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Abstract. We present a quantum mechanical method for calculating the ejected electron
probability distribution in ion–atom collisions. The time-dependent Schrödinger equation,
formulated with a classical straight-line trajectory for the internuclear motion, is integrated
directly on a two-centre momentum space grid. The time-dependent wavefunction at large
internuclear separation is analysed to extract the ejected momentum distribution as well as
excitation and charge transfer amplitudes. Calculations have been performed at collision
velocities of 1, 2 and 5 au for proton and antiproton collisions with atomic hydrogen, at
a few impact parameters. Excitation and charge transfer probabilities are also calculated to
check against results obtained from the close-coupling method. The ejected electron momentum
distributions are shown.

1. Introduction

Over the past two decades great strides have been made in the study of ion–atom collisions.
Experimentally cross sections for the dominant processes for many collision systems have
been measured. These measurements have stimulated much theoretical work. While various
methods have been used from time to time to interpret experimental results, the close-
coupling methods have been proven to be the workhorse for the prediction of experimental
results over a broad range of energies and collision systems. The close-coupling method is
based on expanding the time-dependent wavefunction in a finite configuration space volume
and basis functions are designed to account for the two-centre nature of an ion–atom collision
event. The finite-volume aspect of close coupling limits its application to excitation and
charge transfer processes. By using pseudostates to approximate the continuum electrons in
an averaged way, the close-coupling method has also been relatively successful in predicting
total ionization cross sections. However, a complete measurement of the ionization also
determines the momentum distribution of the ejected electron which is beyond the scope of
the close-coupling method.

In recent years a novel experimental technique for atomic collisions is the cold target
recoil ion momentum spectroscopy (COLTRIMS) (Ullrichet al 1997), which strives to
determine fully the momentum components of the reaction products. For ionization events,
this offers complete determination of all the momentum components of a three-body break-
up process and offers a quantum mechanically complete experiment. Data for many
collision systems from COLTRIMS experiments have been reported (Woodet al 1997,
Moshammeret al 1997), but the theoretical interpretations available have been rather
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limited. In the regime where the ionization can be treated perturbatively, the plane-
wave Born approximation and the continuum distorted-wave–eikonal initial-state (CDW-
EIS) theory have proven to be quite successful (Rodriguezet al 1995, Fainstein 1996,
O’Rourke and Crothers 1997). Although close-coupling expansion based on atomic orbitals
only on one centre can be formulated (Morishitaet al 1996) to describe ionization in full
detail, in principle the method is inadequate to account for the two-centre nature of the
collision event and thus is limited to the higher energy region as well. The more interesting
regime for ionization where little is understood is the low-energy region and collisions
involving multiply charged ions. Different mechanisms for ionization at low energies have
been addressed, in particular, the importance of the so-called saddle-point electrons and
its region of prominence, have been widely debated (Olson 1983, Winter and Lin 1984,
DuBois 1992, Irbyet al 1993, Súarezet al 1993, Pieksmaet al 1994).

To our knowledge, there are a few other attempts at describing ionization in the
nonperturbative regime. The classical trajectory Monte Carlo (CTMC) method has been
extensively performed to compare with COLTRIMS experiments with some success and
some failure (D̈orner et al 1996, Abdallahet al 1997). This method is limited by its
classical treatment of the motion of the electron and its associated ambiguities. An attempt
is also being made (Illescaset al 1997) to use CTMC to determine roughly the ejected
electron spectra and then tailor a set of pseudostates for a close-coupling calculation.
Direct integration of the time-dependent Schrödinger equation (Wellset al 1996) on a
two-dimensional grid for protons on hydrogen, using the soft-core Coulomb potential,
shows electron distributions as the projectile ion passes the target. This calculation gives
a good qualitative representation of the collision, but cannot be directly compared with the
COLTRIMS experiment owing to the model nature of the calculation. Another approach is
the work of Macek and Ovchinnikov (Ovchinnikovet al 1997). They perform calculations
by a Sturmian expansion in a Fourier space. With some approximations, they have made
predictions on the ejected electron spectra for ionization of atomic hydrogen by protons at
low energies.

In this paper we set out to calculate the full electron momentum distribution of the
ejected electron for ion–atom collisions. Our aim is to be able to address a wide range of
collision systems as well as collision energies. Thus in the higher energy region we hope
to reproduce results obtainable from perturbation calculations. In the low-energy region
we also hope to obtain a full description of the ionization process, and thus to evaluate
the importance of the saddle-point electrons, at different collision velocities and for various
systems, in comparison with the so-called direct ionization and electron capture to the
continuum. It is our goal that we obtain the full electron momentum spectra in a single
calculation—the theoretical equivalent of a COLTRIMS experiment. In fact, we aim to
solve the full time-dependent Schrödinger equation exactly, in the numerical sense, which
automatically also gives excitation and charge transfer probabilities. Since it is a ‘complete’
calculation, it is expected to describe both the dominant and the weak processes. In fact at
low collision energies and for collisions with multiply charged ions, ionization is a weak
process. To ensure that our calculation is meaningful we need to be able to obtain accurate
excitation and charge transfer probabilities as well. This has the advantage that results
from the close-coupling calculation can be used to check the new method. By allowing the
method to be applicable to the higher velocity region, we can also compare with the results
obtained from perturbation theory.

We envision that this approach will give full information on all the channels in an
ion–atom collision event. Any form of close-coupling calculation is not desirable since
this requires a large basis set and the evaluation of many two-centre matrix elements. It is
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more convenient to solve the time-dependent Schrödinger equation directly in configuration
space (Schultzet al 1997) or in momentum space (Mombergeret al 1996), where there
is no need to evaluate the large number of matrix elements present in the close-coupling
method. Both methods consist of a lattice discretization in their respective spaces. In order
to achieve reasonable representation of the oscillating time-dependent wavefunction, the
number of grid points in each dimension cannot be too limited. Thus in a realistic three-
dimensional calculation the memory requirement for a typical lattice calculation is quite
large and can be performed only on massively parallel machines. In addition the momentum
space calculation is computationally intensive due to the presence of convolution integrals.
Granted both large-scale calculations were originally intended for relativistic collisions, total
cross sections for the nonrelativistic case have been reported, which can be obtained by the
close-coupling method with less computational effort.

Our method also directly integrates the time-dependent Schrödinger equation. We
construct the electron wavefunction in momentum space. The wavefunction is expanded in
spherical harmonics about both target and projectile centres, both of which are stationary in
momentum space, assuming a straight-line projectile trajectory. The two-centre expansion
limits the number of harmonics necessary thereby reducing the computational effort. Indeed,
our program runs on a PC Pentium Pro instead of a multiprocessor machine. The main
advantage to expressing the wavefunction in momentum space is that one knows the
wavefunction is confined, i.e. the wavefunction goes to zero for large momentum. To
avoid difficulties in evaluating the convolution integrals present in the momentum space
Schr̈odinger equation, the basis is transformed to coordinate space; a similar strategy to the
three-dimensional Fourier grid method (Brau and Semay 1998).

To our knowledge we obtain the first quantum mechanical ejected electron distributions
in the nonperturbative regime for nonzero impact parameter. In this paper we introduce the
two-centre momentum space discretization (TCMSD) method, and show results to argue
for the method’s validity. The first section explains the general strategy for efficiently
calculating the time derivative of the electron wavefunction. The second section discusses
the construction of the wavefunction for ion–atom collisions, how to propagate it, and how
to analyse the final state. The third section shows results for proton and antiproton impact
on hydrogen, focusing mainly on the ionization process. Finally, future directions for the
TCMSD method are discussed.

2. Preliminary comments

The program developed here solves the time-dependent Schrödinger equation,

i
∂ψ

∂t
= Hψ. (1)

One can expand the electronic wavefunction in some arbitrary, time-independent finite basis,

ψ(Er, t) =
M∑
k=1

ck(t)4k(Er), (2)

wherek labels each basis state and all the time dependence is taken into the coefficients
ck. If ψ is completelyrepresented by the basis4 for all time t , then the coefficientsck are
determined by evaluating the wavefunction atM points! More specifically one finds the
time derivative of the coefficients:

∂ck(t)

∂t
=

M∑
j=1

(M−1)kj dj , dj = ∂ψ( Erj , t)
∂t

, Mjk = 4k( Erj ). (3)
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Equation (3) follows from equation (2) with time-independent basis functions. The
Schr̈odinger equation provides us with the vectordj , which is the time derivative of the
wavefunction at the pointsrj . The matrixMjk is simply the basis functions evaluated at the
pointsrj . Equation (3) is adequate when the expansion in equation (2) is truly complete. If
this is not the case, then it is wise to overdetermine the system by specifying more pointsrj
than basis functions4k. The time derivative of the basis coefficients is arrived at by a linear
least-squares fit based on values at the pointsrj . The matrixMjk is the so-called design
matrix for the linear fit, and is in general rectangular. Methods of solving this system, even
for our complex-valued case, can be found in Presset al (1992).

3. The two-centre momentum space discretization method for ion–atom collisions

We confine our scope to true one-electron collisions, where we allow arbitrary nuclear
charges on both centres. Generalization to spherically symmetric model potentials, for
treating quasi-one-electron systems, is straightforward. The collision system is viewed
in the standard semiclassical framework, where the internuclear motion is classical and
the electron is treated fully quantum mechanically. Furthermore, the projectile motion is
assumed rectilinear with constant velocityEv and impact parameterEb. Thus the resulting
Schr̈odinger equation views the electron moving in a time-dependent potential, arising from
both the target and projectile Coulomb attraction:

i
∂ψ(Er, t)
∂t

=
(
−1

2
∇2− ZT|Er| −

ZP

|Er − ER|

)
ψ(Er, t), ER = Evt + Eb. (4)

The coordinate system which we use here is the natural frame, where the projectile velocityEv
is along thex-axis, the impact parameterEb is along they-axis and thez-axis is perpendicular
to the collision plane. Atomic units are used throughout.

3.1. Wavefunction expansion

We introduce the wavefunction expansion in momentum space. To account for the two-
centre nature of the collision system the momentum space wavefunction8 is expanded in
spherical harmonics about both nuclear centres:

8( Ep, t) =
∑
l,m

T̃l,m(p, t)Yl,m(p̂)+ e−i( Ep· ER− 1
2v

2t)
∑
l,m

P̃l,m(q, t)Yl,m(q̂), Eq = Ep − Ev.

(5)

T̃ andP̃ are radial functions in momentum space which depend on time and the magnitude
of the momentum with respect to the target and projectile respectively. The phase factor
in front of the projectile centred expansion is the momentum space version of the electron
translation factor (ETF) which results from the separation between the nuclear centres in
configuration space. One can expect that a limited number of harmonics is necessary to
represent the wavefunction about each centre, since the two-centre nature is accounted
for and the ETF is included explicitly. One can employB-splines to represent the radial
functions up to a finite momentumpf after which an asymptotic form accounts for the
large momentum tail. For this work we limit ourselves to the second-orderB-splines, the
so-called ‘hat’ functions (labelled̃Bi here):

T̃l,m(p, t) =
N−1∑
i=1

clmi (t)B̃i(p). (6)
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Isolating the target expansion the asymptotic piece is:

8( Ep, t) =
∑
l,m

clmN (t)

p4+l Yl,m(p̂) for p > pf . (7)

To simplify the notation, we label the asymptotic radial term 1/p4+l by B̃N(p) even though
it is not aB-spline. A similar expansion in terms of the coefficientsdlmi applies to the
projectile centre. The large momentum components of the wavefunction separate neatly
into target and projectile parts, since large momentum occurs only when the electron is near
one or the other nucleus.

3.2. Propagation

Elaborating on the idea discussed in section 2 we describe the method for obtaining the time-
dependent coefficientsclmi (t) anddlmi (t). First, the configuration space representations of the
basis functions, defined by equations (5)–(7), are obtained by the inverse Fourier transform.
Second, the formulae for the time derivative ofclmi (t) anddlmi (t) are derived, in configuration
space. Finally, the coefficients are propagated by a standard Runge–Kutta method with
fixed step size. After propagation is completed the total electronic wavefunction, in either
configuration or momentum space, is available for analysis.

Though it is convenient to express the electron wavefunction in momentum space
for ion–atom collisions, it is undesirable to integrate the momentum space version of
the Schr̈odinger equation due to the convolution integral for the potential energy term.
Transforming equation (5) to configuration space avoids that difficulty. With the basis
defined by equations (5)–(7) the inverse Fourier transform is obtained without much
numerical effort. The inverse transform of equation (5) is largely analytic:

ψ(Er, t) =
∑
l,m

Tl,m(r, t)Yl,m(r̂)+ ei(Ev·Er− 1
2v

2t)
∑
l,m

Pl,m(s, t)Yl,m(ŝ), Es = Er − ER. (8)

The inverse transform for the the radial functions is derived from the standard plane-wave
expansion in spherical harmonics:

Tl,m(r, t) = il
√

2

π

∫ ∞
0
jl(pr)T̃l,m(p, t)p

2 dp, (9)

wherejl is the spherical Bessel function. Likewise, the inverse transforms of the momentum
spaceB-splines are denoted byBi . With the linearB-spline representation the integral in
equation (9) is analytic. The kinetic energy term for the basis is computed by inserting an
additionalp2/2 weighting factor into the integral of equation (9), and is denoted byKEBi .
Substituting the wavefunction from equation (8) into equation (4) leads to the linear system
of equations needed to propagate the time-dependent coefficientsclmi (t) anddlmi (t).

The time-dependent Schrödinger equation after inserting equation (8) becomes

i
∑
i,l,m

∂clmi (t)

∂t
Bi(r)Ylm(r̂)+ iei(Ev·Er− 1

2v
2t)
∑
i,l,m

∂dlmi (t)

∂t
Bi(s)Ylm(ŝ) = Hψ(Er, t)

Hψ(Er, t) =
∑
i,l,m

clmi (t)

(
KEBi(r)− ZT

r
Bi(r)− ZP

s
Bi(r)

)
Ylm(r̂)

+ei(Ev·Er− 1
2v

2t)
∑
i,l,m

dlmi (t)

(
KEBi(s)− ZT

r
Bi(s)− ZP

s
Bi(s)

)
Ylm(ŝ). (10)
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H is the electron Hamiltonian shown on the right-hand side of equation (4). The time
derivative on the left-hand side of the Schrödinger equation produces extra terms, sinces

is a function of time, but they cancel with terms stemming from the ETF.
Standard close coupling proceeds by projecting equation (10) on the basis functions to

isolate the time derivatives on the left-hand side. Instead we solve for the time derivatives
of clmi anddlmi by evaluating equation (10) at enough grid points to uniquely determine the
time derivative of the basis coefficients. A set of pointsrj (sj ), stationary relative to the
target (projectile) centre, are chosen. A specific example of how the pointsrj and sj are
selected is given in section 4. Evaluation of equation (10) at the selected points yields the
following linear system:

AJKxK = bJ (11)

AJK = i

(
Bi(|rj |)Ylm(r̂j ) ei(Ev· Erj− 1

2v
2t)Bi(|r−j |)Ylm( ˆr−j )

Bi(|s+j |)Ylm( ˆs+j ) ei(Ev·( Esj+ ER)− 1
2v

2t)Bi(|sj |)Ylm(ŝj )

)
;

r−j = rj − R, s+j = sj + R

xK =
(
ċlmi
ḋ lmi

)
; bJ =

(
Hψ(Erj , t)

Hψ(Esj + ER, t)
)
.

K is the index running through the target basis functions (which is the number of target-
centred harmonics timesN the number of target radialB-splines) and the projectile basis
functions.J is the total number of pointssj andrj . Thus equation (11) is set up as a linear
least-squares fitting system, where the best valuesxK are sought based on the databK .

The procedure for a calculation starts by finding suitable coefficients,clmi (t0), that
represent the target state;dlmi (t0) are usually set to zero. Given the initial data the time
derivatives are found through equation (11). A multitude of integration techniques are
available to update the basis coefficients in time. We employ the straightforward, fourth-
order Runge–Kutta with fixed step size for which an algorithm can be found in Presset al
(1992). After propagation to some large time after the collision, the resulting momentum
space wavefunction is analysed for bound-state amplitudes and ejected electron distributions.

3.3. Extracting scattering amplitudes

To analyse the proton-hydrogen collision system for bound states on either the target or
projectile centre, we propagate the electron wavefunction until the two-centre interaction
becomes negligible. Since the wavefunction, equation (5), is already separated into target
and projectile parts, one need only project the radial functions,T̃l,m and P̃l,m, onto the
hydrogen bound-state radial functions:

a
T (P )
nlm =

∫ ∞
0
Fnl(p)T̃ (P̃ )lm(p)p

2 dp. (12)

Fnl is the hydrogenic radial function in momentum space. The validity of equation (12) rests
upon the assumption that there is no significant overlap between the target and projectile
centres. This is easily checked by findingaT (P )nlm as a function of the internuclear separation
when the projectile is receding. If the bound-state coefficients do not vary in magnitude,
then the separation assumption is valid. This procedure does not guarantee that the phase
of aT (P )nlm will not undergo further evolution. However, for the purposes of calculating
bound-state probabilities this procedure is sufficient.

To obtain the ejected electron spectrum, we proceed with the bound-state projection
until the resulting coefficients are negligible. From the bound-state coefficients we build
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the complete bound component of the wavefunction, which is subsequently subtracted from
the total wavefunction. For low-energy electrons one must take care that the bound-state
component is really separated out. The momentum distribution of Rydberg states goes
asZ/n, thus the lowest momentum, for which the ejected electron spectrum is reliable, is
inversely proportional to the highestn-state that was projected out of the total wavefunction.
As with the bound-state probabilities the momentum distribution of the ejected electron is
checked for invariance with time after the collision.

4. Test calculations and results

We test TCMSD for selected impact parameters and projectile energies. Focusing on the
proton–hydrogen system, capture and excitation probabilites are calculated for velocities 0.2,
1 and 2 au. These probabilites are checked against close-coupling calculations. Turning our
attention to ionization, we examine proton and antiproton impact on hydrogen for projectile
velocities 1, 2 and 5 au. Since there is no other theory to check the ejected electron spectra,
we select limiting cases where we can argue for their validity based on general principles
for ionization in ion–atom collisions.

The same set of computational parameters is used for all calculations presented here
with the exception that a two-centre basis is used for proton impact while a one-centre basis
is used for antiproton impact. Spherical harmonics throughl = 2 are included to represent
the angular part of the wavefunction about each centre. Due to reflection symmetry in
the collision plane we keep only the six even harmonics out of nine. The corresponding
radial functions in momentum space are discretized by 15B-splines at an equally spaced
momentum interval of 0.1 au. Thus the asymptotic radial momentum dependence begins at
pf = 1.5 au. The total number of basis functions around each centre is 15× 6, leading to
180 (90) basis functions for proton (antiproton) impact.

An overdetermined set of configuration space points is chosen to perform the least-
squares fitting. For the angular distribution six evenly distributed (π/3 rad apart) azimuthal
anglesφj are selected, and likewise the inclinationθj is selected at an interval ofπ/5 but
only three values are necessary. In the natural frame, where thez-axis is perpendicular to
the collision plane, the wavefunction is the same forθ →−θ , since the initial state is even.
Thus onlyθj 6 π/2 are necessary. In the radial direction 30 points at a spacing ofπ/pf
were chosen. The total number of fitting points for proton (antiproton) impact is 780 (390).

With these parameters the integration along the projectile trajectory starts atx = −20 au
and ends atx = 20 au. The trajectory is subdivided into 400 segments over which the
Runge–Kutta integration is performed. Since the integration step is defined as a constant
distance along the projectile path, the timesteps depend on the projectile velocity. Higher
velocity corresponds to smaller timesteps, therefore a more accurate time integration. A
rigid check on the stability of the time integration is the unitarity. For the calculations
presented here the total integrated probability density varied half of a per cent from
unity.

4.1. Tests involving capture and excitation

We choose three sets of collision parameters to test the program. First, we select a high-
velocity projectile,v = 2 au andb = 2.5 au, which is an easier test for TCMSD, since
capture is not large and the interaction time is short. Second, we bring the velocity down
to the ‘matching’ velocity,v = 1 au andb = 2.5 au, which is a more difficult test. Finally,
we select a much lower projectile velocityv = 0.2 au andb = 5.0 au. Table 1 shows the
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Table 1. Comparison of TCMSD (ms) and close coupling (cc) bound-state probabilities for
three tests. Test number 1 is forv = 2 au andb = 2.5 au, test number 2 is forv = 1 au and
b = 2.5 au and test number 3 is forv = 0.2 au andb = 5.0 au. The labels el, ex and ca refer
to elastic, excitation and capture respectively.

Test number 1s el 2s ex 2p−1 ex 2p 1 ex 1s ca 2s ca 2p−1 ca 2p 1 ca

1 ms 0.93 0.0034 0.027 0.0001 0.002 0.0003 0.0003 0.0
cc 0.94 0.0041 0.036 0.0006 0.003 0.0010 0.0002 0.0

2 ms 0.74 0.0043 0.015 0.0005 0.13 0.023 0.0026 0.0034
cc 0.76 0.0049 0.007 0.0012 0.18 0.028 0.0011 0.0024

3 ms 0.61 0.0 0.0 0.0 0.40 0.0 0.0 0.0
cc 0.54 0.0 0.0 0.0 0.46 0.0 0.0 0.0

state-to-state probability comparison. The close-coupling calculation was carried out with
all states up ton = 4 on both centres.

Overall the agreement is acceptable. It must be borne in mind that computing the bound-
state probabilities is a stringent test for TCMSD, since the radial functions are represented
only by second-orderB-splines. Thus differences of a few per cent are expected. The
close-coupling calculation was performed without any continuum states, which are implicit
in TCMSD. For the third test atv = 0.2 au the collision can be modelled with just two states,
the ground state on both centres. It is interesting that TCMSD also finds only two states, the
ground state on either centre, with nonzero amplitude, yet disagrees with the close-coupling
value by 10%. Further investigation reveals that this discrepancy stems from inadequate
treatment of polarization during the collision. Refining the low-momentum mesh to 0.04 au
spacing improves the agreement (the elastic channel decreases to 0.57 and capture to the
hydrogen 1s increases to 0.43).

4.2. Ionization

We next turn to the ionization process, where we examine the ejected electron momentum
distribution from proton and antiproton impact. Figure 1(a) shows the ejected electron
distribution in the collision plane forv = 5 au andb = 2 au from proton impact, and
likewise figure 1(b) shows the same for antiproton impact. For such a fast collision the
projectile interaction is accurately approximated by an electric dipole pulse in they-direction.
Thus one expects that the electrons are emitted along they-axis in both directions. Since the
Born approximation is expected to be valid for this velocity, there should be no difference
between proton and antiproton impact (the Born amplitude is proportional to the projectile
charge, thus the sign of the charge is irrelevant upon squaring the amplitude to obtain
the probability). The similarity between proton and antiproton impact at high velocity is
apparent from comparing figures 1(a) and (b). The total ionization probability calculated
by TCMSD is 0.0135 and 0.0136 for proton and antiproton impact respectively.

Figure 2 shows the ejected electron momentum distribution atb = 2.5 au for the
lower velocity v = 2 au. Comparing to figure 1, we note that for proton collisions the
electron density migrates to the region between the two centres in momentum space. This
is an illustration of the ‘two-centre’ effect where the ionized electron is influenced by the
attractive force from the projectile after the collision. This effect is often interpreted as a
post-collision effect. The same post-collision effect can also explain the larger distribution
of the electrons on the negativepy side for antiproton impact. The repulsive force between
the electron and the antiproton favours electrons to move in the opposite direction. There is
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Figure 1. Ejected electron distribution for (a) proton and (b)
antiproton impact on hydrogen for projectile speed 5 au and
impact parameter 2 au. The vertical broken line, labelled T,
indicates the target longitudinal velocity.

Figure 2. Ejected electron distribution for (a) proton and
(b) antiproton impact on hydrogen for projectile speed
2 au and impact parameter 2.5 au. The vertical broken
line, labelled T (P), indicates the target (projectile)
longitudinal velocity.

also a slight preference of the ejected electron to move toward the negativex-direction. For
this collision the total ionization probability is 0.0457 for antiproton impact, and 0.0385 for
proton impact, of which 0.0075 is attributed to electrons moving with the projectile centre.
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Figure 3. Ejected electron distribution for (a) proton and
(b) antiproton impact on hydrogen for projectile speed
1 au and impact parameter 2.5 au. The vertical broken
line, labelled T (P), indicates the target (projectile)
longitudinal velocity.

Figure 3 shows the ejected electron momentum distribution atb = 2.5 au for collision
velocity v = 1 au. For proton impact, the electron momentum is localized mostly between
the two centres. From the two-centre calculation this means that the two centres contribute
comparably to ionization, resulting in a momentum distribution for the ejected electrons
that peaks nearv/2, where v is the collision velocity. Although the location of the
momentum peak coincides with the velocity of the saddle point of the potential surface
in the coordinate space, the mechanism for this peak is not clear. At velocity matching
the ejected electron is not easily influenced by the weak saddle of the potential surface.
In figure 3(b) the momentum distribution by antiproton impact is peaked at negativepy
as before in figure 2(b), but the shift is larger, reflecting the more important role of post-
collision interaction for slower antiprotons. For this collision the total ionization probability
is 0.0629 for antiproton impact, and 0.0401 for proton impact, of which 0.0295 is attributed
to electrons moving with the projectile centre.

In figure 4 we plot the real part of the wavefunction in figure 3(a). The surface in
figure 4 has many more oscillations than in figure 3(a). These oscillations arise from the
large phase gradient represented by the ETF, which is incorporated analytically in TCMSD
method. Interestingly, the plot in figure 4 cannot remain constant in time, since the ETF in
equation (5) is time dependent. Yet, the probability distribution, figure 3(a), is stationary.
Without the explicit ETF the numerical representation of the rapidly oscillating wavefunction
becomes much more difficult.

5. Summary and future directions

We have presented a method for solving the time-dependent Schrödinger equation for ion–
atom collisions. Expressing the electron wavefunction in momentum space allows for
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Figure 4. The real part of the wavefunction for the ejected electron
for proton impact on hydrogen atv = 1 au andb = 2.5 au (same
as figure 3(a)). White, black and grey represent positive, negative
and zero values respectively.

accurate representation of its positive energy component. The time derivative of the basis
coefficients are found efficiently by a linear least-squares fit at selected points surrounding
both target and projectile, avoiding a time-consuming calculation of complicated matrix
elements. Probabilites for capture and excitation are computed by projection of projectile
and target radial functions onto bound-state radial functions. The distribution of ejected
electrons is formed by subtracting the bound component from the total wavefunction. Thus
we obtain, for the first time, the full quantum mechanical ejected electron distributions for
any impact parameter.

This paper, however, only reports tests for the TCMSD method; there are still
improvements needed in order to calculate ionization distributions that can compare directly
with experiment. The main improvement necessary is to adopt an uneven mesh, that can
represent the low-momentum part of the wavefunction more accurately without wasting
effort on representing the high-momentum part. Going to higher orderB-splines would also
reduce the number of splines necessary to represent the momentum space radial functions.
The time integration should be generalized to a variable step size method and should
allow for one-centre computation when the internuclear separation is large enough. These
improvements together with model potentials, for nonhydrogenic atoms, will allow us to
calculate the ejected electron momentum distribution for direct comparison with experiment
in the near future.
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H 1996Phys. Rev. Lett.77 4520–3
DuBois R D 1993Phys. Rev.A 48 1123–8
Fainstein P D 1996J. Phys. B: At. Mol. Opt. Phys.29 L763–7
Illescas C, Rabad́an I and Riera A 1997J. Phys. B: At. Mol. Opt. Phys.30 1765–84



2960 E Y Sidky and C D Lin

Irby V D, Datz S, Dittner P F, Jones N L, Krause H F and Vane C R 1993Phys. Rev.A 47 2957–63
Momberger K, Belkacem A and Sørensen A H 1996Phys. Rev.A 56 1605–22
Morishita T, Hino K, Watanabe S and Matsuzawa M 1996Phys. Rev.A 53 2345–58
Moshammer R, Ullrich J, Kollmus H, Schmitt W, Unverzagt M, Schmidt-Böcking H, Wood C J and Olson R E
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