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We study the electron correlations in singly, doubly, and triply excited states of a three-electron atom. While
electron correlation in general is weak for singly excited states, correlation plays major roles in determining the
characteristics of doubly and triply excited states. Using the adiabatic approximation in hyperspherical coor-
dinates, we show that the distinction between singly, doubly, and triply excited states is determined by the
radial correlations, while finer distinctions within doubly or triply excited states lie in the angular correlations.
Partial projections of the body-fixed frame wave functions are used to demonstrate the characteristic nodal
surfaces which provide clues to the energy ordering of the states. We show that doubly excited states of a
three-electron atom exhibit correlations that are similar to the doubly excited states of a two-electron atom. For
the triply excited states, we show that the motion of the three electrons resemble approximately that of a
symmetric top[S1050-294{@9)03902-5

PACS numbgs): 31.10:+z, 31.15.Ja, 31.25.Jf

I. INTRODUCTION do doubly excited states of a many-electron atom resemble
those of a two-electron atom? In what way is the description
The structure of atoms has been studied since the eartp be modified for doubly excited states of a many-electron
days of quantum mechanics. Traditionally, the basic concepatom? Second, can one make the next step to understand the
tual framework for describing a many-electron atom is thecorrelation of triply excited states? Both questions can be
independent electron model. In this model each electron caaddressed by studying the doubly and triply excited states of
occupy one of the many available “orbitals” which are de- a three-electron atom, such as the Li atom.
termined by a variational procedure such as the Hartree-Fock From the theoretical viewpoint, doubly excited states and
approximation. The deviation of the properties of a many-triply excited states are very difficult to treat. First, their
body system from the independent electron approximatiomnergies lie way above the ground state and the lower singly
often is small such that the deviation can be treated by pefexcited states where various variational methods have been
turbation theories or the configuration-interacti@®l) ap-  successfully applied. Second, the spectral density of these
proach. In fact, it is a common practice to define correlationrmultiply excited states is very large. While it is of interest to
energy as the difference between the “exact” energy fromdo specific calculations for individual states, one of the most
the prediction of the Hartree-Fock approximation. This com-urgent needs is to obtain a global understanding and organi-
mon practice is unfortunate since it fails completely to ad-zation of these states. This amounts to identifying common
dress the major issue of electron correlation which is thdeatures as well as features that distinguish them, with the
description of how the motion of electrons in the system isultimate goal of being able to find a new set of quantum
interrelated. Such information is contained in the many-numbers for their classification. Since electron correlation is
electron wave function, not in the “correlation energy.” known to play a major role in determining the nature of
It is well known that the independent electron approxima-multiply excited states, the delineation of their wave func-
tion fails to describe the doubly excited states of two-tions is the first step toward this goal. However, this cannot
electron atoms such as He and Hn the past two decades, be easily done for many-particle systems. ForN\aalectron
major progress has been made on understanding the natureatbm, the spatial part of the wave function is described by a
electron correlations in doubly excited states. Equivalent de3N-dimensional function. Visualization of such a function
scriptions for these doubly excited states have been providegith two-dimensional projection in a manner which would
and a set of new approximate quantum numbers has beesaveal information on how the electrons are correlated is thus
proposed1-5]. In all of these descriptions the motion of the nearly impossible. We comment that the standard procedure
two electrons is treated together and the correlation betweesf calculating the two-body or even three-body correlation
the two electrons is understood as analogous to the vibratiofunctions is not very useful unless one happens to have the
and rotation of a flexible linear triatomic molecule. It is fair “right” variables for displaying the essential features. Thus
to say that correlations in doubly excited states of a twothe search for understanding electron correlations amounts to
electron atom are now well understood. finding the ultimate method of displaying the multidimen-
The success of describing correlations in doubly excitegsional wave functions. Different variables and different pro-
states in a two-electron atom poses two new questions. Firstedures will be used to display the correlation of doubly and
triply excited states.
In this paper we address the correlation properties of dou-
*Present address: Department of Applied Physics and Chemistrily excited states and of triply excited states of a Li atom
the University of Electro-communications, 1-5-1, Chofu-ga-oka,within the adiabatic approximation using hyperspherical co-
Chofu-shi, Tokyo 182-8585, Japan. ordinates. The hyperspherical approach has been used very
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successfully for understanding electron correlations in douwhere H,(Q;R) is the adiabatic Hamiltonian defined at

bly excited states of a two-electron atom. Very accurate comfixed hyperradiusR.

putational procedures have also been developed using a hy- Within the adiabatic approximatiofiL3] the total wave

perspherical approacf6—11]. In Sec. Il we first briefly function for thenth state in channgl can be written as

summarize the computational methods from which the whole

spectrum of the singly, doubly, and triply excited states can H(R,Q)=F"(R) E cDSSlZ(Q;R)Xg , (4

be calculated. In Sec. Ill we show the calculated adiabatic a ST 12

gotenlt\llals tohsee ﬁIOb&.‘I f(laatgresblof thrge—.ellectron a;oms. I\IRIheI‘eFZ(R) is the hyperradial function, which measures the
ec. IV we show that singly, doubly, and triply excite .Sta.tessize of the system® , is the hyperspherical adiabatic chan-

are dlstlngwshed'by Fh's nodal structure and the dlstr|but|pn el function, which contains all the information about elec-

of the wave function in the two hyperangles. The correlat|on[

X . X . ) ron correlations for states within channgl; and x2
properties of doubly excited states will be examined in Sec. o XSy

= S S ; O it
V where it will be shown that their properties are similar to —LLX(1)x(2)}>2x(3)]" is the total spin function with inter-

the doubly excited states of a two-electron atom. The correMediate spirS,,. The channel functiowb, and its associ-

lation properties of triply excited states will be examined in&t€d adiabatic potential ,(R) are obtained by solving the
Sec. V. adiabatic eigenvalue problem at eaRh

[Had Q:R)— U ,(R)]®,(Q;R)=0. ®)
IIl. HYPERSPHERICAL METHOD

Equation (5) is a partial differential equation of the eight
FOR THREE-ELECTRON ATOMS

angles(). To solve this equation, we use the eigenfunctions

The details of the computational method have been pre@f the adiabatic Hamiltonian which contains only the
sented previously12]. In this section we only outline the nucleus-electron attractive potential as the basis set. These

essential steps eigenfunctions can be written in the separable form,

The Schrdinger equation for a three-electron atom in the P"(OR=q” RYVM(F P F 6
independent particle coordinates is given(lsyatomic unit3 W ERI=gu(ar, a2 R) V5 ,0), ©

e

i=1 Fi

where y={l1l5l3l12}, and YEM(ry.12.13)
=[{Y,,(r0) Y1 (r2)}'12Y, (r5)]*" is the coupled angular mo-
mentum of the three electrons. The functigj(a1,a;;R)

(1) satisfies the two-dimensional eigenvalue problem with re-

spect toa; and @, which is then diagonalized using direct

whereZ is the nuclear charge ari#lis the total energy mea- products of discrete variable representaiibVR) basis sets
sured from the triple ionization threshold. The hyperspheri{14]. In Eqg. (4), the spatial part of the channel function
cal method replaces the radial distances r,, andrg of d)i‘slz is coupled to the spin functions. In constructing the
the three electrons from the nucleus by the hyperragiasd  total wave functiony the Pauli exclusion principle has to be

T L

—-E
i<j |ri_rj|

W(rl,l’z,rg):O,

two anglesa;, «, defined by accounted for. To obtain the correct symmetry under ex-
change of any pair of electrons, we apply the antisymmetri-
ri=Rsina, cosaq, zation operator to the basis functions in Ef), and then

diagonalize the adiabatic Hamiltonian with these antisymme-
trized basis functions. In our calculations, we include angular

r,=Rsina,sinaq, 2 . . : A
2 %250 @ configurations of ;<3 for each electron. The resulting adia-
batic potentials and channel functions are accurate enough
rg=Rcosa,, for the analysis of electron correlations in the present work.
where R stands for the size of the system, amg and a, ll. HYPERSPHERICAL ADIABATIC
measure the relative distances of the electrons from the POTENTIAL CURVES

r]ucleus—they are th? variables for measur_ing radial correla- To see the global features of the eigenstates of a three-
tions. In the calculation of the wave functions, we use thegeciron atom, we first examine the adiabatic potentials. In
spherical angles;=(6;,¢;) (i=1,2,3) of each electron in Fig. 1 we show the potential curvés,(R) as functions oR

the space-fixed framéWe will use other sets of angles in calculated for LifP°) as an example. The top figure gives
the body-fixed frame to analyze the wave functions, seehe overall view of the potential curves. At large each
Secs. V and V). Thus the nine-dimensional spatial coordi- curve approaches the two-electron {Lilimits. The lowest
nates of the three electrons in the space-fixed frame are repurve goes to the ground state of'Lin the asymptotic limit.
resented by the hyperradiuR and eight hyperangles This curve supports the singly excited states of Li. All the
{a1,a5,11,75,[3, where we shall us€ at times to denote sinzgly 2e>(<)cited states which are normally designated as
all the eight hyperangles collectively. In hyperspherical co-1S"NP~“P® are obtained by solving the hyperradial equation
ordinates the Schinger equation for the rescaled wave from this curve.

function gy=Rryr,rz¥ is The next group of curves approaches the singly excited
states of Li asymptotically. In the lower-left frame we show
1 2 the first few of them, where the first six curves converge to
— = L H QR —E|#(R,Q)=0, (3 the 1s2s°S%, 1s2s'S°, 1s2p°P°, and 1s2p *P° limits of

2 9)R? Li* at largeR. These curves support doubly excited states
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FIG. 2. Radial density functions;,{ «1,®,;R) on the (@1, a5)
plane at fixedR. (a) the six equivalent domains where the relative
magnitudes of the radial distances of the electrons are indicated.
The dashed lines indicate where the radial distances of two of the
electrons are equal, sék)—(d). The point where the three dashed
lines cross is for;=r,=r5. The radial densitiep; @1,a5;R)
are shown(b) for the 1s?nl singly excited states &=2 a.u.;(c)
for the 1s2Inl’ doubly excited states &=3.5 a.u.;(d) for the
1s3Inl’ doubly excited states &=8 a.u.;(e) for the 221'nl”
triply excited states aR=3.5 a.u.; andf) for the 231'nl" triply
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FIG. 1. Adiabatic hyperspherical potentials for the°® symme- ited states dR— 7
try of Li. Top frame: the complete set; lower-left frame: expandedexcI ed states ax=7 a.u.

view of the adiabatic potentials that suppos2hl’ doubly excited o . . .
states and some curves that supp@3lhl’ doubly excited states; channels within the same manifold. At this point we need to

lower-right frame: expanded view of the adiabatic potentials thaf?0int out that overlap of states from different manifolds can
support 22121" triply excited states and some curves that supporth@ppen for the higher manifolds of doubly excited states and

2131"nl" triply excited states. These curves have sharp avoide®f triply excited states. Such overlapping resonances from
crossings with steep curves that support doubly excited states.  different manifolds are known in doubly excited states of He

, , ) ) both experimentally15] and theoretically 16].
which are designated asaInl’, implying that these states

lie below the B2l singly excited states of [fi. The higher
adiabatic potentials of this group support doubly excited

states of the typesBInl’, 1s4inl’, etc. _ We first define the radial density function which is ob-
In the lower-right corner of Fig. 1 we show the third tajned by integrating the modulus square of the channel func-

group of adiabatic potentials. These potentials exhibit NUtions over all the six spherical angles(i=1,2,3) and sum-
merous sharp avoided crossings with the curves that Squoﬁ’iing over the intermediate spBy, namely’ '

doubly excited states. The doubly excited curves drop rap-
idly with increasing values dR, while the curves in the third
group show clear attractive wells in the sm&l region. P?Zd(al,az;RFz J|(I>S'512(Q;R)|2dfldf2dfg. )
These curves approach the doubly excited states ofals- Si2 a

ymptotically, and they support triply excited states of Li. In

the third group, the lowest nine curves approach thzi”2  This function gives the radial distributions of the three elec-

doubly excited states of L'i such that they supporti21'nl” trons at each hyperradilis We first show that the manifolds
triply excited states of Li. are distinguished by the distributions of the radial density
From the discussion above it is clear that the hyperspherifunction pf;{ @y, a5). In Fig. 2a) we divide the @,a5)
cal adiabatic potentials can be used to separate singly, doplane into six domains, or sextants, which are labeled by
bly, and triply excited states. In fact, for the low-lying mem- (I)—(VI) and separated by the dotted lines where the radial
bers of doubly excited states and triply excited statesgistances of two of the electrons are identigatlicated ex-
the adiabatic potentials allow us to separate the eigenstglicitly in Figs. 2(b)—2(d)]. The point where the three dotted
tesinto (1,19), (1,2n), (1,3n), ... and (2,3),(2,3n), lines intersect is for,=r,=r3. Since the densities of the
..., (8,3n) manifolds. Within each manifold, there are three-electron wave functions are symmetric under the ex-
many channels or Rydberg series. The adiabatic potentiaghange of any two electrons, the radial density function dis-
clearly illustrate that there are hierarchical ordering in thetribution within each domain is equivalent to that for the
energy levels — that the states are separated into manifoldgher five.
and then into different Rydberg series. Our major goal in this  In Fig. 2(b) we first show the density plot for thesinl
paper is to identify features that characterize the differensingly excited states &=2 a.u., where the potentiélhe
manifolds as well as features that distinguish the differentowest curve of Fig. Lis near the minimum. We will focus

IV. RADIAL CORRELATIONS
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on sextantl) or (VI), wherer ; is larger than both,; andr,. A=+ A=- A=0
The peak of this distribution is ataf ,«,)~(7/4,7/12). ’
SinceR=2 a.u., this gives;=r,~0.4 a.u. andrz~1.9
a.u., which gives roughly the radial distances of the three
electrons in the §22p state.

In Fig. 2(c), it is more convenient to examine sextahk)
or (IV), wherers is the smallest. The peak occurs at md"”’
(a1,a9)~(m/4,177/36). SinceR=3.5 a.u., this gives,
~0.3 a.u. andr,=r,~2.5 a.u.,, thus representing a
1s2121" doubly excited state. In Fig.(@), the peaks in sex-
tant(lll) or (IV) indicate that the maximum of the density is
atr;=~0.3 a.u., r;=r,~5.7 a.u. Therefore this represents
the radial distribution of a 4313I' doubly excited state.
Comparing Figs. @) and Zd) in sextant(IV), we note that
there is an additional approximate nodal linedf~ /8 in

o, w/d

Fig. 2d). This is easily understood since the313|" doubly FIG. 3. The radial density functions,,{c;,a,) for the six
excited states have one additional nodal line in the hyperisoini’ 2P° channels of Li. The leftmost column shows the two
anglea; . A=+ channels aR=3 a.u. The middle column shows the=

The same procedure can be used to understand that Fig. channels aR=6 a.u. The rightmost column shows the tWo
2(e) represents 21’ 21" triply excited states where the den- =0 channels aR=6 a.u.
sity peaks atr,=r,=r3~1.9 a.u. and that Fig.(® repre-
sents a P31'3l” triply excited state, see sextafl} or (VI)
where the peak occurs at=r,~4.8 a.u. and;~1.8 a.u.

The results in Fig. 2 clearly establish that the different
manifolds of singly, doubly, and triply excited states can be
distinguished by the radial distributions of the wave func-
tions. We have shown the results only for the° states, but
the conclusion is expected to be true for other symmetrie2¢!ab:
Thus to characterize the radial correlations of the three ele@® different. . .
trons, meaning to describe the relative distances of the thre% To show the correlation of the two outer elect_rons n a
electrons from the nucleus, it is possible to use the manifold ree-electron atom, the m_tegrate_d density plots
designations. We note that the hierarchical structure in radidirad @1, @2:R) are not the most illustrative. However, we
correlation has been discussed in the sense of the hierarcHyj!l Show the prafay,a;;R) plots for all six channels to

of the adiabatic separation between the hyperradial variabld€monstrate their similarities and their “minor” differences.
[17]. In Fig. 3 the first two figures in the left column give the

density plots of the two lowest potentials of FigaB Both
belong to theA="* +'' channels. Consider the plots in sex-
V. CORRELATIONS tant(lll) or (IV). In these domains, is the smallest, and the
IN DOUBLY EXCITED STATES OF LI maxima of the density plots occur at=r,, illustrating that

We next address what distinguishes the different channei$1€y represent intrashell doubly excited states. Comparing to
in a given manifold. Although there are some differences inthe two figures in the middle column, the density plots in the
the radial density functiop’.{ e ,a,;R) among the chan- Same region show little magnltud,? along the=r, Ilne.
nels within the same manifold on thex{,e,) plane, the 1nese two frames represent the-"-type doubly excited
major differences are in the relative angles among the electates where the wave function vanishes @tr, or ata,
trons. In this section, we focus on thaZInl’ doubly ex- =1/4. I_n Fig. che two frames in the far right column show
cited states of Li. the radial density plots for the twd="'0"" channels. These

From the lower corner of Fig. 1, the lowest six adiabaticStates have small amplitudes in the= /4 region, buta,

potential curves support thes2inl’ doubly excited states = 7/4 is not a nodal line. _ _

of Li (2P°). The six Rydberg series can be designated as A clearer illustration of doubly excited states is to show
1525 (3S%) np, 1s2s(!S%)np, 1s2p(3P°)ns, 1s2p (3P°) the correlation between the two doubly excited electrons. A
nd 152p(1P°)'ns and ]szp(iPO)nd series in the indepen- Similar illustration has been made by Le Dourneuf and Wa-

dent electron approximation. The designation above is inad@"abe[18] for He™ in the grandparent model where they
equate since the mixing of the series is expected to be Ve?;eated the effect of the innermost elec'tron' by adding a sur-
strong, as in the case of doubly excited states of He. In facfac€ operator to the two-electron Hamiltonian. In our treat-
we can compare the six adiabatic potentials with the thre&€nt, this IS done b}’ fixings<ry,ra [o.r fixing a;~0, see
1P and three®P° adiabatic potentials of HEN=2), where  Ed.(2)] and integrating over;. We define the two-electron
each curve can be labeled by thé,'Q')A guantum numbers density function for the two excited electrons on the
[1-4]. The adiabatic potentials in the two systems are venfa1,61,) plane by

similar in the smallR region where the two outer electrons

are strongly correlated, and the approximate quantum num- (4, 6,,:a,,R)= >, |<I>S'512(Q;R)|2dF3dw, )
bers used to describe the doubly excited states of He can be S12 K’

used to label the doubly excited states of Li. However, for
the higher states of each Rydberg series, the outermost elec-
tron decouples from the two inner ones which form the
1525338, 1s2s'S?, 1s2p 3P, or 1s2p 1P° series limits of

Li*. For the helium atom, the asymptotic limit is either the
2s or the 2 states of H& which are degenerate. Thus the
diabatic potentials in the largeregion for the two systems
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FIG. 4. The rotation-averaged density of the two excited electpap&y;,61,;a,,R) on the (@;,6;,) plane for the six $2Inl’ 2P°
channels of Li. Each density is evaluated at the valueR afid &, shown and labeled by thé(T)” quantum numbers used previously for
the doubly excited states of two-electron atoms.

where 6, is the angle between; andr,, anddw is the A. Body-frame analysis of the channel wave functions
volume element for the three Euler angles used to describe gjnce correlation is a property of the relative motions

the overall rotation of the whole atom. The resulting two- among the electrons, the overall rotation of the system does
electron density plots for the sixs2Inl’ doubly excited not play a role. Thus we analyze the wave functions in the
series of Li are shown in Fig. 4. They are essentially thehody-fixed frame of the atom.

same as the correlation patterns of doubly excited states of & The channel functiond>>(Q;R) in the space-fixed

two-electron atom like He or Li. The top frame of the left frame can be expressed#Li:}lA terms of channel functions

column resembles the (1,0) *P° channel of theN=2 dou- SSi12r () -pY i g :
bly excited states of He. It is characterized by having the(P"LQ(QI :R) in the body-fixed frame by a general rotation
maximum density atv;=m/4 and 6,,= 7. The lower frame L
of the left column is identical to the (0,1) 1P° channel of SO R)= > goS’LSg(Q, RDSY(w),  (9)

the N=2 doubly excited states of He. The density peaks at * Q=-L #

aq= /4 but the maximum ird,, is at a smaller angle away WL ) . _

from . Other figures in Fig. 4 show the correlation patternWh€reDqu(®) is the rotation matrix for the frame transfor-
characteristic of the doubly excited states of two-electrofMation, andQ andM are the azimuthal components lofin
atoms and are labeled by th& (T)” quantum numbers in- the body-fixed frame and in the space-fixed frame;, respec-
dicated. Le Dourneuf and Watanabe showed similar feature@vely. Here we useo for the three Euler angles which rep-
for doubly excited states of Heand H™ [18]. The correla- reSent the orientation of the atom, and the notatirior the

tion properties of doubly excited states of Li are shown to beiVe internal angles which represent the “shape” of the sys-

similar to those in the doubly excited states in He and can b&m- There are many different ways to choose the internal
labeled by the same set &f T, andA quantum numbers. coordinates. Mathematical details on the internal coordinates

for the general four-body system have been studied in Ref.

[19]. In the present analysis of the triply excited states of a

three-electron atom, we use;, a,, and three relative

angles among the electrons. Let us define the three relative
To study the correlation properties in triply excited statesanglesé, », and¢. Forr,=r,=rg3, the three electrons lie

clearly the three electrons are to be treated on an equal footn the surface of a sphere. We define glane formed by

ing. We first discuss the theoretical framework for displayingthe three electrons. This plane makes an afgléth respect

and analyzing the correlations for intrashell triply excitedto the nucleus, see Fig(®. On theo plane, the three elec-

states. We then show the results for tH&1221"” intrashell  trons lie on a circle. The angle between electrons 1 and 2 is

states of Li. defined to be 2, choosing the arc containing electron 3. The

VI. CORRELATION IN TRIPLY EXCITED STATES OF LI
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Next we consider the rotational decomposition of the
wave functions of triply excited states. In E®), the chan-
nel function of eachQ componentcpifg depends on the
choice of the body-frame axes. Following REZ0| we de-
fine our body frame by

S,=rXry+roXrz+rzXry,

3
sy=g<r1—r2>, 1y

S=5XS,.

T

FIG. 5. (a) Definition of the three angles used to describe theThis defines the axis on the body frame to be perpendicular
three electrons on a sphere. The three electrons fasnplane. On . e pjane spanned by the three electrons. Namely, we con-
the plane(the right figure the three electrons are confined to a sider a three-electron atom as an oblate molecule. In the

circle. (b) Side view and(c) top view of the equidensity surface " . . .
plots of the three-electron density functigris((2, ;R) for a typical on(%y fixed frame, the channel functions satisfy the relation

intrashell triply excited state of Li at;=r,=r3. The surface rep-
resents 60% of the maximum density. Each “slice” represents the o L1Q )
whole range of the three angles<@<mw, O<gy<m, —9n<¢ QDML—Q(QI Ry=m(-1) qD,uLQ(Q| R, (12
<7).
where w=*1 is the parity of the system. We take

angle between electron 3 and the line bisecting electrons ¥£|Q| (0<T=<L) for analysis in what follows. Quantum
and 2 is defined to be), see Fig. ). The ranges of the Symmetries often impose boundary conditions on each rota-
angles are (& <m, O<n<m, —n<¢=<7). Thesethree tional component wave function. More specifically, each
angles specify a definite shape of the triangle and the posRuantum state with well-defined rotational symmetry, well-
tion of the triangle with respect to the nucleus. defined parity, as well as Pauli exchange symmetry between

To visualize the collective motion of the three electrons,each pair of electrons has nodal surfaces on the wave func-
we introduce the three-electron density functigh(€, ;R) tions in the body-fixed frame. For the body-fixed frame de-
which is defined as the rotation-averaged density distributiofined by Eq.(11), Watanabe and Lif20], and Bacet al.[21]

for each channel function, have shown the following conditions that the internal wave
functions vanish because of their quantum symmetries.
(1) For
PLQR=2 | [@FM(Q:R)Pdo. (10 m(-1)T=-1, (13
12

the wave function vanishes at the coplanar geometry of the

. . . three electrons with nucleu®€ «#/2).
This density represents the probability for the three electrons (2) For with nucleud € /2)

to take specific shapes. From Figepit has been shown that
each intrashell state wave function peaksatr,=r3 at the
value of R where the potential is near the minimum. Thus the
correlation of the three electronsrat=r,=r ; is expected to
represent the dominant correlation properties of intrashell tri- T=0, mod 3 (S=1/2),

ply excited states. In Fig.(6) we show the density for an )

intrashell state of Li at;=r,=r as an example. Since each the wave function has a nodal surface when the thrge elec-
density still depends on three internal angles,», and¢,  trons form an equilateral trianglen{=2/3, ¢=0) with

it is not easily displayed for visualization. To display the F1=I2=rs.

global feature of a function in three dimensions we use (3) For

“equidensity surfaces” which are a surface of constant elec-

tronic density. The plots in Fig.(B) and Fig. %c) represent 7(-1'=1 (T=0S=3/2), (15

the contour surfaces where the density is 60% of the maxi-

mum. A contour surface of higher density would fit inside the wave function has a nodal surface when the three elec-
the surface. Such contour surfaces would provide informatrons form an isosceles triangleéd&0) withr;=r,=r3.

tion on the most probable shape of the three electrons in each These nodal surfaces will be seen in the density function
intrashell triply excited state. if there is only one rotational component represented by

T=12, mod 3 (S=3/2),
(14
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z eS2R(Q R)2 (T=0)
Pl (Q);R) = (16)

PEI(iR=2 (92 R+ @S O R)?) (T#0).

We will show the partial densities for a number of triply essentially identical. In fact, the maximum of the density for
excited states in the next subsection, but we note that thereach state occurs #=w/2, »=2mu/3, and$=0. That is,
are no examples for conditio(8) above for the 21'2]”  the most favorable geometry of the three electrons is a co-
states. planar equilateral triangle with the nucleus at the center.
For a rigid bodyT is a good quantum number. One of the Also, clearly each state has a single domir&mbmponent,
possible measures of how “rigid” the three electrons areand this T component has the coplanar equilateral triangle
moving together can be obtained by determining whether geometry for the three electrons. The existence of a single
is nearly a good quantum number for the given state. WejominantT component and that this component has nearly
define the partial normalization constant of each rotationajgentical shape underlies the basis of the classification of
component by integrating over all the five internal coordi-ihese states as similar to the rotor structure of an oblate sym-
nates, metric top. From Fig. 6, it is clear that the purity is very good
L for the low-lying “P® and ?P° states. For the highe$D°
_ T0o - state the fraction of the nondominaftcomponents is not
Nr(R)= QJ Pae (QiR)dQy, 17 small, and the total density for th&D° statg is somewhat
“irregular.” From the molecular physics viewpoint, this
where large mixture is interpreted as due to the rotation-vibrational

L
2 N(R)=1 (18) T=0 T=1 T=2 Total
T=0 4P e

1.00 0.00
at eachR. For the calculation of the above integral, we take % & %

the five coordinates to be af, a,, COSO,=;-T,,

> C 0.00 1.00
COSH31=r3-T1, 3= Pp3— ¢p,),which are different from the % % %

variables for the density plots. In this coordinate system,
dQ,=d cos a;da,d cosé,,d cosbydd,; and the five- 002 0.80 0.17

dimensional (5D) integration is performed numerically. % % % %
There is noa priori reason to expect that the three electrons 0 07 0 07 0 86 2pe
move like a rigid body. However, if there isTacomponent ' ' ? ] ?
which is nearly pure, meaning thit;(R) is nearly equal to % %

one, then there is a possibility that the motion of the three
electrons will be close to that of a rigid body. Similar inves- L oo 4go

tigations have been done for doubly excited states for two-
electron systemfs,18,23. = = =

0.35 0.65 2pe

B. Demonstration of rotor structure % % %

of intrashell triply excited states

The total three-electron density for each of the eight

2121'21" intrashell triply excited states has been reported 1.00 ’s¢
previously[23]. In Fig. 6 we show the rotational decompo- % %
sition into theT components for each state. Each plot in Fig. 0 10 0 90 2po
6 represents the contour surface where the density is 60% ' '

of the maximum at fixed r;=r,=r;=2.02 a.u. R & % %}

=3.5 a.u.). The fraction of each-component with respect . .
to the total density for each state is also indicated in theS i FLSr.nc?i.o-rln-:e Me?gd%r;s;tgrstuhr;azf Eltoitﬁt:)afst:;:g??;le?:?n den-
figure. [This is done by integrating the partial denshyéT y P3er>5i J by

i . 5 excited states of Li at;=r,=r3;=3.5 a.u. The total density is
over the three relative angleg6, 631, ¢,3) at fixedr,=r, shown in the rightmost column while the density for each rotational

=rs.] ) ] e 240 2mo0 T component is shown to the left. The fraction of edotomponent

Let us consider the first four state®®, ?P°, ?D° and s indicated to denote the purity of that component for a given state.
D®. The total density4,(Q, ;R) for each state, as shown in (if the fraction is less than 16, it is listed as 0.00.The surface
the rightmost column of Fig. 6, clearly indicates that they arerepresents 60% of the maximum density.
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coupling which becomes important for states with higher an-
gular momentum.

The next group consists of tH&° state and théP® state.
The 4S° state has th&=0 component only and it has a
nodal plane a¥= /2, i.e., this state satisfies E(L3). For
the 2P® state, theT =1 component has a node @t /2 but
the T=0 has a node at the coplanar equilateral triangle ge-
ometry [see Eq.(14)]. Since each component has a nodal
surface, the twd@ components have nearly identical compo-
sition and thus the purity of this state is not good, as shown
by the fraction of each rotational component and the “irregu-
lar shape” in the total density.

The last group consists of th&s® state and the second
2pO state. The?S® state has one nodal surface at the equi-
lateral triangle geometry. This is also true for fhe 1 com- FIG. 7. Expanded views of the equidensity surface plots which
ponent of the secondP® state. We note that the nodal sur- show the existence of a nodal surfaceéat w/2, i.e., when the
face of the secondP° state is not due to the symmetry of nucleus and the three electrons are coplanar. This plane is repre-
the state but the excitation of the angular mg@é]. The  sented by the plane of the paper in the figures. The equidensity
2P°(T=0) component contains two nodal surfaces due toourfaces exist in pairs, one above the plane and the other below the
symmetry. Thus in comparison the=0 component is less Plane but the density vanishes on the plane.
easily excited and it contributes only about 10% to the total
density. coplanar equilateral triangle the Coulomb repulsion energy

While the nondominanT components do not contribute Will be greater. For each of the four states in the first group,
significantly to the total shape densities, it is interesting tdt happens that it is always possible to findra&component
examine their shape densities nonetheless. For the four state§ere the coplanar equilateral triangle is allowed. For such
in the first group, besides the dominant coplanar equilateréitates, thaff component will be the dominant component.
triangular geometry, there are basically three other types ofhe otherT components have nodal surfaces and thus have
density profiles among th& components. The first is for higher energies and they are not “occupied” by the low-
those which satisfy Eq13) but not Eq.(14). This is exem-  lying states.
plified by the 2Dé(T=1) and 2D°(T=2) components. Its The above analysis indicates that each intrasHell 21"
density vanishes when the plane of the three electrons cofiply excited state has one dominahtomponent when the
tains the nucleus, i.e., the density vanishes whenr/2. In  three electrons are at the same distance from the nucleus.
other words, coplanar structure is not allowed. The secondVhen the three electrons are at different distances from the
type is for those which satisfy E¢L4) but not Eq.(13). This  nucleus, we can still define the plane formed by the three
type of density is exemplified by theD®(T=0) component. ~€lectrons and define the quantization axis to be perpendicular
Here the three electrons are allowed to be coplanar with thi this plane.[See Eq.(11).] However, the shapes of the
nucleus. However, the three electrons are not allowed t§ystem become more complicated. Two of the constraints
form an equilateral triangle 5{=2m/3, ¢=0). The third from the quantum symmetry, Eq&l4) and (15), are also

type is for the states which satisfy both E#j3) and Eq.(14).  lost. However, the discussion of the densities above for the
The examples are théPe(T=1), 2P°(T=0), and2D°(T  limit of ry=r,=r3 is still qualitatively valid even when the
=0) components. The three-electron density is characterized

by a nodal plane f0_|9= 72, as well as when the three_ellec— 1 P S— Yy S,

trons form an equilateral triangle. In other words, it is a - - —
combination of the two types above. sk . P aa 4peT=0)

To provide a clearer view of the graphs which contain a
node atf= 7/2, we show two expanded views of the contour __

surfaces for the’s°(T=0) and 2P°(T=0) components in & *°f /\%\
N 2Pe(T=1)
S

2po2) (1=~

Figs. 7a) and 1b), respectively. The plane of the triangles is
for #=/2, i.e., the coplanar geometry with the nucleus. In Z o4} ‘2D0 i
Fig. 7(a) the two contour surfaces of 60% of the maximum
lie above and below the plane and the maximum density lies 4, }
inside each surface. This figure clearly illustrates that the
three electrons form an equilateral triangle but it cannot be ) . .
coplanar with the nucleus. Figurgbj provides a detailed 0 5 10 15 20
view which shows the three electrons can form neither co- R (a.u.)
planar geometry nor an equilateral triangle. o

Comparing to the dominanT component, the density  FiG. 8. Purities of the dominait component as a function &
functions for the nondominarit components have additional for the six 221'21” triply excited states of Li. The purity for the
nodal surfaces. When the three electrons form a coplanape is not good as explained in the text. The dashed lines represent
equilateral triangle, it has the smallest electron repulsion enthe region where diabatic crossing among the potentials for triply
ergy. When the three electrons are not allowed to form axcited states has been applied.
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radial distances of the three electrons are slightly differenspherical channel functions, we showed that manifolds of
since we expect the density not to vary rapidly. A partialdoubly excited states and those of triply excited states can be
verification is to examine the partial normalization constantdistinguished by the distribution of the radial distances of the
N1(R) for each state defined by Eql7). This has been three electrons, or in terms of the hyperspherical angles
calculated for the sit. #0 intrashell statéthus more than and «,. Within the same manifold, the states are distin-
oneT componentin the N=2 manifold. In Fig. 8 we show guished by the relative angles among the electrons. For dou-
the calculated fraction of the dominahtomponent for each bly excited states we illustrated that if the motion of the
of these six states as a function of the hyperradiu€learly  innermost electron is averaged out, the correlations of the
the purities for the2P°, “Pe, 2D°® states, as well as the two outer electrons are essentially identical to those in the
second?P? state, are all very good, just nearly identical to doubly excited states of the two-electron atom. Thus the
the purities obtained when the three electrons are at the sansame set of quantum numbers for describing doubly excited
distance from the nucleus. The purity for tRB® state is not  states of He can be used directly to describe the doubly ex-
very good, as explained above. The purity for th2° state  cited states of Li. For triply excited states we analyze the
undergoes a large change betw&en5 and 8 a.u. because shape of the three electrons when the three electrons are at
of an avoided crossing with another adiabatic potentiathe same distance from the nucleus. By examining the wave
which supports triply excited states in thigs region. The functions in the body frame, we were able to identify the
result above illustrates that the partial normalization constartarious modes of internal vibrations of the three electrons.
N1(R) does not change significantly even when the radiaBy sorting out states that have similar densities, these states
distances of the three electrons from the nucleus begin tare then shown to display rotor structure similar to that for a
deviate from each other. This purity is essential for the ensymmetric top.
ergies of the states within the same group to form a rotor
structure similar to that of an oblate symmetric {@3].
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