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The controversy of the existence of resonances in lons is revisited. We calculate the hyper-
spherical adiabatic potential curves fof'H For *S° symmetry all the potential curves are repulsive,
and thus no bound or resonance states exist. This conclusion contradicts the recent calculations
of Sommerfeldet al. [Phys. Rev. Lett77, 470 (1996); Phys. Rev. &5, 1903 (1997)], where 4S°
resonance has been predicted. We also calculate the potential curves for several values of the nuclear
chargeZ ranging between 1 and 2 and show that no resonance or bound state can exigdsrthan
about 1.6. Based on the general ordering of energies of intrashell states, we show the conclusion of
Sommerfeldet al. is in contradiction with experiment. [S0031-9007(97)05022-9]

PACS numbers: 31.15.Ja, 31.25.Jf

Singly charged atomic negative ions are known to exist The issue of resonances in>H however, is far
and have been widely studied. Since the early days, botliom over. In two recent papers [10,11] Sommerfeld
physicists and chemists have been fascinated with thet al. performed large-scale calculations on t# state
possibility of finding bound or resonant states of doublyof H>~. They found a resonance with the approximate
charged atomic negative ions. In particular, the simples2p® configuration; it has an energy of 1.4 eV above
dianion, H~, has attracted a great deal of interest. Firsthe 2p?3P¢ threshold of H and a width of 1.7 eV.
experiments [1,2] in the 1970s in merged beam collisionghe existence of such a broad resonance is indeed very
between electrons and Hions observed two broad uncommon. It spans over several inelastic thresholds
features at energies above the full breakep - H- —  of H™. Since the predicted resonance is*$f state,

e” + e + e + p) threshold. These features were it does not contradict with existing experimental results,
immediately “confirmed” by calculations based on theas merged-beam experiments can populate only doublet
stablization method [3], and the structures were attributedtates. It is the aim of this Letter, however, to provide
to the two?P° resonances with approxima®s?2p and  counterevidences to dispute their claim.

2p3 configurations. However, the interpretation and the In our approach, we solved the three-electron atom in
agreement with experiment is not convincing. Thesehyperspherical coordinates within the adiabatic approxi-
“resonances” lie above the complete breakup thresholdhation using the hyperradius as an adiabatic parameter.
and therefore contradict the general Simon’s theorem [4]To first order we obtained a family of adiabatic potential
which states that no resonances can exist above the fudurves which in turn provide an estimate of the positions
disintegration limit if the constituents interact only via of all the resonances. This approach has been applied
Coulomb forces. successfully previously in the study of both the shape and

The existence of PY resonances has been questioned~eshbach resonances of H12], the bound states of He
since 1977 [5,6] and later again in 1994 using an exirimers [13], and other three-body systems [14].
tensive R-matrix calculation [7]. These results showed The hyperspherical approach for three-electron systems
no evidence of anyP’ resonances. Modern merged- has been applied to a previous investigation [15] for
beam collision experiments are carried out using coolethe 2P° symmetry of H~. The hyperspherical potential
ions from a storage ring. Andersen al. [8] performed  curves were found to be all repulsive and thus it was con-
e~ + D™ collisions using the Aarhus storage ring andcluded that there is no possibility of any resonances, in
they found no evidence of resonances anywhere foagreement with other theoretical and experimental conclu-
electron energy between 2 and 30 eV with respect taions. In lieu of the prediction of Sommerfedd al. we
the ground state of the Dion. A similar experi- calculate the potential curves for th&’ symmetry of H~.
ment for H was carried out using Tokyo’s ion stor- We found that all the potential curves are repulsive which
age ring and again no resonances were observed [9}annot support any bound states or resonances.

Thus after about 25 years, it seems that both experi- In hyperspherical coordinates for three-electron atoms,
ments and theories agree that there are no resonance states radial distances;, r,, and r; of the three electrons
in H>". from the nucleus are replaced by a hyperradiusnd two
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collectively. The Schrédinger equation for the rescale

wave functiony — Rr r.r+W then reads dFIG. 1. The first few hyperspherical potential curves f&P

states of H~. Also indicated are the energies ofH= 2,3,4)
1 a2 thresholds. Thep?3pP¢ state of H is 7.5 mRy below the
5Ty T H,g(Q;R) — E |y =0, (2)  H(n = 2) threshold. The energy and the width of the resonance
2 dR predicted by Sommerfeldt al. [10,11] are also indicated.
where the adiabatic Hamiltoniati,4({; R) is an operator
in the hyperangle€) and depends parametrically dgh

L ) lar momenta have been included but they have little effect
The total wave function is written as

on the calculated curves. At largg where one or two
S _ s 5,8 . s electrons are far from the nucleus, the system breaks up
= FJ(R o012 (3 R , 3 ) !
v Z,,: v )(g v )XS”> ®) into H™ + ¢~ or H+ ¢~ + ¢~. The lowest curve ap-
- 23 pe i H
where the total spins has been written explicitly. In Proaches th@p”-p state of H- which lies at an energy
this equation FS(R) is the radial function,®35: js  Of 7.5 MRy below the Kh = 2) threshold [16,17]. Note

the spatial part of the adiabatic channel function, andhat thse lowest potential curve is fuIIy r_epulsive. If there
/\/g]z = [{x()x (2} x(3)° is the total spin function. 'S a2p-” bound state associated with this curve, then a po-

The function®$» and its associated potential energytential well is expected and the energy will be below the

23 :
USS»(R) are defined as solutions of the hypersphericaﬁ{’ PehStaltg l;)f H. If thferle ISI? shape”resonan%e, th‘?%
adiabatic eigenvalue problem there should be a potential well at small R together wit

a potential barrier at large R where the barrier should be
[Haa(Q;R) — U, (R)]®,(Q;R) = 0. (4) higher than the calculated resonance energy (marked by
All the functions ®5-52 which are solutions of (4) are E, in the figure). There are no such potential wells or
required to satisfy the Pauli exclusion principle; i.e., thepotential barriers in the curves of Fig. 1.
function in (3) should be totally antisymmetric. In Fig. 1 we also show a few higher potential curves.
In order to construct channel functions satisfying appro-Since there are no other bound states (or doubly excited
priate symmetries, we adopt a two-step numerical procestates) of H of the correct symmetry that can be formed
dure. In the first step we include only electron-nucleusn the energy region near the(ki= 2) limit, all of the
interaction to obtain basis functions which satisfy theother potential curves shown as solid lines are expected to
symmetry constraints. In the second step the electrorconverge to the K2p) limit for R — . They represent
electron interaction is diagonalized, giving the adiabatidhe discretization of the @p) + ¢~ + ¢~ continuum
potential curves. states in the finite region @®. Since the potential curves
We use the numerical procedure outlined above tare calculated only up t& = 60, there are only a finite
study the*S° states in H~ where a very broad resonance number of such curves in the range of energy shown.
has been predicted by Sommerfeldal. In the following In Fig. 1 we also show a dashed curve which is ob-
we will use the adiabatic hyperspherical potential curvedained by treating the adiabatic avoided crossings diabati-
in three different ways to draw the conclusion that therecally. This curve is expected to approach the?3P¢
are no bound or resonance states. state of H at largeR. It is repulsive and thus no bound
(1) The adiabatic hyperspherical potential curvesin  states or resonances are expected.
Fig. 1 we show the first fewS® hyperspherical potential ~ We comment that the hyperspherical approach is very
curves for H~. The energyE, and width I, of the suitable for studying shape resonances. The well-known
resonance obtained by Sommerfedd al., as well as 'P° shape resonance above thénH= 2) limit in H~
the asymptotic energies of(hl = 2,3,4) limits are also is well represented by a potential curve which has an
indicated. To begin with, all the potential curves areattractive well at smalk and a potential barrier at large
repulsive. They do not have the attractive wells that ar¢12]. Similarly, other known shape resonances in héar
needed in order to support bound states or resonances. the Hn = 3) threshold are also well represented by such
The potential curves are calculated with the trios of or-potentials [18]. A shape resonance in positronium negative
bital angular momentum quantum numbeéfs, {5, €3) =  ion Ps is also represented by a hyperspherical potential
(1,1,1) and(1,2,2). Combinations of other higher angu- which has the expected shape [14]. In other words, the
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known shape resonances for the three-body systems céuse system. In studying two-electron atoms the adiabatic
all be represented by hyperspherical adiabatic potentiapproximation in general works better for Hhan for He
curves which have attractive wells at smRland repulsive  [17,21].
barriers at largeR. This in fact is the strength of the  From the potential curves shown in Fig. 2 it is clear
hyperspherical method since the potential curve provides that forZ = 1.8 there is still a weak attractive well. For
good estimate of whether bound states (or resonances) can= 1.6 the potential well is too shallow to support any
exist or not without directly calculating the energy levels. bound state. We estimate that to have a bound state the
The discussion above does not include the effectharge has to be greater than 1.6 approximately. (No
of coupling among the potential curves. However,attempt was made to determine the precise valu& of
the effect of the coupling can be estimated from thewhere a near-zero energy bound state begins to disappear.)
magnitude of the diagonal second-order coupling term, Based on the potential curves in Fig. 2 we can also
—(®,|(82/0R*)|®,). This term is positive definite and conclude that there is n&S® bound state or resonance
adds to the potential/;,(R). We have calculated this associated with A
term for the lowest curve and found that it is small at all (3) Relative energies of intrashell triply excited states
R and thus the conclusion above is not changed. in three-electron systemsA further argument against the
(2) The Z dependence of tR&° potential curves from claim of a*S° resonance in K is to examine the relative
Z = 1to Z = 2. An alternative assessment of the pre-energies of intrashell states of a three-electron or three-
diction of the resonance in’H is to examine the evolu- valence electron system. In a recent paper, Baal.
tion of the hyperspherical potential curves as the nucledi22] analyzed the nodal surfaces of the angular part of
chargeZ decreases frol@ = 2 to Z = 1 for the three- wave functions resulting from constraints imposed by
electron systems. For this purpose we show the loweshe quantum symmetry—i.e., the total orbital and spin
450 potential curve foZ =2, 1.8, 1.6, 1.4, 1.2, and1 in angular momenta, the parity, and the Pauli exclusion
Fig. 2. For easier comparison, we normalize all the calprinciple. It was concluded that among the instrashell
culated potential curves &R = 60 to —1.0. Thus the states, the’P? state should have the lowest energy,
relative depth of the potential wells, if they exist, canfollowed by the*P¢ state. These two states have no nodal
be compared directly. Far = 2, the He is known to  surfaces in their wave functions in the body frame, while
have one bound state for this symmetry. The accuratall the other states, including tHe” states, have nodal
energy level calculated by [19] is0.722952 a.u. From  surfaces in at least one of the internal coordinates. This
the present potential curve fa = 2, the lowest energy implies that the energy of theP? state should always be
calculated with (without) the second-order diagonal termiower than that for theéS° state for any systems. This
is —0.7201 a.u. (-0.7299 a.u.). Within the one-channel ordering is in fact the case for Li and Heas well as
approximation, these two energies provide the upper anfbr other three-valence electron systems. In Fig. 3 we
lower bounds to the exact solution [20]. Clearly our cal-show the lowest potential curves for tR&°, “P¢, and
culated energy level including the second-order diagonals® symmetries of . Obviously the!S° curve is much
term is very close to the result of [19]. This illustrates thathigher than the other two curves, in agreement with the
the adiabatic approximation is quite adequate for obtaingeneral consideration discussed above.
ing reliable binding energy for the lowegp?3+s° state Following this general argument, if 4S° resonance
of He™. We thus expect the adiabatic approximation toindeed exists as claimed by Sommerfad al., then a
work well also for H~. In fact adiabaticity is an even Feshbach or shape resonance should exist for’>ffe
more reliable assumption for?H since it is a more dif-
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FIG. 3. The lowest potential curves féiP°, “P¢, and *S°

FIG. 2. The lowest'S® potential curve for a three-electron symmetries for F~. If triply excited states exist for H,
system with “nuclear chargeZ ranging from 2 (for He) to 1 they are expected to be bound by these potential curves. Note
(for HE*™) in steps of 0.2 showing the gradual disappearance ofhat *S° is expected to be more repulsive than the other two
the attractive potential well a8 decreases. symmetries (see text).
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