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Hyperspherical analysis of doubly and triply excited states of Li

Toru Morishita and C. D. Lin
Department of Physics, Kansas State University, Manhattan, Kansas 66506-2601

~Received 7 October 1997!

A computational method for calculating the hyperspherical adiabatic potential curves for three-electron
atomic systems is presented. This method allows us to obtain accurate potential curves for any symmetries
more efficiently. The potential curves for the Li(2Se) symmetry are analyzed. For the ground state, the energy
calculated using the single channel adiabatic approximation is in good agreement with experiment. For doubly
excited states, in the region of small and medium hyperradius the potential curves are similar to those for the
doubly excited states of two-electron atoms and these curves can be classified using the same set ofK, T, and
A quantum numbers. For triply excited states, the potential curves are used to show the different Rydberg
series that converge to the doubly excited states of Li1. We also illustrate the rotor structure in the energies of
triply excited states of Li.@S1050-2947~98!05806-5#

PACS number~s!: 31.10.1z, 31.15.Ja, 31.25.Jf
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I. INTRODUCTION

In recent years the hyperspherical approach has been
tensively used in many areas of few-body systems in phy
and chemistry@1–7#. While the mathematical formulation o
the hyperspherical method for the general few-body syst
has been addressed by many authors@8–10#, most of the
practical and accurate calculations have been limited to
three-body systems. For the special case of the restri
four-body systems, i.e., the three-electron atomic syste
where one of the particles is very heavy and can be con
ered fixed in space, early calculations used hypersphe
harmonics as basis functions to expand the wave functio
the three electrons@11,12#. While such a method is rigorou
in principle, the convergence in general is very slow su
that little useful quantitative information can be obtained.
achieve high numerical accuracy and to be able to deal w
multiply excited states, more flexible basis functions such
those generated from the Slater-type orbitals@13#, the
B-spline functions@14,15# and the discrete variable represe
tation~DVR! basis functions@16# have been used. In@14,16#,
the hyperspherical channel functions have been analyzed
the (s3) model where the angular correlation among t
three electrons is neglected. For the atomic system un
study each state has well-defined spin and orbital ang
momentum quantum numbers and the parity. Furtherm
the wave function must satisfy the Pauli exclusion princip
To reduce the size of the Hamiltonian matrix, Yanget al.
@14,15# constructed basis functions from the primitiv
B-spline functions that have the correct quantum symme
However, the calculation of the matrix elements cannot
evaluated accurately and efficiently because the hypersp
cal variables are not invariant under particle permutations
the three-electron systems.

In this paper we employ a method of calculating atom
three-electron systems in hyperspherical coordinates.
theoretical method is outlined in Sec. II. We employ t
adiabatic approach where the hyperspherical radius is use
an adiabatic parameter. The major steps of the computati
method are outlined in Sec. III. The method has been im
mented now in a suite of computer codes and poten
571050-2947/98/57~6!/4268~7!/$15.00
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curves for any symmetries can be calculated. Some res
for the H22 system has been reported elsewhere@17# where
we showed that no resonances exist for H22, in contradiction
to the recent predictions@18,19#. In Sec. IV we show the
calculated hyperspherical potential curves for the2Se states
of Li. We then identify the curves that support singly excit
states, the family of curves that support doubly excited sta
and triply excited states. The potential curves that supp
1s2lnl 2Se doubly excited states are then analyzed. Th
curves are compared to the 2lnl 1,3Se potential curves of He
to show the similarities at small and intermediate range
the hyperradius. At large hyperradius, we also show t
these curves are described by the independent particle
proximation. Proceeding to even higher potential curves
then analyze curves that support triply excited states of
The qualitative behavior of these curves will be addres
but the nature of electron correlation of the three electron
these states remains to be investigated in the future. To il
trate the fact that triply excited states indeed exhibit coll
tive modes as in doubly excited states, we also show po
tial curves for different symmetries that can be viewed as
rotational excitation of a symmetric top made of the thr
electrons. These potential curves will be compared to
rotor structure of doubly excited states of Li1. A short sum-
mary and future direction are given in Sec. IV to conclu
this paper.

II. HYPERSPHERICAL COORDINATES
FOR THREE-ELECTRON ATOMS

Starting with the radial distancesr 1, r 2, and r 3 of the
three electrons from the nucleus, we define the hyperradiuR
and the two hyperanglesa1 anda2 as

r 15R sin a2 cosa1 ,

r 25R sin a2 sin a1 , ~1!

r 35R cosa2 .
4268 © 1998 The American Physical Society
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Together with the spherical anglesr̂ i ( i 51,2,3) of each elec-
tron, the hyperspherical coordinates for the three-electron
oms are (R,a1 ,a2 , r̂1 , r̂2 , r̂3). Thus in the laboratory fixed
frame ~where the nucleus is stationary!, the spatial coordi-
nates of the three electrons are given by the hyperradiuR
and the eight angles where we shall useV
5$a1 ,a2 , r̂1 , r̂2 , r̂3% to denote all the angles collectively
The hyperradius is the only coordinate that can extend
infinity. Its magnitude measures the size of the atom. Ho
ever, at largeR, one can have one electron far away wh
the other two remain close to the nucleus. Examples of s
states are singly excited states. One can also have two
trons farther out while the remaining one stays close to
nucleus—these are doubly excited states. Last but not le
one can also have all the three electrons far away from
nucleus. These are examples of triply excited states. At
in triply excited states have been called hollow atoms, wh
have been studied recently using third-generation sync
tron light sources@20,21#.

From the theoretical viewpoint, all three types of excit
states discussed above are obtainable from the solution o
Schrödinger equation for the three-electron system

F2
1

2(i 51

3

¹ i
21V2EGC50, ~2!

where V is the Coulomb potential energy due to electro
nucleus and electron-electron interactions. If we rescale
total wave functionc5Rr1r 2r 3C, then Eq.~2! reads

F2
1

2

]2

]R2
1Had~V;R!2EGc50, ~3!

where the adiabatic HamiltonianHad(V;R) is an operator in
V which depends parametrically onR, and its explicit form
is

Had~V;R!52
L̃2~V!

2R2
1

C~V!

R
. ~4!

Here, L̃2(V) is the square of the rescaled grand angu
momentum operator

L̃2~V!52
1

sin a2

]

]a2
sin a2

]

]a2
2

1

sin2 a2

]2

]a1
2

1
l1
2

sin2 a2 cos2 a1

1
l2
2

sin2 a2 sin2 a1

1
l3
2

cos2 a2

,

~5!

andC(V)5RV is the effective charge

C~V!5RF2ZS 1

r 1
1

1

r 2
1

1

r 3
D1S 1

r 12
1

1

r 23
1

1

r 31
D G , ~6!

whereZ is the charge of the nucleus.
In the adiabatic picture, the total wave function for t

state with total spinS can be written in the form
t-
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cS5(
m

Fm
S~R!S (

S12

Fm
S,S12~V;R!xS12

S D , ~7!

where Fm
S,S12 is the adiabatic channel function andxS12

S

5@$x(1)x(2)%S12x(3)#S is the total spin function with inter-
mediate spinS12. The adiabatic channel functionFm

S,S12 and

its associated potential energyUm
S,S12(R) are defined as solu

tions of the hyperspherical adiabatic eigenvalue problem

@Had~V;R!2Um~R!#Fm~V;R!50. ~8!

All the functionsFm
S,S12 are among solutions to this equatio

However, not all the solutions of Eq.~8! satisfy the Pauli
exclusion principle. For quartet states,S53/2, the sum over
S12 in Eq. ~7! contains only one term. The spin part is total
symmetric while the spatial componentFm

3/2,1, correspond-
ing to a triplet parent, is totally antisymmetric. For doub
statesS51/2 there are two spatial componentsFm

1/2,0 and
Fm

1/2,1 which multiply singlet and triplet parent spin func
tions, respectively. These functions form the basis of
two-dimensional representation of the permutation groupS3

and they have degenerate eigenvaluesUm
1/2,0(R)5Um

1/2,1(R)
for all the values ofR. Besides the antisymmetric solution
Eq. ~8! also contains totally symmetric solutions that do n
satisfy the Pauli exclusion principle and must be omitted

In Eq. ~7!, Fm
S(R) is the radial function. Substituting Eq

~7! into Eq. ~3! and integrating over the angular functions,
system of coupled differential equations for the radial fun
tions can be obtained. However, the adiabatic approxima
allows us to draw much insightful information on the phys
cal system without even solving the hyperradial equation

III. NUMERICAL PROCEDURE

In order to construct the channel functions satisfying a
propriate symmetries, we adopt a two-step numerical pro
dure that is based on the decomposition of the effective C
lomb chargeC(V) into two parts,

C~V!5CZe~a1 ,a2!1Cee~V! ~9!

with

CZe~a1 ,a2!52ZRS 1

r 1
1

1

r 2
1

1

r 3
D ~10!

and

Cee~V!5RS 1

r 12
1

1

r 23
1

1

r 31
D . ~11!

In the first step we solve the eigenvalue problem for
operator that contains only the nucleus-electron attractive
tential,

H̃ad~V;R!5
L̃2~V!

2R2
1

CZe~a1 ,a2!

R
. ~12!

Since the attractive potentialCZe(a1 ,a2) does not depend
on the anglesr̂ i ( i 51,2,3), the operatorH̃ad(V;R) com-
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mutes with individual angular momental i
2 ( i 51,2,3). Thus

the eigenfunctions of this operator can be written in thesepa-
rable form

F̃n
g~V;R!5gn

g~a1 ,a2 ;R!Yg
LM~ r̂1 , r̂2 , r̂3!, ~13!

where g5$ l 1l 2l 3l 12%, and Yg
LM( r̂1 , r̂2 , r̂3)

5@$Yl 1
( r̂1)Yl 2

( r̂2)% l 12Yl 3
( r̂3)#LM is the coupled angular mo

mentum of the three electrons. The functiongn
g(a1 ,a2 ;R)

satisfies the two-dimensional eigenvalue problem with
spect toa1 anda2

@hg~a1 ,a2 ;R!2Ũn
g~R!#gn

g~a1 ,a2 ;R!50, ~14!

where

hg~a1 ,a2 ;R!5^Yg
LMuH̃aduYg

LM&

5
1

2R2S 1

sin a2

]

]a2
sin a2

]

]a2
2

1

sin2 a2

]2

]a1
2

1
l 1~ l 111!

sin2 a2 cos2 a1

1
l 2~ l 211!

sin2 a2 sin2 a1

1
l 3~ l 311!

cos2 a2
D 1

CZe~a1 ,a2!

R
. ~15!

We solve the two-dimensional eigenvalue problem, Eq.~14!,
numerically using a variational procedure with direct prod
of discrete variable representation~DVR! basis sets@22#.

The functionsF̃n
g form a complete and orthogonal set

theV space at eachR, and are used as the basis functions
the second step diagonalization to obtain adiabatic pote
curves. Since the operatorH̃ad in the first step as well asHad
is invariant under permutation of all three electrons, we c
find the functionsF̃n

S,S12 that also form the basis of the irre
ducible representation of theS3 group from linear combina-
tions of the functionsF̃n

g , namely,

F̃Gn
S,S125(

g
cGgn

S,S12F̃n
g , ~16!

where the summation is taken over degenerate states wit
same eigenvalueŨn

G , i.e., the sum is only over all permuta
tions of the setl 1l 2l 3 and the allowed values ofl 12. HereS
andS12 are used as indices for the symmetry,G is an index
that distinguishes antisymmetric functions. To find approp
ate coefficients we apply the antisymmetrization operato

A5pE1p~123!1p~132!2p~12!2p~23!2p~13! , ~17!

namely, for each numerically obtained solutionF̃n
g we cal-

culate the matrix element

^F̃n
gxS12

S uAuF̃n
gxS12

S &. ~18!

Because of the separability of the spatial functions, the m
trix elements of each component ofA can be separated int
three parts,
-

t

ial

n

the

i-

a-

^F̃n
gxS12

S upuF̃n
gxS12

S &5^gg
n upugg

n&^Yg
LMupuYg

LM&^xS12

S upuxS12

S &.
~19!

The matrix elements with respect to the spin functions a
the spherical harmonics are well known@11,23#. The action
of the projection operator on the functiongn

g(a1 ,a2 ;R) is
carried out numerically by applying the permutation ope
tors directly on the configuration space defined by thea1 and
a2 variables. In this manner, we sort out a quartet and t
proper components of the doublet basis functions. The
tential curves and the channel functions are generated
diagonalizing the matrix

^F̃Gn
S,S12uHaduF̃G8n8

S,S12&5Ũn
G~R!dGG8dnn8

1
1

R
^F̃Gn

S,S12uCeeuF̃G8n8

S,S12& ~20!

for well-defined total orbital and spin angular momentu
quantum numbers and parity.

IV. RESULTS AND DISCUSSION

We have developed the computer codes to calculate
hyperspherical potential curves for any symmetries of
three-electron systems. In the following a subset of such
sults are shown to illustrate how the properties of a thr
electron system are revealed in the hyperspherical appro

A. The 2Se states

In Fig. 1 we present the adiabatic potential curves for
2Se states of Li. These curves are calculated us
( l 1 ,l 2 ,l 3)5(0,0,0), ~0,1,1!, and ~1,1,2!. There are basically
three groups of curves. The first group consists of a sin
curve—the lowest curve, labeled ‘‘I’’ in Fig. 1. This curv
supports the ground state and the 1s2ns 2Se (n>2) singly
excited Rydberg states. AsR→`, this curve approaches th
Li1(1s2 1Se) state. The second group, labeled ‘‘II’’ in Fig
1, consists of potential curves that support doubly exci

FIG. 1. Hyperspherical potential curves for2Se states of Li. The
lowest curve labeled I supports the ground state and the 1s2ns
singly excited states. The group of potential curves labeled II s
port doubly excited states 1snln8l 8 while the group of curves la-
beled III support triply excited states. The lower curves of II and
III are shown in more detail in Fig. 2 and Fig. 3, respectively.
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57 4271HYPERSPHERICAL ANALYSIS OF DOUBLY AND . . .
states. These curves approach the 1snl (n>2) singly excited
states of Li1 at large R. The third group, labeled ‘‘III,’’
consists of potential curves that support triply excited sta
These curves approach thenln8l 8 (n,n8>2) doubly excited
states of Li1 at largeR.

1. Ground state and singly excited states

The binding energy of the ground state and singly exci
states of Li can be evaluated approximately using the a
batic approximation. If the second-order diagonal coupl
term is included in the potential, the binding energy of t
ground state calculated from a single adiabatic channe
27.466 a.u., which is to be compared to the experime
value of27.478 a.u.@24#. More accurate results can be o
tained if one includes the coupling with the higher chann
and basis functions from higher orbital angular moment
components are included. Since the basic properties
ground state and singly excited states of Li are well kno
from other theoretical approaches, the hyperspherical me
just serves as a new method of reproducing known res
Thus no more discussion on this potential curve will
given.

2. Doubly excited states

The second group of potential curves support doubly
cited states of Li. To study these states in more detail,
display the lowest four curves of this group in Fig. 2~a!.
These four curves are to support 1s2sns 2Se and
1s2pnp 2Se doubly excited states. There are four Rydbe

FIG. 2. Comparison of hyperspherical potential curves
1s2lnl 2Se doubly excited states of Li with the 2lnl 1,3Se doubly
excited states of He. Note that in the inner region the two set
potential curves are nearly identical. The potential curves for He
designated asa5(1,0)1 1Se, b5(21,0)1 1Se, c5(1,0)2 3Se, and
d5(21,0)2 3Se. These designations can be used for labeling d
bly excited states of Li, as indicated. We have assumed that
avoided crossing betweenb and c in the upper figure can be ap
proximated as a diabatic crossing.
s.
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al
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e

series and the series limits are 1s2s 3Se, 1s2s 1Se,
1s2p3Po, and 1s2p1Po, in increasing order of energy of th
Li1 ions. While one may be tempted to assign the result
Rydberg series associated with these four curves
1s2s(3Se)ns, 1s2s(1Se)ns, 1s2p(3Po)np, and
1s2p(1Po)np series, using the independent particle appro
mation, we emphasize that such a designation is inappro
ate since each adiabatic curve consists of basis function
all the (l 1 ,l 2 ,l 3)5(0,0,0), ~0,1,1!, and ~1,1,2! included in
this calculation. From the traditional spectroscopic vie
point, we expect that the four Rydberg series to have ra
strong configuration mixing.

The fact that doubly excited states cannot be descri
using the independent electron model is well known now.
fact the nature of the four potential curves displayed in Fig
is best understood when compared to the potential curves
the doubly excited states of He. Unlike the doubly excit
states of alkali earth atoms, where several analyses have
done by treating a pair of two electrons outside a closed s
core @25–31#, here, we study the influence of the 1s open
shell core on the doubly excited states of three-electron
oms. In Fig. 2~b! we display the hyperspherical potenti
curves for the1Se and 3Se states of He that converge to th
He1(N52) limits. These curves are labeled using t
(K,T)A quantum numbers @1,32–34# as (1,0)1 1Se,
(21,0)1 1Se and (1,0)2 3Se, and (21,0)2 3Se. By compar-
ing to Fig. 2~a! it is very clear that the two sets of curves a
very similar except in the largeR region. Thus the potentia
curves for doubly excited states can be labeled appr
mately using the quantum numbers used for the doubly
cited states of He, at least in the region where the poten
curves are near the minima. Watanabeet al. @13,35# shows a
similar feature of the potential curves for doubly excit
states of He2 and of H2. Many properties of the doubly
excited states of two-electron atoms can be directly tra
lated to understand the properties of doubly excited state
three-electron atoms—a subject that will be further ela
rated on in the future.

The similarities and the differences between the poten
curves in Fig. 2~a! and Fig. 2~b! can be understood qualita
tively. The lowest state associated with each potential cu
is located near the minimum of the potential curve a
slightly beyond. Thus the so-called 1s2s2 state is associated
with the lowest (1,0)1 1Se curve, while the so-called 1s2p2

state is associated with the (21,0)1 1Se curve. For doubly
excited states of Li such as 1s2s2 and 1s2p2, the coupling
between the twon52 electrons is larger than the couplin
between the 1s and 2s or 1s and 2p electrons. Therefore
such doubly excited states can be visualized as consistin
one 1s electron and a pair of doubly excited electrons. T
two excited electrons are classified like the doubly exci
states of He since the inner 1s electron can almost fully
screen the nucleus. In Fig. 2~a! the potential energy contain
the energy of the 1s electron, which is24.5 a.u. Removing
this difference we can see that the two sets of poten
curves are also quite close in magnitude.

The two sets of potential curves do show distinct diffe
ences in the largeR region. In Fig. 2~a! we drew the curves
adiabatically such that in the asymptotic region the cur
are labeled as 1s2s(3Se)ns, 1s2s(1Se)ns, 1s2p(3Po)np,
and 1s2p(1Po)np from below, respectively. Such labeling
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4272 57TORU MORISHITA AND C. D. LIN
are good for describing high-lying doubly excited sta
wheren@2. In these states the coupling of 1s and 2s ~or 1s
and 2p) is much stronger than the coupling of 2s with thenl
Rydberg electron~or 2p and nl). In Fig. 2~a! we drew the
potential curves adiabatically such that the (1,0)1 1Se curve
at smallR evolves into 1s2s(3Se)ns at largeR. How valid is
such an adiabatic description has to be checked in fu
numerical calculations with and without including the co
pling of these curves. We comment that if the Rydberg se
that converges to the 1s2s(3Se) limit is supported by an
adiabatic potential curve as shown in Fig. 2~a!, the autoion-
ization width of the series is expected to be rather bro
when compared to other series since in the inner region
clearly a ‘‘1 ’’ series for the two excited electrons. Thus th
hyperspherical approach provides a nice way to unders
the doubly excited states of Li in terms of the known resu
of He.

3. Triply excited states

In Fig. 3~a! the first few potential curves that suppo
triply excited states of Li are shown in more detail. The
curves display numerous avoided crossings with poten
curves that support doubly excited states. The coupling
potential curves are responsible for the autoionization of
ply excited states into ground and singly excited states
Li1 where an autoionized electron will be ejected. To stu
the general properties of triply excited states we first neg
such couplings. By isolating only triply excited states, w
redrew these curves as shown in Fig. 3~b!. The five curves
shown in Fig. 3~b! support 2l2l 8nl9 triply excited states.
Using notations from the independent electron approxim
tion, the five Rydberg series are 2s2 1Sens, 2s2p 3Ponp,
2p2 1Dend, 2s2p 1Ponp, and 2p2 1Sens. Note that such

FIG. 3. ~a! Potential curves that support triply excited states
Li, shown with numerous avoided crossings with curves that s
port doubly excited states.~b! The five potential curves that suppo
2l2l 8nl9 2Se triply excited states, with the coupling to doubly e
cited curves removed.
s
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designation is approximate only since configuration mixi
is expected to be rather large. In the future a new se
approximate quantum numbers will be used to label th
channels after the nature of correlation among the three e
trons is understood.

Among the five curves only the lowest curve has a de
well at smallR near 3.0 a.u. This curve supports the only2Se

intrashell state, which is designated conventionally
2s2p2 2Se. All the other four 2Se curves do not have in-
trashell states. The location of the potential minima of the
other curves is shifted further out and the potential well
shallower. Since electron correlation among the three e
trons is inherently contained in the multivariable chann
functions, full information on each channel will becom
available only after the wave function is analyzed. The f
characterization of triply excited states remains one of
major tasks in the future study of three-electron atomic s
tem.

B. The rotor structure of triply excited states

To study the collective motion of the three electrons
triply excited states, it is natural to examine first the i
trashell states. In these states the three electrons are at
the same distances from the nucleus. Like doubly exc
states, we then ask if the energies of some triply exci
states can be understood as the rotational excitation
symmetric top formed by the three electrons. Such a ques
has been addressed previously@23,36# in a model study
where the three electrons are restricted to the surface
sphere with the nucleus at the center. A more restric
model assuming equilateral triangular geometry for the th
electrons has been addressed previously by Matveev@37#. To
reduce the electronic repulsion, the most favorable geom
would be that the three electrons distribute about an equ
eral triangle with the nucleus at the center. However, not
the intrashell states can take such a geometry due to
symmetry constraints on the wave functions imposed by
orbital and spin quantum numbers, the parity and the P
exclusion principle. It has been identified that then52 in-
trashell 2Po, 4Pe, 2De, and 2Do states can be understood
the rotational excitation of a symmetric prolate top where
energy levels can be approximated byE5@L(L11)
22T2#/(2I ) where I is the moment of inertia andT is the
projection of L perpendicular to the norm of the plan
formed by the three electrons. TheT for the four states above
are 1, 0, 2, and 1, respectively. In Fig. 4~a! we show the four
potential curves for these four states. Indeed the curves
similar to the potential curves for the (1,0)1 rotor series of
Li1 ~or He!, as shown in Fig. 4~c! where the three intrashe
states are 2s2 1Se, 2s2p 3Po, and 2p2 1De states according
to the independent electron notation. Their rotational exc
tion energy is given by the same formula withT50.

For the other fourn52 intrashell triply states it has bee
shown that their energies are higher due to the existence
nodal surface in one of the internal coordinates@23,36#, in
contrast to the four states mentioned in the previous p
graph where the wave functions have no internal nodal s
faces. These four states,2Se, 4So, 2Pe, and 2Po, are sup-
ported by the potential curves shown in Fig. 4~b!. Note that
these potential curves are not as deep as the curves sho
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Fig. 4~a! since the existence of a nodal surface implies hig
energies.

We summarize that among the eight intrashell states
the N52 manifold, the 2Po state is the ground state, th
other three states in Fig. 4~a! are due to the rotational exc
tation, while the other four states in Fig. 4~b! are due to the
excitation of one internal nodal surface as well as rotatio
excitations. This viewpoint deviates from the convention
independent electron model where the eight intrashell st
are made out of 2s22p, 2s2p2, and 2p3 configurations.
There is no intrinsic contradiction between the two vie
points, at least for theN52 intrashell states where configu
ration mixing is not very large in general. The present vie

FIG. 4. ~a! Potential curves that support intrashell2Po, 4Pe,
2De, and 2Do triply excited states.~These states have configur
tions 2s22p 2Po, 2s2p2 4Pe, 2s2p2 2De, 2p3 2Do in the indepen-
dent particle picture.! These states have no nodal surfaces in th
internal coordinates and can be understood as the rotational ex
states of a symmetric top.~b! The potential curves of the other fou
intrashell states~called 2p3 4So, 2s2p2 2Pe, 2s2p2 2Se, 2p3 2Po

in the independent particle picture!. These states have a nodal su
face in one of the internal coordinates; they do not form a ro
series.~c! Potential curves for the three intrashell doubly states
Li1 in the n52 manifold that form a rotor series.
y

ev
r

r

al
l
es

-

-

point emphasizes the elementary internal normal mode
the system as a whole. This viewpoint can be extended
situations where the independent particle model fails. Ho
ever, our analysis so far has not accounted for the ra
motion of the electrons. When such analysis is available,
would be able to distinguish the nature of all the poten
curves for triply excited states.

V. SUMMARY AND CONCLUSIONS

In this paper we present the revised numerical appro
for computing the adiabatic hyperspherical potential cur
of a three-electron atom. The new method is numerica
more accurate and computationally more efficient. Amo
the results available, in this paper we concentrated on
results for Li (2Se) states. We show that the ground-sta
energy can be obtained with reasonable accuracy using
one adiabatic channel. We also show that doubly exc
states can be understood and classified similar to the do
excited states of two-electron atoms, at least in the reg
near the minimum of each potential curve. This implies th
many properties of doubly excited states of Li can be und
stood based on the doubly excited states of He. We a
show the potential curves for the triply excited states. Wh
the separation of different Rydberg series into different p
tential curves has been achieved, the nature of electron
relation in triply excited states remains to be resolved. F
intrashell states, we showed that a subset of them dis
behavior similar to the rotational excitation of a rigid roto
while others have higher excitation energies due to the e
tation of other internal degrees of freedom.

With the present numerical implementation, the calcu
tion of adiabatic potential curves for three-electron syste
no longer posts a big hurdle. However, there remains a g
deal of work to be done. On the one hand, it would be
sirable to implement the adiabatic expansion of the to
wave function to calculate the properties of doubly excit
states of Li and He2 such that the spectroscopy of the
systems can be understood to the details as in He and2

@2,4#. This should be possible since the basic physics and
numerical method can be directly carried over from those
the two-electron systems. On the other hand, triply exci
states are different. We need to find a method to map
wave functions to extract information of electron correlati
in the channel function. This is not straightforward sin
each channel function has five internal degrees of freed
and we are at most able to visualize two degrees of freed
each time.
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