over the three relative angles (u12,u31,f23) at fixed r 15r 2
5r 3 .]

Let us consider the first four states,4Pe, 2Po, 2Do, and
2De. The total densityr3e

m (V I ;R) for each state, as shown i
the rightmost column of Fig. 6, clearly indicates that they
re

e
l

-

,

s

e

-

t
d

.
%

e

e

essentially identical. In fact, the maximum of the density
each state occurs atu5p/2, h52p/3, andf50. That is,
the most favorable geometry of the three electrons is a
planar equilateral triangle with the nucleus at the cen
Also, clearly each state has a single dominantT component,
and thisT component has the coplanar equilateral trian
geometry for the three electrons. The existence of a sin
dominantT component and that this component has nea
identical shape underlies the basis of the classification
these states as similar to the rotor structure of an oblate s
metric top. From Fig. 6, it is clear that the purity is very goo
for the low-lying 4Pe and 2Po states. For the highest2Do

state the fraction of the nondominantT components is not
small, and the total density for the2Do state is somewha
‘‘irregular.’’ From the molecular physics viewpoint, thi
large mixture is interpreted as due to the rotation-vibratio

FIG. 6. The equidensity surface plots of the three-electron d
sity functionsr3e

m (V I ;R) for the eight intrashell 2l2l 82l 9 triply
excited states of Li atr 15r 25r 353.5 a.u. The total density is
shown in the rightmost column while the density for each rotatio
T component is shown to the left. The fraction of eachT component
is indicated to denote the purity of that component for a given st
~If the fraction is less than 1022, it is listed as 0.00.! The surface
represents 60% of the maximum density.
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coupling which becomes important for states with higher
gular momentum.

The next group consists of the4So state and the2Pe state.
The 4So state has theT50 component only and it has
nodal plane atu5p/2, i.e., this state satisfies Eq.~13!. For
the 2Pe state, theT51 component has a node atu5p/2 but
the T50 has a node at the coplanar equilateral triangle
ometry @see Eq.~14!#. Since each component has a nod
surface, the twoT components have nearly identical comp
sition and thus the purity of this state is not good, as sho
by the fraction of each rotational component and the ‘‘irreg
lar shape’’ in the total density.

The last group consists of the2Se state and the secon
2Po state. The2Se state has one nodal surface at the eq
lateral triangle geometry. This is also true for theT51 com-
ponent of the second2Po state. We note that the nodal su
face of the second2Po state is not due to the symmetry o
the state but the excitation of the angular mode@21#. The
2Po(T50) component contains two nodal surfaces due
symmetry. Thus in comparison theT50 component is less
easily excited and it contributes only about 10% to the to
density.

While the nondominantT components do not contribut
significantly to the total shape densities, it is interesting
examine their shape densities nonetheless. For the four s
in the first group, besides the dominant coplanar equilat
triangular geometry, there are basically three other type
density profiles among theT components. The first is fo
those which satisfy Eq.~13! but not Eq.~14!. This is exem-
plified by the 2De(T51) and 2Do(T52) components. Its
density vanishes when the plane of the three electrons
tains the nucleus, i.e., the density vanishes whenu5p/2. In
other words, coplanar structure is not allowed. The sec
type is for those which satisfy Eq.~14! but not Eq.~13!. This
type of density is exemplified by the2De(T50) component.
Here the three electrons are allowed to be coplanar with
nucleus. However, the three electrons are not allowed
form an equilateral triangle (h52p/3, f50). The third
type is for the states which satisfy both Eq.~13! and Eq.~14!.
The examples are the4Pe(T51), 2Po(T50), and 2Do(T
50) components. The three-electron density is character
by a nodal plane foru5p/2, as well as when the three ele
trons form an equilateral triangle. In other words, it is
combination of the two types above.

To provide a clearer view of the graphs which contain
node atu5p/2, we show two expanded views of the conto
surfaces for the4So(T50) and 2Po(T50) components in
Figs. 7~a! and 7~b!, respectively. The plane of the triangles
for u5p/2, i.e., the coplanar geometry with the nucleus.
Fig. 7~a! the two contour surfaces of 60% of the maximu
lie above and below the plane and the maximum density
inside each surface. This figure clearly illustrates that
three electrons form an equilateral triangle but it cannot
coplanar with the nucleus. Figure 7~b! provides a detailed
view which shows the three electrons can form neither
planar geometry nor an equilateral triangle.

Comparing to the dominantT component, the density
functions for the nondominantT components have additiona
nodal surfaces. When the three electrons form a copla
equilateral triangle, it has the smallest electron repulsion
ergy. When the three electrons are not allowed to form
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coplanar equilateral triangle the Coulomb repulsion ene
will be greater. For each of the four states in the first gro
it happens that it is always possible to find aT component
where the coplanar equilateral triangle is allowed. For su
states, thatT component will be the dominant componen
The otherT components have nodal surfaces and thus h
higher energies and they are not ‘‘occupied’’ by the lo
lying states.

The above analysis indicates that each intrashell 2l2l 82l 9
triply excited state has one dominantT component when the
three electrons are at the same distance from the nuc
When the three electrons are at different distances from
nucleus, we can still define the plane formed by the th
electrons and define the quantization axis to be perpendic
to this plane.@See Eq.~11!.# However, the shapes of th
system become more complicated. Two of the constra
from the quantum symmetry, Eqs.~14! and ~15!, are also
lost. However, the discussion of the densities above for
limit of r 15r 25r 3 is still qualitatively valid even when the

FIG. 7. Expanded views of the equidensity surface plots wh
show the existence of a nodal surface atu5p/2, i.e., when the
nucleus and the three electrons are coplanar. This plane is re
sented by the plane of the paper in the figures. The equiden
surfaces exist in pairs, one above the plane and the other below
plane, but the density vanishes on the plane.

FIG. 8. Purities of the dominantT component as a function ofR
for the six 2l2l 82l 9 triply excited states of Li. The purity for the
2Pe is not good as explained in the text. The dashed lines repre
the region where diabatic crossing among the potentials for tr
excited states has been applied.
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radial distances of the three electrons are slightly differ
since we expect the density not to vary rapidly. A part
verification is to examine the partial normalization const
NT(R) for each state defined by Eq.~17!. This has been
calculated for the sixLÞ0 intrashell state~thus more than
oneT component! in the N52 manifold. In Fig. 8 we show
the calculated fraction of the dominantT component for each
of these six states as a function of the hyperradiusR. Clearly
the purities for the2Po, 4Pe, 2De states, as well as th
second2Po state, are all very good, just nearly identical
the purities obtained when the three electrons are at the s
distance from the nucleus. The purity for the2Pe state is not
very good, as explained above. The purity for the2Do state
undergoes a large change betweenR55 and 8 a.u. becaus
of an avoided crossing with another adiabatic poten
which supports triply excited states in thisR region. The
result above illustrates that the partial normalization cons
NT(R) does not change significantly even when the rad
distances of the three electrons from the nucleus begi
deviate from each other. This purity is essential for the
ergies of the states within the same group to form a ro
structure similar to that of an oblate symmetric top@23#.

VII. SUMMARY AND CONCLUSIONS

In this paper we have analyzed the correlation proper
of the doubly excited states and the triply excited states
three-electron atom such as Li. By examining the hyp
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nt
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spherical channel functions, we showed that manifolds
doubly excited states and those of triply excited states ca
distinguished by the distribution of the radial distances of
three electrons, or in terms of the hyperspherical anglesa1
and a2 . Within the same manifold, the states are dist
guished by the relative angles among the electrons. For d
bly excited states we illustrated that if the motion of t
innermost electron is averaged out, the correlations of
two outer electrons are essentially identical to those in
doubly excited states of the two-electron atom. Thus
same set of quantum numbers for describing doubly exc
states of He can be used directly to describe the doubly
cited states of Li. For triply excited states we analyze
shape of the three electrons when the three electrons a
the same distance from the nucleus. By examining the w
functions in the body frame, we were able to identify t
various modes of internal vibrations of the three electro
By sorting out states that have similar densities, these st
are then shown to display rotor structure similar to that fo
symmetric top.
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