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Hyperspherical close-coupling calculation of electron-hydrogen scattering cross sections

Ming-Keh Chent C. D. Lin2 and J. Z. Tang
!Department of Physics, National Chung-Hsing University, Taichung 40227, Taiwan
2Department of Physics, Kansas State University, Manhattan, Kansas 66506
3Department of Physics, University of Tennessee, Knoxville, Tennessee 37996
(Received 2 December 1996; revised manuscript received 7 April)1997

Elastic phase shifts and scattering cross sections for electron-hydrogen scattering balev2ttieeshold
are carefully evaluated using the hyperspherical close-coufiS§ O method. The results are compared to
other benchmark calculations to illustrate the convergence properties of the HSCC method. Elastic and inelas-
tic scattering cross sections between tive2 andn=3 thresholds are also calculated and compared to other
benchmark calculation§S1050-294{@7)00709-9

PACS numbd(s): 34.80.Bm, 34.80.Dp

In recent years the hyperspherical close-coup{li§CQO  with
method has been used extensively to study photoionization
of helium atomgsee[1], and references thergiand photo- R,_1<R<R;, ©)
detachment of H (see[2], and references thergimver a
broad energy region. The HSCC method has been shown where the basis functions(R"; ,)) within the sector are
be able to obtain accurate results for the scattering crosixed to be the adiabatic eigenstatesRit, often chosen at
sections as well as resonance parameters for two-electrahe midpoint of the sector. Since the basis functions are fixed
systems. It has also been used recently to study rearrang@ithin each sector, the expansion is called the diabatic-by-
ment collisions such as positron scattering with atomic hy-sector method. From Ed2) a set of coupled second-order
drogen(see[3], and references therginWhile results ob- differential equations foF ,(R) are obtained within each
tained from the HSCC method in the higher-energy regiorsector which are integrated from one end of the sector to the
where many channels are open have been shown to be ather where it is matched to the wave function expanded in
general in good agreement with experimental data, théerms of basis functions from the next sector. By matching
method has not been critically examined at the highthe wave functions and the derivatives with respecRtat
precision level. In this Brief Report, we present results fromthe boundary of the two sectors, this procedure allows us to
careful HSCC calculations in the low-energy region forintegrate the coupled equations until it reaches the boundary
electron-hydrogen collisions where a number of other benchef the outer region aR=Ry, , where it is further matched to
mark theoretical calculations are available. We demonstratthe asymptotic wave functions expressed in independent par-
that the HSCC method is capable of achieving comparablécle coordinates to extract thé matrix. TheK matrix con-
precise results as well in the energy region where a fewains all the information on the scattering process. For more
channels are open. details of the method, the readers are referrefbio

The HSCC method has been described elsewhés We first present the elastic phase shifts for electron hy-
and in a review articl¢6]. For the present system, the two- drogen scattering using the HSCC method. Accurate phase
electron wave function is expressed in hyperspherical coorshifts for this system have served as a critical test for any
dinates as,p(r_;r_;):W(R,Q,Q)/(Rwsinacom) and the theoretical method. In Table | we compare the results of the

Schralinger equation satisfies HSCC calculation with other benchmark calculations. For
1s® and 3S® partial waves, the HSCC results are in good
1 3 Hy agreement with thqse obtained from the direct numerical in-

~ 5 9R? +EZ_ —E|¥Y(R,a,Q)=0, (1)  tegration of the Schdinger equation by Wang and Callaway

[7], with the results from th&®-matrix calculatior{ 8] and the
variational calculationf9]. The discrepancies are in the third
whereR= (r2+r3)'?2is the hyperradiusg=tan '(r,/r,) is  decimal point in the phase shift at most. To achieve high-
the hyperangleQ) denotes the four angles,(,r,), andH,qis  Precision phase shifts reported here in the HSCC calculation,
the adiabatic Hamiltonian at fixed values Rf we have used a matching radif, between 115 and 250
In the HSCC method, the configuration space is divided®-U. The number of channél&;, included in the inner region
into two regions, the inner regiorRE Ry), and the outer or  is 60-75 and the number of sectd¥geis 1000. Conver-
asymptotic region R>Ry). The inner region is further di- gence is checked by varying the matching radius and the

vided into small sectors. Within each secf®_,,R;], the ~ humber of channels. _
wave function is expanded as Table | also shows the phase shifts for t:HéO and 3PO

symmetries and the results are compared to the calculations
Nep of Wang and Callaway{7] and the R-matrix method of
V(R a,0)= F (R)AR™ a,Q), 2 Scholz et al. [8] and the earlier variational calculations of
(Rien.t) Zl w(R)& ) @ Das and Rudggl0]. All four calculations are in good agree-
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TABLE |. Phase shifts foe-H scattering.
State k 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
lge Present 2.555 2.066 1.695 1.413 1.197 1.036 0.925 0.881
Direct numerical 7] 2.555 2.066 1.695 1.415 1.200 1.041 0.930 0.887
R matrix [8] 2.550 2.062 1.691 1.410 1.196 1.035 0.925
Variational[9] 2.553 2.067 1.691 1.415 1.202 1.041 0.930 0.886
3se Present 2,941 2.718 2.499 2.292 2.101 1.929 1.775 1.638
Direct numerical7] 2.939 2,717 2.500 2.294 2.104 1.933 1.780 1.644
R matrix [8] 2.939 2,717 2.500 2.294 2.105 1.933 1.780
Variational[9] 2.939 2,717 2.500 2.294 2.105 1.933 1.780 1.643
tpo Present 0.0059 0.0157 0.0168 0.0098 —0.0019 —0.0124 —0.016 —0.007
Direct numerical7] 0.006 0.016 0.017 0.010 —0.002 —0.012 —0.015 —0.007
R matrix [8] 0.006 0.015 0.016 0.009 —0.002 —0.012 —0.016
Variational[10] 0.006 0.015 0.017 0.010 -—0.001 —0.011 —0.014 —0.006
3pe Present 0.010 0.046 0.107 0.188 0.272 0.342 0.392 0.426
Direct numerical 7] 0.010 0.046 0.107 0.188 0.271 0.342 0.394 0.429
R matrix [8] 0.010 0.045 0.107 0.187 0.270 0.341 0.392
Variational[10] 0.010 0.045 0.107 0.187 0.271 0.341 0.393 0.427
pe Present 0.0011 0.0056 0.011 0.018 0.027 0.038 0.052 0.074
Direct numerical7] 0.0012 0.0056 0.011 0.018 0.027 0.038 0.052 0.075
R matrix [8] 0.0013 0.0051 0.011 0.018 0.027 0.038 0.052
Finite elemen{11] 0.0007 0.0048 0.011 0.018 0.027 0.038 0.052 0.074
Variational[12] 0.0012 0.0052 0.011 0.018 0.027 0.038 0.052 0.075
3pe Present 0.0012 0.0059 0.011 0.019 0.030 0.042 0.055 0.069
Direct numerical 7] 0.0012 0.0057 0.011 0.020 0.030 0.042 0.055 0.070
R matrix [8] 0.0013 0.0052 0.011 0.020 0.030 0.042 0.055
Finite elemen{11] 0.0007 0.0049 0.011 0.020 0.030 0.042 0.055 0.070
Variational[12] 0.0013 0.0052 0.011 0.020 0.030 0.042 0.055 0.070
1o Present 0.00016 0.0015 0.00378 0.0063 0.0105 0.0146 0.020 0.025
Direct numerical7] 0.0001 0.0015 0.0038 0.0064 0.010 0.015 0.020 0.026
Finite elemen{11] 0.0000 0.0016 0.0037 0.0065 0.010 0.015 0.020 0.026
Variational[13] 0.0038 0.0066 0.010 0.015 0.020 0.026
SFo Present 0.00016 0.0015 0.00378 0.0063 0.0105 0.0146 0.020 0.025
Direct numerical 7] 0.0001 0.0015 0.0038 0.0064 0.010 0.015 0.020 0.026
Finite elemen{11] 0.0000 0.0016 0.0037 0.0065 0.010 0.015 0.020 0.026
Variational[13] 0.0038 0.0067 0.010 0.015 0.020 0.026
TABLE II. Cross sectiongin units of 7a3) atk?=0.78 Ry.
(LS)
(00) (01) (10 11 (20) (21 (30 (31
1s-1s Present 0.621 3.841 0.0009 2.043 0.055 0.122 0.009 0.028
Direct numerical 7] 0.622 3.841 0.001 2.073 0.058 0.131 0.010 0.033
1s-2s Present 0.040 0.0009 0.0031 0.044 0.055 0.0005 0.0003 0.0039
Direct numerical7] 0.041 0.001 0.0032 0.044 0.056 0.0004 0.0003 0.0035
1s-2p Present 0.034 0.0003 0.048 0.041 0.092 0.0015 0.001 0.011
Direct numerical7] 0.035 0.0004 0.048 0.042 0.092 0.0017 0.001 0.011
2s-2s Present 5.515 0.275 53.88 66.94 65.36 90.00 20.04 38.38
Direct numerical7] 5.313 0.570 51.47 66.18 64.15 81.39 19.56 37.36
2s-2p Present 1.893 3.66 16.78 6.933 16.85 120.77 48.23 122.2
Direct numerical 7] 0.960 6.854 18.00 7.218 17.29 118.94 47.81 120.8
2p-2p Present 8.712 30.16 11.38 164.2 55.28 139.4 49.02 193.0
Direct numerical7] 9.334 27.98 11.33 164.2 55.49 134.8 49.29 192.1
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TABLE lll. Cross sectiongin units of wag) atk?=0.85 Ry.

(LS
(00) (01 (10 (11 (20 (22) (30) (31

1s-1s Present 0.512 3.505 0.0027 1.864 0.062 0.127 0.010 0.030

Direct numerical7] 0.518 3.508 0.0029 1.898 0.065 0.137 0.012 0.036
1s-2s Present 0.057 0.0013 0.0064 0.053 0.074 0.0061 0.0022 0.013

Direct numerical 7] 0.055 0.0017 0.0060 0.055 0.074 0.0059 0.0021 0.012
1s-2p Present 0.025 0.0006 0.066 0.045 0.152 0.011 0.0072 0.047

Direct numerical7] 0.025 0.0010 0.067 0.046 0.152 0.011 0.0069 0.048
2s-2s Present 7.238 13.23 5.870 8.393 17.75 84.91 7.75 27.3

Direct numerical7] 7.032 13.28 6.033 7.791 18.09 83.58 8.524 27.33
2s-2p Present 0.638 3.426 2.183 18.32 0.578 20.51 14.94 14.97

Direct numerical 7] 0.686 2.785 2.049 17.69 0.490 21.45 15.31 14.84
2p-2p Present 0.586 3.342 8.822 27.15 21.58 31.06 11.47 73.30

Direct numerical 7] 0.599 3.685 8.860 27.99 21.54 30.71 11.47 73.38

ment. In the HSCC calculations presented for these two pamdiscrepancy occurs at lower energies wikéris close to the
tial waves, we used Ry=197-534,Ny=114-145, excitation threshold(at 0.75 Ry but the errors become
Ngec= 1600. smaller at higher energies.

For the 'D® and 3D® partial waves, the HSCC results are ~ We remark that the elastic or resonant scattering cross
also compared to the calculations of Shertzer and Bgtetp ~ sectiongsuch as 2-2p) at low energies are more difficult to
using the finite-element method, in addition to the results ofbtain accurately using the diabatic-by-sector approach of
[7,8,12. The results of Shertzer and Boterckat0.1 and 0.2 the HSCC method. Recall that in E@) the wave functions
appear to be too low. Otherwise there is good overall agre¢®'® expanded in terms of diabatic basis functions within each

ment among the calculations. In the HSCC calculations weector, i.e., the basis functions remained fixed within each
usedRy = 195—644, Ng=85—-108, Ngo.= 1900. ' " sector. This is not a good representation of the physical sys-
For the 1F° and 3FS partial waves. the phase shifts cal- [€M for those channels which are barely open. These low-

culated are compared to those frd11,13. The overall €Nergy channels, as expected, are better represented by suit-

agreement among the calculations can be seen clearly fPe adiabatic basis functions. To achieve high-precision
Table I. In the HSCC calculation, we used®y calculations for these channels within the diabatic-by-sector

=190-602, No=100—133, Ny..= 1400 scheme, a large increase in the number of diabatic basis
y IN¢l 1 sec "

We have not calculated the phase shifts for partial wave nctions would be needed to represent the adiabatic channel
unctions. This is not easy to implement directly since in the

beyondL = 3. The phase shifts for these higher partial wave lculati h h s which h higher kineti
are quite small because of the centrifugal barrier. Such smafidme calculation other channels which have higher kinetic
nergies are more diabatic in nature. The poor elastic and

phase shifts in general are more easily calculated using pe?— ; . ) .
turbative approaches. We note that in this respect the Hsctesonant scattering cross sections in the HSCC calculations
method is similar to the finite-element method of Shertzef"®& the opening of the new thresholds are thus expected.

and Botero[11] and the direct numerical solution of Wang From Tables Il and II.I, however, we notice that the inelastic
and Callaway[7] in that they are suitable for lower partial scattering cross sections converge much faster and_ even _the
waves where electron correlation is more significant. For-S"1S €lastic channels are well converged. The inelastic
higher partial waves the independent particle picture is rathefansitions occur at smaller hyperradius and for thels
adequate, then perturbative approaches or methods based %ﬁs'[_'c cha_nnel th_e k|_net|c energy Is not sr_nall such that di-
the close-coupling approximation will be able to achieve ac2Patic basis function is a good approximation.
curate results with less effort.

We have also calculated all the elastic and inelastic sca
tering cross sections for a few energy points between th
H(n=2) and HH=3) thresholds using the same set of pa-
rametersRy,, Ng,, and Ng as in the calculation of the
elastic phase shifts. In Table Il and Table IIl the results ar
compared to those from Wang and CallaWya@yat k*=0.78

In summary, we illustrated that the HSCC method indeed
can be carried out to the comparable precision of the existing
enchmark calculations for the basic electron—hydrogen-
atom collisions. The main power of the HSCC method, how-
ever, is in its application to the higher-energy region where
dnany channels are open, as illustrated in the previous appli-
cations[14,2]. In the higher-energy region, there are few

Ry and 0.85 Ry, respectively. Results from other caIcuIation?enChmark calculations available for comparison, but the re-
can be found in the work of Wang and Callaway and will notsmtS from the HSCC method have been compared most fa-

be repeated here. From the two tables, we first note that th\éorably with most detailed experiments from photoionization

1s-1s, 1s-2s, and 1s-2p cross sections between the two studies{1].

calculations agree quite well for all the partial waves. For the This work is supported in part by the National Science
transitions 2-2s, 2s-2p, and Z-2p there are large dis- Council Grant No. NSC83-0208-M005-02.K.C.) and by
crepancies between the two calculation&’t 0.78 Ry, es- the NSF-Taiwan cooperative research grant. C.D.L. is par-
pecially for (LS)=(00),(01). The discrepancy is not as se-tially supported by the U.S. Department of Energy, Office of
rious atk?=0.85 Ry. In general we have observed that theEnergy Research, Division of Chemical Sciences.
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