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Abstract. Hyperspherical adiabatic potential curves for the three-electron He− ions are
calculated. Potential curves that support 1s2l2l′ doubly excited states and 2l2l′2l′′ triply excited
states are analysed to interpret the possible existence and the nature, including the relative
autoionization widths, of these states. We show that doubly excited states of He− can be
classified using the same set of quantum numbersK, T andA that were used for classifying
doubly excited states of two-electron atoms. We also show the relative energy levels of triply
excited states exhibit a rotor structure.

An electron cannot be attached to the ground state of a helium atom to form a stable helium
negative ion. However, it is well known that there exist He− resonances associated with
the singly and doubly excited states of He (see Buckman and Clark 1994). In this letter we
will address the doubly excited 1s2l2l′ resonances and the triply excited 2l2l′2l′′ resonances
of He−. The first group of resonances lie at about 19–22 eV and the second group lie at
about 57–60 eV, respectively, above the ground state of He. There are other He− doubly
and triply excited states associated with other thresholds, but only these two groups will be
addressed in this letter.

Experimentally resonances in He− have been studied repeatedly over the last four
decades. The challenge is to improve electron energy resolution such that the detailed
structure in the spectra can be analysed with confidence. Many spurious resonances have
been ‘discovered’ over the years and then discarded in later experiments. The reader can
find a more complete account of this history in the review article by Buckman and Clark
(1994). On the theoretical side there have been a number of elaborate calculations on
electron–helium atom collisions. Elastic or inelastic scattering cross sections have been
calculated. Both experiments and theories attempted to locate and identify resonances from
the structures of the scattering cross sections. However, many such structures occur near the
inelastic thresholds and cannot be easily disentangled from the cusps which often accompany
the opening of new inelastic channels.

A powerful tool for the analysis of resonances is the hyperspherical method within the
adiabatic approximation. In this approach, bound and resonance states are not calculated
directly. Instead, the hyperspherical adiabatic potential curves are first calculated. If a
potential curve has a relatively deep well, then it is likely that some bound or resonance states
can be found. If the potential curve is fully repulsive, then it cannot support bound states.
This method has been fully developed for the two-electron atoms (Lin 1986, 1993) and other
three-body systems such as the helium trimer (Esryet al 1996), as well as the positron–
hydrogen collision system (Zhou and Lin 1995). Beyond the adiabatic approximation,
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the adiabatic expansion of the total wavefunctions has been used to obtain state-of-the art
quantitative results for various systems (Tanget al 1992a, Tolstikhinet al 1996, Kato and
Watanabe 1997, Chenet al 1997). Photoabsorption cross sections of H− and He (Tanget al
1992b, 1994) have been calculated and shown to agree with the most detailed experiments
done so far.

The hyperspherical approach has been extended to three-electron atoms. Earlier works,
in general, do not provide enough accuracy. For the three-electron He− ion, quantitative
results for doubly excited states have been obtained by Watanabe and co-workers (Watanabe
1982, Le Dournerf and Watanabe 1990) earlier. They treated the doubly excited states of
He− as a two-electron system where the two outer electrons move in a frozen open-shell
He+(1s) core. The potential curves for the two-electron systems were calculated and used
to analyse the doubly excited states of He− ions. Many insights have emerged from this
approach. In two conference reports (Watanabeet al 1982, Watanabe 1988), Watanabe also
presented quantitative calculations for some triply excited states where the potential curves
were calculated by diagonalizing the Hamiltonian with basis functions constructed from
products of Slater-type orbitals.

In this letter we will report some results on He− ions calculated using thethree-electron
hyperspherical approach. This allows us to study all the states in a three-electron system,
including excitations of one, two or three electrons, all together at the same time. We will
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Figure 1. (a) Hyperspherical potential curves for the2Se symmetry of the He− ion. (b) An
expanded view of the higher-energy region showing potential curves that support triply excited
states have numerous avoided crossings with the steep curves that support doubly excited states.
In the ‘adiabatic’ approximation these avoided crossings will be treated as diabatic. The lowest
five curves for the triply excited states converge to the 2s2 1Se, 2p2 3Pe, 2p2 1De, 2s2p1Po and
2p2 1Se states of He, each marked by an arrow on the right.
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focus on the qualitative aspect of these doubly and triply excited resonances as revealed
from the analysis of potential curves. More accurate quantitative calculations for individual
states require future careful treatment of the couplings of the adiabatic channels.

The detailed hyperspherical calculations for three-electron atoms or ions have been
presented elsewhere (Morishita and Lin 1997, Morishitaet al 1998). For the purpose
of this letter, we mention that within the adiabatic approximation where the hyperradius is
treated as an adiabatic parameter, a family of potential curves can be obtained. For example,
in figure 1(a) we show the family of potential curves for the2Se states of He−. The lowest
curve is repulsive (an enlarged scale would show this fact more clearly), indicating that an
electron cannot attach to the ground state of He to form a stable He− bound state. The next
group of curves converge to the singly excited He(1snl) states asymptotically asR →∞.
These potential curves support doubly excited states of He−. Further up on the energy scale,
we can identify the family of curves which converge to the doubly excited states of He.
These curves support triply excited states and they have numerous avoided crossings with
the curves that support doubly excited states. The curves that converge to the He(2l2l′)
doubly excited states are displayed in figure 1(b) to show the details.
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Figure 2. Comparison of the1,3Se potential curves of H− with the 2Se and4Se curves of He−.
For H− these curves support 2lnl′ doubly excited states. For He− these curves support 1s2lnl′
doubly excited states. The symbols that label the curves are explained in the text. We used arrows
to indicate the asymptotic limits of the potential curves. For H−, the arrow indicates the energy
of H(n = 2). For He−, the four arrows indicate the energies of 1s2s3Se, 1s2s1Se, 1s2p3Po

and 1s2p1Po of He, respectively, from the bottom. The horizontal broken curves indicate the
positions of the known resonances.

We first focus on the doubly excited states. The four curves that converge to He(1s2l)
states are shown in figure 2(b). They are compared to the1Se and 3Se potential curves of
H−. We have used ‘a’ and ‘b’ as short-hand notation to label the two1Se potential curves
of H− in figure 2(a). In terms of theK, T andA quantum numbers for the doubly excited
states of two-electron atoms (Herrick and Sinanoğlu 1975, Lin 1984, 1986), a= (1, 0)+

and b= (−1, 0)+ for the 1Se curves. Similarly, we use a′ = (1, 0)− and b′ = (−1, 0)− to
label the two3Se curves. These symbols are also used to label the He− potential curves in
figures 2(b) and (c). Clearly, the two sets of curves in figures 2(a) and (b) are quite similar
in the inner region. They differ in the asymptotic region since the curves in figure 2(a) all
converge to the degenerate H(n = 2) limit and for figure 2(b) they converge to the four
different limits, namely, the 1s2s1,3Se and 1s2p1,3Po states of He.
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The similarity of the curves in figure 2(b) to those in figure 2(a) for H− has been
elaborated by Watanabe (1982). In the range ofR = 6–10, which is near the minima of
the curves, the He− potential describes the situation of a tightly bound 1s electron and two
outer ones which are nearly at the same distance from the nucleus. The 1s electron fully
screens the He2+ nucleus such that the two electrons experience only one unit of positive
charge, similar to that for the H− ion. Therefore the He− potential curves in this region are
similar to those for H−. At largeR, we consider the states such as 1s2lnl′ (n� 2) states,
where the outermostnl′ electron couples weakly to the other two electrons. The coupling
between the 1s and 2l electrons is stronger and the potential energy curves are designated
by the He(1s2l) singly excited states at largeR.

For H− there is only one intra-shell doubly excited state among the curves shown in
figure 2(a). It is the 2s2 1Se state (for simplicity we use the conventional independent
particle notation to describe the doubly excited states; in general, doubly excited states are
better designated with theK, T andA quantum numbers), which is supported by curve a.
Curve a′ also supports some Feshbach resonances that are very near the threshold, but these
inter-shell resonances are specific to the true two-electron systems only and they are bound
by the attractive dipole potential (goes likeR−2 at largeR). For He−, curve a in figure 2(b)
is deep enough to support a resonance, designated as 1s2s2 2Se if we are allowed to use the
independent particle description. The curve a′ for He− has a shallow attractive well, but it
is not deep enough to support a resonance. Unlike H−, there is no attractive dipole potential
for the e− + He(1s2l) system asymptotically and no resonances can be supported by the
dipole polarization potential which goes likeR−4 at largeR. In figure 2(b), curves b and b′,
like their counterparts in H−, are completely repulsive and cannot support any resonances.
We have used horizontal broken lines to indicate the positions of the known resonances for
each ion.

In figure 2(c) we show the two4Se curves of He−. They are similar to the two3Se

curves in H− at smallR, but converge to the 1s2s3Se state and 1s2p3Po state, respectively,
at largeR. They are labelled by a′ and b′ and both curves are not attractive enough to
support bound or resonance states.

Before discussing the higher curves in figure 1, we examine another example of doubly
excited states of He−. In figures 3(a)–(c), we show the curves for H−

(
1,3Po

)
,He−

(
2Po
)

and He−
(

4Po
)
, respectively. For H−, a = (1, 0)+ 3Po and a′ = (0, 1)+ 1Po. The other

curves are not important for the resonances and will not be labelled or discussed. In H−,
curve a supports the 2s2p3Po Feshbach resonance and a′ (which is allowed to cross the
next upper curve at aboutR = 12) supports the 2s2p1Po shape resonance (Lin 1975). In
He−

(
4Po
)
, the 1s electron is coupled to the outer pair of electrons in the 2s2p3Po state such

that a doubly excited state, designated as 1s(2s2p3Po)4Po, can be formed. The potential
curve that supports this state is essentially the same as the one that supports the 2s2p3Po

state of H−. In fact, by comparing figures 3(a) and (c), we note that the two potential
curves labelled as ‘a’ are quantitatively almost identical if one subtracts the 1s energy of
the He+ (−2 au) from the actual values of curve a in figure 2(c). For 2Po states, the
situation is more complicated since there is a clearly noticeable avoided crossing between
curves a and a′ at aboutR = 10–12. If the crossing is treated adiabatically then each
potential alone is not strong enough to support a resonance. However, this crossing has
to be treated carefully, at least in a two-channel approximation including curves a and a′.
In fact, as shown by Watanabe (1982), the experimentally observed structure for the2Po

symmetry at 20.4 eV, which is above the He
(
1s2s3Se

)
threshold but below the He

(
1s2s1Se

)
threshold, cannot be assigned to a particular channel (or a potential curve). In fact, in the
single-channel approximation it is a better approximation to treat this avoided crossing as a
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Figure 3. Comparison of the1,3Po potential curves of H− with the 2Po and 4Po curves of
He−. For H− these curves support 2lnl′ doubly excited states. For He− these curves support
1s2lnl′ doubly excited states. For H− the avoided crossing for curve a′ nearR = 12 with the
next upper curve is to be treated diabatically. For the2Po symmetry of He−, the pronounced
avoided crossing between a and a′ nearR = 12 implies that the coupling between these two
channels is large. In a rough single-channel approximation this avoided crossing is to be treated
diabatically, but the coupling implies a large autoionization width for the 1s2s2p2Po resonance.
For H−, the arrow indicates the energy of H(n = 2). For He−, the four arrows indicate the
energies of 1s2s3Se, 1s2s1Se, 1s2p 3Po and 1s2p1Po of He, respectively, from the bottom.
The horizontal broken lines indicate the positions of the known resonances.

diabatic crossing, then the structure at 20.4 eV may be viewed approximately as a Feshbach
resonance associated with a ‘diabatic’ channel which coincides with curve a at smallR

before the crossing and with curve a′ at largeR after the crossing. The coupling of these
two channels results in a large width for this state. From various calculations the width of
this structure is about 400 meV (Buckman and Clark 1994) which is much larger than the
width of, say, the 1s2s2 2Se resonance, which is about 11 meV.

For completeness, we mention that there are two other intra-shell resonances in H−, one
is the 2p2 3Pe state and the other is the 2p2 1De state. For He− laser spectroscopy (Walter
et al 1994) from the metastable state 1s2s2p4Po of He− clearly indicates that there is a
4Pe shape resonance which can be viewed as the 1s

(
2p2 3Pe

)
4Pe state, i.e. from coupling

the 1s to the 2p2 3Pe state of the electron pair. We comment that for H− the 2p2 3Pe state
is about 10 meV below the H(n = 2) threshold, but the 1s

(
2p2 3Pe

)
4Pe state is 12.3 meV

(Walter et al 1994) above the 1s2p3Po threshold of He. At even higher energies, there is
another structure for the2De symmetry which is very near the He

(
1s2p3Po

)
threshold. This

structure had been attributed to be a 1s
(
2p2 1De

)
2De resonance. However, as shown by

Watanabe (1982), there are no hyperspherical adiabatic potential curves to support such a
resonance state. The2De feature in the experimental data is the combined effect of threshold
behaviour and the coupling of the relevant potential curves. The reader is advised to consult
the paper by Watanabe (1982) for further details on this ‘resonance’.

Thus among the doublet states in the 19–21.5 eV region only the2Se state is a clear-
cut Feshbach resonance, the2Po and 2De resonances or structures are less clear cut; they
cannot be viewed as associated with a single channel, at least in the hyperspherical sense.
For the quartet states, the known resonances are the 1s2s2p4Po and 1s2p2 4Pe states.
Each of them can be identified as the bound state or shape resonance associated with a
single hyperspherical potential curve. Beyond these intra-shell resonances (or structures)
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discussed above, there are no other inter-shell doubly excited resonances associated with
He(1s2l) thresholds.

We proceed next to discuss the 2l2l′2l′′ triply excited states of He−. For 2Se, from
figure 1(b) it is clear that the potential curves that support triply excited states have numerous
avoided crossings with curves that support doubly excited states. We treat each of these
crossings diabatically such that potential curves associated with triply excited states for each
symmetry can be extracted. In this letter we focus on intra-shell triply excited states. Among
the potential curves that converge to the 2l2l′ doubly excited states of He, only those curves
that are relevant to the 2l2l′2l′′ triply excited states will be considered. The identification of
such curves is, in general, simple. These curves have deep attractive wells at small values
of R. However, in certain cases, there is evidence of strong avoided crossings among the
curves that support triply excited states. The two lowest2Se curves that possibly can support
triply excited states (see figure 1(b)) have a pronounced avoided crossing. (This avoided
crossing is even more clear in the case of the isoelectronic Li.) Within the single-channel
approximation we drew the curves diabatically, such that the lowest2Se curve converges
to the 2s2p3Po limit of He asymptotically instead of the lower 2s2 1Se limit. (This single-
channel approximation is chosen for the moment for its simplicity. We expect that at least
a two-channel approximation is needed to account for the coupling of these two lowest
channels.)
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Figure 4. Comparison of potential curves that can possibly support 2l2l′2l′′ intra-shell triply
excited states of He−. The group of curves in (a) are related approximately as the rotational
excitations of a symmetric top formed by the three electrons. The curves show that the2Se

curve and the second2Po curve are not deep enough to support resonance states. All the other
six symmetries can support intra-shell triply excited states. The horizontal broken lines indicate
the positions of the known resonances.

We have calculated all the potential curves for the total angular momentumL = 0, 1
and 2 for He−. In figure 4 we show the eight potential curves that have relatively deep wells
which have the possibility of supporting 2l2l′2l′′ intra-shell triply excited states. These states
can be seen as resonances in electron–helium collisions (e.g. Kuyattet al 1965, also see
Buckman and Clark 1994) and in beam-foil experiments (e.g. Knystautas 1992). They also
have been studied by various theoretical methods since the first work of Fano and Cooper
(1965). Most recently, Bylicki and Nicolaides (1995) have used the complex coordinate
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Figure 5. Energies and autoionization widths of intra-shell 2l2l′2l′′ triply excited states of He−.
The numbers above each state give the resonance width in meV. These data are taken from the
calculations of Bylicki and Nicolaides (1995) and Davis and Chung (1990). The four states in
the first group (I) form a (truncated) rotor series similar to that from a symmetric top. These
states have the shape of an equilateral triangle with the nucleus at the centre, i.e. it is coplanar.
The three electrons for the two states in group II also have the most probable shape of an
equilateral triangle, but the wavefunction vanishes when the plane contains the nucleus, i.e. the
coplanar geometry is forbidden.

rotation method to calculate the positions and widths of the possible 2l2l′2l′′ resonances.
Their results are displayed in figure 5. The nonautoionizing4So state calculated by Davis
and Chung (1990) is also included. The resonance energies are given with respect to the
ground state of He.

We wish to ‘interpret’ the results in figure 5 in terms of the potential curves shown in
figure 4. We comment that the energies calculated using a one-channel approximation from
the curves in figure 4 will not be as accurate as those shown in figure 5, except possibly
after the coupling with other channels is included.

First, the four curves shown in figure 4(a) all support resonances. In fact, from the
analysis of the nodal structure (Baoet al 1997, Watanabe and Lin 1987) of intra-shell
state wavefunctions, the energies of intra-shell states associated with these four curves are
approximated by

E(L, T ) = 1

2I

[
2L(L+ 1)− T 2

]+ E0 (1)

where the quantization axis of the body frame is perpendicular to the plane formed by the
three electrons,T is the projection ofL along this axis,I is the moment of inertia and
E0 is the energy term associated with the internal motion.I andE0 are approximately
independent on the four states. TheT ’s for the four states, counting from the bottom
curve, are 1, 0, 2 and 1, respectively. For the2Po, 4Pe and 2De curves, each curve is the
lowest one that supports triply excited states and there are no obvious avoided crossings
with other curves of that symmetry. The2Do potential curve is somewhat different. The
lowest curve has a pronounced avoided crossing with the next curve. The two lowest
curves are similar to curves a and a′ in figure 3(b). We drew these curves diabatically in
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the present single-channel approximation such that the2Do curve converges to the higher
threshold. The avoided crossing, similar to the case in figure 3(b), implies that this state
would decay readily and the calculation of Bylicki and Nicolaides (1995) gives this state
a width of 331 meV, which is much larger than the widths of 10–70 meV for the other
three states. We also point out that the four potential curves in figure 4(a) display patterns
that are characteristic of the rotation of a symmetric top. From the analysis of Baoet al
(1997) and Watanabe and Lin (1987), the three electrons in these states form an equilateral
triangle with the nucleus at the centre. The energy differences of these states are due to the
rotational excitations.

We next consider the four other curves in figure 4(b). The curves for4So and 2Pe are,
respectively, the lowest curve of each symmetry and there are no avoided crossings with
other curves. Each curve is deep enough to support a resonance state. For the2Se curve,
as seen from figure 1(b), the two lowest curves have a pronounced avoided crossing. In
a one-channel approximation we treat this crossing diabatically. However, even under this
approximation each of the resulting curves is not attractive enough to support a resonance.
We thus conclude that there are no2Se triply excited states in He−, in agreement with
the conclusion of Bylicki and Nicolaides (1995). The only remaining possible intra-shell
2l2l′2l′′ triply excited state would be the 2p3 2Po state. We have extracted the potential curve
within the single-channel approximation and the resulting curve is shown in figure 4(b).
Its potential well is not deep enough to support a resonance. This conclusion again is in
agreement with Bylicki and Nicolaides (1995). We comment that the potential curves shown
in figure 4 clearly explain the relative order of the energies of the 2l2l′2l′′ states of He−,
see figure 5. Since the4So curve shown in figure 4(b) is the lowest adiabatic potential
curve (there are no singly or doubly excited4So states), we can calculate the energy of this
state within the single-channel approximation including the second-order diagonal coupling
term. The value we obtained is−0.7201 au, which is in good agreement with the value
−0.722 952 au obtained by Davis and Chung (1990).

In summary we have calculated the hyperspherical adiabatic potential curves for the He−

ion. A subset of these potential curves were used to analyse the 1s2l2l′ doubly excited states
and the 2l2l′2l′′ triply excited states. We found that most of these states can be described as
bound states of individual single adiabatic potential curves. When resonances do not exist
for a given symmetry, the corresponding potential curves are, in general, repulsive, i.e. there
is no potential well or the potential well is not deep enough to support a bound or resonance
state. In a number of cases the single-channel approximation fails. We found cases where
two potential curves show pronounced avoided crossings. In this case the resonance widths,
in general, are very broad. We pointed out that the2Po doubly excited state and the2Do

triply excited state both belong to this case and each state has a very large autoionization
width. We have also shown that the 1s2l2l′ doubly excited states can be classified in
terms of theK, T andA quantum numbers which were used to describe the doubly excited
states of a two-electron atom. For the 2l2l′2l′′ triply excited states we have identified six
resonances and their associated potential curves. Four of these six resonances are shown to
be related approximately to the rotational excitations of a symmetric top formed by the three
electrons. Finally, we point out that the present analysis is not complete. More accurate
quantitative results would require the treatment of coupling among the adiabatic channels.
Further understanding of the nature of correlations among the three electrons requires the
analysis of the wavefunctions. Work along both directions is underway.

This work is supported in part by the US Department of Energy, office of Basic Energy
Sciences, Division of Chemical Sciences.
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Herrick D R and Sinanŏglu O 1975Phys. Rev.A 11 97
Kato D and Watanabe S 1997Phys. Rev.A 56 3687
Knystautas 1992Phys. Rev. Lett.69 2635
Kuyatt C E, Simpson J A and Mielczarek S R 1965Phys. Rev.138 A385
Le Dournerf M and Watanabe S 1990J. Phys. B: At. Mol. Opt. Phys.23 3205
Lin C D 1984Phys. Rev.A 29 1019
——1986Adv. At. Mol. Phys.22 77
——1993 Review of Fundamental Processes and Applications of Atoms and Ionsed C D Lin (Singapore: World

Scientific) p 357
——1975Phys. Rev. Lett.35 1150
Morishita T and Lin C D 1997Phys. Rev.A submitted
Morishita T, Lin C D and Bao C G 1998Phys. Rev. Lett.80 464
Tang J-Z, Wakabayashi Y, Matsuzawa M, Watanabe S and Shimamura I 1994Phys. Rev.A 49 1021
Tang J-Z, Watanabe S and Matsuzawa M 1992aPhys. Rev.A 46 2437
Tang J-Z, Watanabe S, Matsuzawa M and Lin C D 1992bPhys. Rev. Lett.69 1633
Tolstikhin O I, Watanabe S and Matszawa M 1996J. Phys. B: At. Mol. Opt. Phys.29 L389
Walter C W, Seifert J A and Peterson J R 1994Phys. Rev.A 50 2257
Watanabe S 1982Phys. Rev.A 25 2074
——1988Multiphoton Processes (Cambridge Studies in Modern Optics 8)ed S J Smith and P L Knight (Cambridge:

Cambridge University Press) pp 292–303
Watanabe S, Le Dourneuf M and Pelamourgues L 1982J. Physique43 C2–223
Watanabe S and Lin C D 1987Phys. Rev.A 36 511
Zhou Y and Lin C D 1995J. Phys. B: At. Mol. Opt. Phys.28 4907


