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Nodal structures of intrashell states of three-valence-electron atoms
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The nodal structures of intrashell states of a three-valence-electron atom are investigated. We expand the
wave function in the body frame of the three electrons and show that the effect of symmetry such as rotation,
space inversion, and permutation is to impose nodal surfaces on the components of the wave function. The
equilibrium configuration is deduced to be a coplanar equilateral triangle with the core at the center and the
three electrons at the vertices. Three basic modes of internal oscillations have been identified and the relative
energy levels of the atom are interpreted in terms of the degrees of excitations of these basic modes. Calcu-
lations are carried out using a model of three electrons moving on the surface of a sphere. Results from this
r-frozen model, as well as the limited data in the literature, are used to illustrate conclusions drawn only from
the symmetry consideration alone. We thus claim that the relative energy levels of intrashell states of a
three-electron atom is determined less by the detailed dynamics and interactions, but more by the inherent
guantum symmetry.S1050-294{®7)02406-2

PACS numbd(s): 31.504+w, 03.65—w, 21.45+v, 31.15.Hz

[. INTRODUCTION mental data from synchrotron radiation laboratories for Li
atoms are beginning to emerge, only a very small subset of
The properties of singly excited states in a many-electrortriply excited states have been explored so[fa6]. Simi-
atom are well understood in general based on the shelarly, a limited number of individual states of a three-
model. The wave function of the outermost electron is analoelectron system have been calculated by the conventional
gous to the well-known wave function of the hydrogen atomapproache$7—-11], but the nature and the systematical be-
and the principal guantum number which is used to des- haviors of triply excited states still have not been investi-
ignate excited states, is directly a measure of the number @fated. Due to the high dimensionality of the wave functions,
nodes in the radial wave function. When two electrons arghe extraction of meaningful physical parameters or approxi-
simultaneously excited, the shell model picture fails. Overmate quantum numbers that characterize triply excited states
the past three decades a number of theoretical approachissa formidable challenge and perhaps is even more difficult
have been developed to describe these doubly excited statdésan performing the actual numerical calculation for indi-
The emerged picture of doubly excited states is that the movidual states. On the other hand, without a set of different
tion of the two electrons has to be treated together and thapproximate quantum numbers to describe the internal
the excitation spectrum can be understood qualitatively irmodes or the relative motions of the three electrons, we can-
terms of quanta of the joint rotation and vibration of the twonot claim to have understanding of the triply excited states.
electrons(see[1] and references therginFurther analysis Alternative approaches based on hyperspherical coordinates
has established that these quanta are related to the nodahy provide some hope for the analysis of these sfdtes
structure of the wave functions in some internal coordinatesl4], but the methods are not fully developed yet and even
Today the basic behavior of doubly excited states of atoms ithen the identification of meaningful physical parameters is
fairly well understood; methods for performing accurate cal-nontrivial.
culations are available and theoretical approaches are ca- In this paper we study the effect of symmetry on the in-
pable of explaining the ever-improving high-resolution datatrashell states of three-valence-electron atomic systems. In
such as those obtained using synchrotron radid2o8i. particular, we examine the nodal structures of the wave func-
One of the next challenges in basic atomic structure studtions when the three electrons are at the same distances from
ies lies in the understanding of triply excited states. Wherthe nucleus. We show that nodal surfaces are imposed on the
compared to doubly excited states of a two-electron systenwave functions due to the overall symmetry of the states and
the addition of one more electron introduces three more spdhe existence of nordal surfaces in turn determines most im-
tial degrees of freedom and one more spin degree of fregeortantly the relative energy levels of intrashell states.
dom. By removing the three degrees of freedom describing The rest of this article is arranged as follows. In Sec. Il we
the rotation of the whole system, there are six remainindirst describe the decomposition of the wave function on the
spatial internal degrees of freedom. Thus, even without conbody frame of the three electrons. For edclf5, and parity
sideration of spins, we need six quantum numbers to dew, we then address the condition of symmetry on the rota-
scribe a three-electron wave function, which in turn providedional component wave functions, in particular, in terms of
the full description of the system. the existence of nodal surfaces. These types of nodal surfaces
The complexities and the large degrees of freedom thabccur when the three electrons have special symmetry, such
are needed to describe a three-electron atom guarantee tlest forming an equilateral triangle, an isosceles triangle, or a
full understanding will come out only slowly. While experi- coplanar equilateral triangle. Modes of small “vibrations”
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from these equilibrium configurations are then identified.
Since any nodal surfaces imply higher kinetic energies, the
low-lying states of a three-electron atom will try to avoid
exciting those rotational components that have inherent
nodal surfaces. For the higher states, additional nodal sur-
faces are excited. By analyzing the nature of nodal surfaces
for all the rotational components for all tHe, S, and =
symmetries, the relative energy levels of a three-electron
atom can be more or less dedud&ekc. II)). In Sec. IV we
used the wave functions obtained from the model calcula-
tions where the three electrons are assumed to lie on the
surface of a sphere to illustrate that indeed the qualitative
analyses based on the symmetry alone are supported by the
numerical calculations. The analysis also shows the exis-
tence of rotor series for a certain group of states. It also
provides interpretations for the relative energies among the
four states for the samle (doublet and quartet, even and odd
parities. The symmetry analysis also provides qualitative
explanation for the relative energy separation for the first two
lowest states within the same symmetry. Section V summa-
rizes the results.

Il. THE ANALYSIS OF THE NODAL STRUCTURES
OF WAVE FUNCTIONS

A. Permutation symmetry of the wave functions

Let the antisymmetrized wave function of the three-
electron atom be written as

¢=Es Fo(123x8, (1)

wherei (i=1,2,3) denotes the spatial coordinates of electron
i, with F4 being the spatial part and
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FIG. 1. Body frame of three electrons on a sphere where the

center is at point 0. The three electrons labglE2d form a plane

xs=1[6(1)€(2)1s4(3)}s )

with the O'k’ axis being normal to the plane. Thé axis bisects

the two vectors fromD’ to electron 1 and fron®’ to electron 2.

the spin part; the spins of electron &;§ and electron 2
(e,) are coupled t@; then s is coupled to the spin of electron
3 (e3) to form the total spirS. Let Eq. (1) be rewritten as

Thej’ axis lies on the plane and is orthogonal to theaxis.

B. Projection of wave functions on the body frame
of the electrons

= S M (123 Introduce the body framg -j’-k" with thek’ axis being
v Man'Zz’,UG i s Mol s normal to the plane of the three electranefer to Fig. 2;
then
xX&,,(1)€,,(2)€,.(3), ()
M L rorar
where¢, is the spin state witu=+3, M is theZ compo- f%%%il 2 3):% Dom(— 7, =B, —a)fg(1'2'3"), (5

nent of the total orbital angular momentumandM g is the

Z component ofS. Since is antisymmetrized, we have

a1 2= (VPR o, (PAP2P), (4

where 12’3’ denote the coordinates of the electrons mea-
sured in the body frame. The Euler angless,y measure
the orientation of the body frame with respect to the fixed
laboratory frame. The projection df alongk’ is Q, with

where p,p,ps is a permutation of 123 and<1)” is the fo b'eing theQ-component wave function. Owing to their
permutation parity. Owing to Ed4), differentfi‘fmus would ~ relation

provide equivalent information and hence the analysis of
only one of them is sufficient to distinguish different states.

fo=m(— 1O, ©)

For our purpose we will analyzﬁ’}zvl,zm(lz?,). This com-  where 7 is the parity, onlyQ=0 components will be dis-
ponent implies that the spins of electrons 1 and 2 are up, theussed an@) is taken to be zero or a positive integer for the
spin of electron 3 is down, ankll s=1/2. Both the doublets rest of this paper. From time to time we will refer tg as

S=1/2 and quartet$=3/2 are included.

the rotational component wave function.
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Let Fi be the position of electrom measured from the m(—DHo(D)=—"1o(2) if S=3/2, (9)
nucleus. Whermr ;=r,=r4, specific constraints are imposed o ) ,
on the wave functions since each wave function has wellwhereZ implies that the electrons form an isosceles triangle
defined symmetry properties with respect to rotation, inverifréspective of which two are at th‘E base. Equati@him-
sion, and permutation of particles. Consequently, specifi®lies thatfq has to be zero forr(—1)-=1 andS=3/2 states
nodal surfaces may appear in the multidimensional coordiét configurations when the three electrons form an isosceles
nate space. These nodal surfaces originate from the symméiangle. The fact that nodal surfaces appeatgt-0, 37,
try and they are called the inherent nodal surfdd&$ Since  180°, and—37 implies that the kinetic-energy term con-
the wave functions are continuous, these nodal surfaces figined in thef, component forS=3/2 is particularly large.
turn affect the structure of wave functions in a broad region
surrounding the ;=r,=r5 sphere, which in turn affects the 2. Coplanar geometry
relative energy levels of the atom. We set out to examine Another special configuration is the coplanar geometry
these constraints in detail and provide some simple interprayhere the plane of the three electrons also contains the core
tation of their origin. (or the nucleusof the atom. In this case, a rotation about
k' by 180° is equivalent to an inversion. Thus we have
C. Constraints on the rotational component wave functions

— (=19 f A=
by the symmetries at ther;=r,=r5 configuration [1-m(=1) ]fQ_o at coplanar structures. (10)

1. Three electrons forming an isosceles triangle This implies that an inherent nodal surface appears for all the

it(—1)Q= —
Referring to Fig. 1, whemp;=0° or 180°, the three elec- Q components ifr(—1) 1.

trons form an isosceles triangle wigh ande, at the base. In

this geometry, a rotation aboyt by 180° together with a .
. L : . > In the cases that the three electrons can form an isosceles
space inversion is equivalent to an interchanger pfand . . . :
- . triangle, the special geometry of an equilateral triangle fur-
rp. The former operation causes a change fof 10  ther imposes the conditior46]
w(— 1)L+Qf5, while the latter causes a change of sign since
the two electronse; and e, have parallel spins. Thus we [1+2c0827Q/3)]fo(£)=0 if S=1/2, 11
have the constraint

3. Three electrons forming an equilateral triangle

[1-expi27wQ/3)]fo(£)=0 if S=3/2, (12
m(— 1) fg=fg=—1fq if #3=0° or 180°. (7) _ _ o
where £ denotes the equilateral triangle configuration. The
This implies that the real part d¢, (denoted byfg) must be equgﬂons abovg |mply thaF inherent nodal surfacgs appear at
equilateral configurations in all th@=3m (m an integer

zero at¢;=0° or 180°. In other words, a nodal surface _ : i
should appear there. The existence of this nodal surface Icsomponents fo=1/2 states and in all th@#3m compo

the result of the inherent symmetry of the wave function and’ ents forS=3/2 states.
has nothing to do with the interaction potential or the dynam-

ics of the system. Therefore, such nodal surfaces are called D. Interpretations in terms of normal modes
inherent nodal surfaces. _ We now discuss the implications of the inherent nodal
For Q=0, Eq.(7) can be rewritten as surfaces discussed above.
m(—1)Ho_=—"f, if ¢4=0 or 180°.  (8) 1.%s°

Consider a®S? state as the first example. From HE),
This implies thatf, must be zero atp3=0 or 180° if  fl =0 (the imaginary part of). This is a symmetry forbid-
m(—1)t=+1. den component. For the real part, the constré@htimplies

For S=3/2, the Q=0 component exhibits more con- that an inherent nodal surface occursfgt=0° or 180°.

straints. FoQ=0, the effect of a rotation by 180° aboutany | Fig. 2(a) the three electrons form an isosceles triangle
axis (say_thej” axis) lying on thei’-j_’ plane is the same as jth e; being located atC, which corresponds tap}=
the rotation by _18%’ aklc?uE thf;{i‘?LX'S (the operator of the 1g0° \wjith the positions of the two other electrons fixed, the
former rotation ise'™2 e”'""2 @ '*2, whereL, andLz are  qint C s a local potential minimum on the circle with the
the components of alongj" andk’, respectively;s is the  gmgjlest Coulomb repulsion between the electrons. A node at
angle fromj” to j; because the eigenvalue Icg is zero for ¢ i general implies that the wave function will have a posi-
Q=0, the above combination is equal €'7"2). In addi-  {jye maximum alC’ and a negative minimum &”. In other
tion, for S=3/2, the interchange of positions of any pair of \yorgs, if the wave function is positive fro@’ to C, it will
electrons causes a change of sign. Thusgssit=37 (refer to e negative fronC to C”. In Fig. Aa) this is indicated as a
Fig. 1), thene, ande; will form the base of an isosceles swing motion intuitively where the spin-down electron at the
triangle and a rotation about an axis paralletfer, by 180  top of the triangle swings left and right around the equilib-
° together with an inversion is equivalent to an interchangeium shape. Thus the swing mode is an inherent mode of the
of 1 and 3. Hence, i5=3/2, Eq.(8) holds also for¢;=3  fX component. We summarize this analysis in Table I, using
7 and similarly for¢=—37. Thus Eq.(8) can be general- s to denote thaf? contains an excited swing modan ex-
ized to cited mode implies that at least a node is contajinaad
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C d-oscillation mode implies a node at this geometry, this in
® turn implies that excitation of d-oscillation mode will have
C‘,—- .C higher energy. The excitation ofdrosc mode is labeled by

ad in Table I.

3. %p¢

. For the 2P® statesf§ is forbidden by Eq(6), f} is con-
} 0 strained by Eq(10), andfff is constrained by both Eq$7)
@ @ and (10), thus it is labeled by +s in Table | for this com-

‘. > ponent. Forf'o, this component is constrained by E4.1)
with the result of having an inherent nodal surface at the
equilateral configuration. It was found i8] that such a
nodal surface spoils the stability of an isosceles triangle and
induces a hinge mode as depicted intuitively in Fige)2In
this mode, a sharpened isosceles triangle transforms into a
flattened one and back repeatedly around the equilateral tri-
angle which is an equilibrium shape. Such a hinge mode is
denoted by a labéh for thef{) component in Table I.

@

4. 4s®

For #S° states,fy, is prohibited by Eq(6) andf§ is con-
strained by Eq(10). This constraint is stronger than E@®),
as discussed before, because it has more nodal surfaces. In
Table | this stronger swing mode is denoted$\Due to the
Pauli exclusion principle, the lowe$é8? intrashell triply ex-
cited states can occur only for=4 shell and higher. They
have very high energies compared to other states in the same
shell.

So far we have focused on components that are either
prohibited or exhibit inherent nodal surfaces. A wave func-

. . tion having such components tends to have higher energies.
o For states to have lower energies it is preferably to have

components that are free from any constraints. These free

components are labeled by a blank block in Table I. These

components do not have the nodal surfaces of the kind dis-

cussed above and the electrons are free to occupy geometri-
Tt ’ © cal configurations that can minimize the potential energy.

For intrashell states, such a geometry is the coplanar equilat-

FIG. 2. Intuitive picture of(a) the swing mode ), (b) thed  eral triangle. However, to achieve the lowest energy, the co-
oscillation mode @), and(c) the hinge modef{) of two spin-up  planar equilateral configuration has to be associated with the
electrons(denoted by a dot in a cirdend one spin-down electron  free components; otherwise the existence of inherent nodal
(denoted by a cross in a cirgleThe plane of the electrons is de- gyrfaces would increase the internal kinetic energy. For this
noted byoy in (b) where the plane moves up and down with respectiga50n the existence of free components is of particular im-
to the core. portance for the low-lying states.

] o o ] In Table | the existence of forbidden components, free
using a black box to indicate thaﬁt, is identically zero or components, as well as the swing mode, thescillation
forbidden. mode, and the hinge mode and their combinations are tabu-

teo lated for each rotational component for all the states with
2.°S L=< 5. They are obtained based on the total symmetry of the

Next consider*S° states wheréR is forbidden by Eq(6) states_and are independent of the dynamics or interaction
and f, has to follow the constraintl0), which contains a Potentials.
nodal surface at the coplanar configuration. It was found in
[17] that such a nodal structure induces a collective oscilla-
tion of the electrons, which is called doscillation mode,
whered is the distance from the nucleus to the plane of the To provide numerical data for analysis we introduce the
three electrons. In this oscillation the plane of the electrons-frozen model[19], where the three electrons are assumed
shifts as a whole from one side of the core to the otheto be at a fixed distance from the nucleus. In other words, the
repeatedly, as illustrated in Fig(l. Since the coplanar con- three electrons are to move only on the surface of a sphere
figuration is a local potential minimum and the with radiusrg. In this model, the Hamiltonian is taken to be

E. The r-frozen model atom
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TABLE I. Nodal surfaces in thé; components resulting from the inherent symmetry. A black box
denotes a forbidden component that is prohibited by symmetry. A blank box denotes a nodeless component
that has no nodal surfaces due to the inherent symmetry. The synioplies that there is a nodal surface
when the three electrons form an isosceles triangle with the two spin-parallel electrons at the base. The
symbol S is used to indicate that a nodal surface appears whenever the three electrons form an isosceles
triangle, irrespective of which two are at the base. The symdhatplies that there is a nodal surface when
the plane of the three electrons coincides with the ¢oreéhe nucleus The symboh implies that while the
isosceles triangle shape is allowed, an inherent nodal surface appears when the three electrons form an
equilateral triangle. The and S denote the swing modes, whittandh denote thed oscillation and the

hinge mode, respectively. See Fig. 2 for illustrations.
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d+h
h d+s| d
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d+h S d+s| d
h d+s| d | s d+s|d+h
s d+s{ d | s | h
d+s| d | s d+s|d+h| s
d4+h | s d+s{ d | s | h |d+s| d
h d+s| d | s d+s|d+h| s d+s| d
$ d+s| d | s | h |d4s| d | s
d
d+s{d+h
s | h
d+sid+h| s | h
d s | h |d+s|d+h
d+s{d+h| s | h [d+s| d
s | h |d+s|d+h| s
d+s{d+h| s | h |d+s| d | s | h
d s | h |d+s|d+h| s d+s|d+h
d+s|d+h| s | h |d4+s| d | s | h [d+s|d+h
s | h |d+s|d+h| s d+s{d+h| s | h
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72 1 due to the inherent symmetry. In the future it may be desir-

H= 5> 12+e?>, ——, (13)  able to distinguish the additional dynamic nodal surfaces that

2Mefo”T =i are associated with the excitation of thed, or h modes.
o , Thei andv indices, which are used to designate the num-
wherel; is the orbital angular rpomeAntum operator of elec'ber of nodal surfaces due to the inherent symmetry or the
troni with respect to the nucleus=ror;. The value ofgis  dynamical excitation, have been assigned for the real and
given by 3.3477 A to simulate the=3 intrashell states of imaginary parts of each of the rotational componggt To
He™. A set of antisymmetrized basis functions constructed,:pieve lower energies a state would prefer to occugy a
out of products of spherical harmonics and spinors coupled,mnanent that has a smaller total number of nodes. Since it

}_? th.?t dQS|re1d3 stymrtr:te'gry are then used tg c_hag?nahie theopears that the excitation energies associated with an inher-
o1 i S o SBT3 oy
9 ' surface represented hy=1 are comparable, we expect that

orbital angular momenturh) of each electron ranges from 0 o : .
to 4. Thus the calculation is not constrained by the shelfhe excitation energies are measured roughly in the order of
ereasing total number of nodes, i.efv.

model that would require us to consider the range of eac 2 _ . .
I, from O to 2 only. We remark that the model Hamiltonian ' @ddition to thei andu indices, the corresponding,
(13) employed here is different from the one used 1] which they are associated with, is also important. In general,

which can be expressed as whenL is fixed, if the plane of the electrons is perpendicular
to L, it would have a larger moment of inertia and thus a
1 smaller rotational energy. If the plane of the electrons is
|'|W|_:€‘2i2>j i +const. (14 parallel toL, then the moment of inertia is smaller and thus
i

a higher rotational energy. Thus a differeQtfor a given
This early model did not include the centrifugal potential!— corresponds to a different rotational energy. In general, if

due to each electron. We will show later that results from thé andu for the two states are identical, the one with higher
present model are closer to the actual energy separations & Will have lower energy. However, we can be sure that

intrashell states of atoms. (i,v)=(1,0) and(0,1) states have higher energies than an
(i,v)=(0,0) state, even if they have differe@ts since the
IIl. HIERACHY IN EXCITATION ENERGIES rotational energy is in general smaller than the excitation of
AND THE ORDERING OF LEVELS a new nodal surface.

In a quantum system, if the Hamiltonian is approximately
separable in some coordinates, the excitation energies and
the approximate quantum numbers are related to the number
of nodes in the coordinates used to describe the system. For
easy reference we will assign an indgkandig, to each of We have used the-frozen model to calculate many
the real and the imaginary parts of the rotational componengigenenergies and eigenfunctions of the model Hamiltonian
fq of the wave function. A shorthand notatiogori willbe  (13). These results will be used in conjunction with available
used when the specification of the component 0Qdb not  experimental and other theoretical data to support the general
essential. Hera is used to imply that it is related to the conclusion derived from the symmetry consideration alone.
number of inherent nodal surfaces of the wave function imy, \what follows we will use?* 1 "(m) to denote the states
posed by the symmetry. Thus:0 if a rotational component ey jated, withm=1 being the lowest state of that symme-

has no node. This component will also be called a nodeles§y m=2 the second lowest state, etc., they are called the
rotational component. We will assids=1 for having one of firét state. the second state. etc T

the s-, d-, or h-type modes where the rotational wave func- o | o goal is to enumerate the relation between the

ion has one nodal suriace. When one of these modes ir?odal structure for th€ components and the relative ener-
excited the state will have higher energy. We will assign P

i=2 for thed+s andd+ h types; they have two nodal sur- gies for intrashell states. For comparison, we will use the

faces. For theS-type mode, there is more than one nodalnumerical results from the preser_ntrozen model, as well as
surface in the swing mode. We use an index3 for these from the actual calculated energies by Vaeck and Haf@s]er_l
modes. We comment that it may be desirable to further sep&nd by Chung and Gud], and the results from the analysis
rate the nature of the nodal surfaces as belonging testhe Of optical spectra documented by Mod@g], if available. In
d, h, and other types for a complete description. However|9] the 33131" triply excited states of K" and N** have
for the global discussion of the three-electron states in thi9een calculated. We will not discuss’N since the central
paper such a fine distinction is not essential at this stage. field from the nucleus is very strong and the dominant
For a given symmetry, the higher states will acquire ad-€lectron-electron interaction addressed here is relatively
ditional nodal surfaces since the wave functions of the exweakened such that the importance of the nodal constraints
cited states have to be orthogonal to the wave functions afhay play less of a role from time to time.
the lower states. We will assign an indexo describe such Based on the existence of nodal surfaces for diffef@nt
dynamic excitations. If such excitations are not presentcomponents, we make the following general predictions on
v =0 will be assigned. Ib =1, then one new nodal surface the relative energy levels of intrashell states of a three-
is present on top of whatever the number of nodal surfaceslectron atom.

IV. ANALYSIS OF EXPERIMENTAL
AND NUMERICAL RESULTS
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TABLE II. Maximum magnitudes of the real and the imaginary parts of the rotational component wave
functions of thefirst states of the BI'3l” manifold of He". The components whose wave functions are
nodeless are underlined and they are expected to be the dominant components. A blank box indicates that the
component is either forbiddeftheck with Table ) or very small(less than 0.1 The magnitude has been
weighted by a factor 100a/(2L + 1), wherea=1 for Q=0 and 2 ifQ+ 0.

FES I i I A O I B B I A O
28e | 3.7
280 3.9
lpe 24103 |28
2pe 04| 3.5
De | 0.5 021235
D° 0.1 11137101103
lfe 1.0/101]05]|10]37]011]0.1
2Fe 0313310107 |12]1.0
2Ge 1 0.2 03106 |05]01]0.1}20]|37
2Ge 01]12(29(03108 15 (15[09]|15
450 3.5
4 pe 3.6
4pe 241 3.0
4De 0410529 |29
4De 28 | 1.5 (1.9
iFe 30(01(02]14]|14]05]| 1.1
tpo 03 | 0.4 16 | 3.7
iGe 071101002 ]02]| 15|37
A. The lower states should contain fre€Q components and associated with the fre€, component is one order larger

these states prefer coplanar equilateral triangular shapes than thefT component, which is associated with thenode,

The freef , component has no inherent nodal surfaces an@nd two orders larger than tti§ component, which is asso-
is allowed to be distributed smoothly around the most favor<ciated with thes+d mode. Thef!) component is identically
able coplanar equilateral triangle configuration to lower thezero since it is forbidden by the symmetry requirement.
potential energy. Thus the low-lying states should contain In Table Il the weights associated with thg=0 compo-
free fo components, i.ein=0 for a certainQ. nents, i.e., the free components that hawed, are under-

To check this prediction, we examine the relative weightdined and clearly they are the domina@t component for
of the f5 components for the first states based on the presemtach state. The weights shown are for the lowest sthte
r-frozen model calculation and the results are given in Tabldirst state¢ of each symmetry. Incidentally there are two
ll. By comparing with Table I, we notice that whenever aip=0 componentQQ=2 and 4 for the?G®(1) state. How-
free fo is present, that component has the dominant weightever, the one with largep is dominant. WheQ is large, the
For example, in the?’P°(1) state, the maximal magnitude plane of the electrons is more nearly perpendiculdr tnd
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30° f'1 has the same shape. In fact, it was found that among all
26w f{ the first states that have one frég component, the wave
" functions for that component in the-6 diagram all exhibit a
, : j peak near the coplanar equilateral triangle geometry. In
Q ! O Table Ill, then's (and §=90°) where the freé, component
\ K peaks for each first state are shown. They are all very close
- g to 60°, indicating the preferential geometry of a coplanar
’ equilateral triangle.
4.0 1 ©| 2%, fll @ Table Il algo shows that the most probable.shape for
g0e - PR N S=3/2 states is an exact coplanar eqwlatgral triangle. For
: O ) SN ; \ S=1/2 states, the most probable geometry is a flattened or a
o - 1 ; sharpened isosceles triangle. A possible explanation is that
O ; the electron-electron correlation between a spin-parallel pair
! ) ' and a spin-antiparallel pair are not equal Ss 1/2 states.
el CoNs Another point worth mentioning is that f@=1/2, if the free
fo component is foQ=L, then the deviation from the equi-
4p%y k- e @29yl T ® lateral triangle is small. Otherwise, the deviation is larger. A
O ) ! possible explanation is that the centrifugal force does not
Te - AR PR alter the equilateral geometry fap=L components, but
00° - O ; ,\ O \’ does'distort the geometry fpr th@;tlT comppnents. In gen-
_______ T, eral, if the free component is associated with a ldrgend a
126 ] O Sl small Q, it will have a higher rotational energy and thus has
. ?‘\ . to compete with othefy, components. These states corre-
: : : REREE - : spond to cases where the mixing of differéhtcomponents
300 6 %0 0 6 90 is significant and thus, is not very “pure.”

120" .

B. Relative energies of the’L (1), ?L°(1), *L&(1),

FIG. 3. Selected plots of the real or imaginary part of the rota- .
P ginary p and “L°(1) states and the inherent nodal surfaces

tional component wave functiorfs, as a function ofp and @ for
$3=180°. Note that at the poiny=60° and §=90° the three Among the four states with the sanhe if the coplanar
electrons form a coplanar equilateral triangle. The solid lines indi-equilateral triangle geometry is accessible, this state will
cate contours of 92% of the maximum magnitude and the dashedgzye the lowest energy. If there exists more than one such
lines indicate contours of 48% of the maximum magnitude. Thestate, then the one with largér will have the lower energy.

thick dotted lines indicate nodal lines that are due to the inherenff the coplanar equilateral triangle shape is not allowed, then

symmetry of the state. They are due to inherent nodal surfaces. Tqﬁe state with fewer inherent nodal surfaces will have less
thick dashed lines indicate nodal lines resulting from the require-

ment of orthogonality of the excited-state wave functions. They aréEnergy. . . )
due to dynamic nodal surfaces. Whenever a nodal line separates the From this general rule, the _re|at'Ve energies ofithguar-
two regions, the signs of the wave function on the two sides ardét can be more or less predicted. We will refer all the cal-

opposites. culated energies with respect to thB°(1) state, which has
the lowest energy. In the following discussion the reader is
thereby the rotational energy is reduced. reminded to consult Table I often.
We can also explore the wave functions directly from our
calculations. Consider the,=0 component of the’P°(1) 1.L=0

state, i.e., the"1 component. It was found that the optimal  Consider theL=0 quartet. None of them has frefey
value of ¢} is 0° or 180°. Whenp;=180°,f} as a function components and in general they have higher energies.
of % and é (as specified in Fig.)lis shown in Fig. 8). The  Among the four, the?S® has ans mode, the*S° has ad
wave function peaks at=90° andn=62.5°, very close toa mode, both contain one internal nodal surface, and their en-
coplanar equilateral triangle, and it is distributed smoothlyergies should be close to each other. A8 has ad+h
around this equilibrium point. Therefore, we can say that thenode and its energy is higher because of more internal nodal
2po(1) state has primarily a coplanar equilateral triangularsurfaces. The*S® has the highest energy since it has %in
shape. Figure ®) offers another example fofG°(1) where  mode, which has the most nodal surfaces.

TABLE Ill. Most probable shape possessed by the first states that have nodeless rotational component
wave functions. The table gives (refer to Fig. 3, where the wave function is maximum fe;=180° and
6=90°. Wheny=60°, it is a coplanar equilateral triangle. FéB(1) the Q=4 component is used.

2Po 2De 2D0 2Fe 2F0 ZGe ZGO 4Pe 4Fe 4Fo 4Go

62.5° 60.5° 54.3° 58.3° 69.4° 60.7° 47.8° 60.0° 60.0° 60.0° 60.0°
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TABLE IV. Ordering of levels of the first state&>* 1L (1) of three-valence-electron atortisns) from
experimental spectra. For a given species lanthe energy increases in going down along the column. Data
are from[20].

B ct N
ZSE ZPO ZDB ZSB ZPO 2De ZSe ZPO 2De
n=2 4Pe 4So 4Pe 2Do 4So 4Pe 2D0
2Pe 2Pe
Al Sit Pt s3*
ZSe 2P0 2De 2F0 ZSe 2Po 2De 2Fo ZSe ZPO 2De ZFO ZGe ZSe 2P0 2De
n=3 4Pe 4So 4Pe 450 4pe 200 480 4Pe 4Do
2Pe 4Se 2Pe 4D0 2Pe
4P0 4P0 4PO
Ga Ge' As?*
ZSe 2P0 2De 2F0 ZSe 2Po 2De 2F0 2Ge ZSe ZPO 2De ZFO ZGe
n=4 4Pe 4Pe Zpe
2Pe
4P0
In sn* Sb?*
ZSe ZPO 2De 2F0 ZSe 2Po 2De 2F0 2Ge ZSe ZPO 2De ZFO ZGe
n=5 4Pe 4Pe 4Pe
4P0
Tl Pb* Bi2*
ZSe 2P0 2De 2F0 ZSe 2Po 2De 2F0 2Ge ZSe ZPO 2De ZFO ZGe 2H0
n=6 4Pe 4Pe 4pe
2Pe 2Pe

Let us check the actual energies calculated for these fouor 2P°, #P®, 2P®, and *P° are 0, 0.23, 1.71, and 2.34 eV,
states. For He, the calculated energies for the thnee3  respectively. For N* the corresponding energies are 0,
intrashell statedS°, 2S® and ?S° from the present model are 1.38, 4.94, and 5.32 eV. For tine=2 intrashell triply excited
1.71, 1.75, and 4.83 eV, respective(fhe “S° state does not  states of Li, the accurate energigg for the three states
exist for then=3 states. In [9], for N2*, the calculated °P°, “P® and?P®are 0, 0.296, and 4.666 eV, respectively.
energies are 5.82, 4.68, and 11.03 eV, respectively. Whehhe predicted energy ordering is nicely reflected in the cal-
our r-frozen model is generalized to time=4 intrashell tri- culations. Inspection of the experlmental_ results sht_)wn in
ply excited states for He usingr,=5.95 A as suggested in Table IV shows clearly that the prediction is also confirmed.
[19], we obtained 0.658 and 0.699 eV f&&° and 2S®, 1.749 3 L=2
eV for ?S°, and 3.018 eV for*S®, respectively. Thus the
prediction above is well confirmed.

Let us also check the realistic atomic energy levels fro
experimental dat§20]. The known intrashell energy level
data from the 16 three-valence-electron atomic and ionic spe-
PI_'SSI(;&‘I:‘/Q'E%:[O_"S _ifzﬂ;[g ?V;Oszgp :Irljj ?g(\,/ itg(taeesnz:rc;”lfr?(t)?/\(/jnm 4D®are 0.65, 1.19, 2.37, and 3.00 eV, respectively, from our

L o X ' model calculations for He. For N?>*, the corresponding
they are in the order predicted. energieq9] are 2.02, 3.73, 5.20, and 8.48 eV, respectively.
2 L=1 For then:2_ intrashell triply excited states of Li, the calcu-
' lated energieg7] for °D® and °D° states are 2.506 and

Next consider the fout. =1 states. The two state¥®®  4.660 eV. All of these calculations confirm the predicted
and “P® can access a coplanar equilateral triangular shaperdering. Furthermore, the experimental data in Table IV
and their energies are lower. Between the two, the free consonfirm that the?D® is the lowest state anéD°® is the sec-
ponent isQ=1 for 2P° and Q=0 for *P¢, thus the2P®  ond lowest state. Fd8**, the “D° state has been observed,
state is lower. The other two states will have higher energiebut not the 2D° state. According to the rule above, the
since they contain nodal surfaces in all thg components, 2D state should lie betweefD® and “D° states.
but their relative values cannot be obtained simply from the
symmetry rule.

From the actual calculation using thefrozen model for All of the four states have freéd, components, with
then=3 intrashell triply excited states of He the energies Q=3,2,1,0 for *F°, 2F¢, 2F°, and *F®, respectively. This

For theD quartet, the two state&D® and 2D° have free

mfq componentQ=2 andQ=1, respectively, thus théD®
state is the lowest. The other two states both possess compo-
ents with inherent nodal surfaces and thus the energies are

igher. The energies for the four stat&3®, 2D°, “D°, and

4. L=3
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order in turn applies to the energies of these four states. .,
Compared to the calculated values for Hethe r-frozen —

model gives 1.56, 2.35, 2.49, and 2.61 eV, respectively, ° —
while for N?* they are 4.02, 6.54, 6.43, and 7.69 eV. The . ] —_ —_
latter has a change of the relative order betwéefi and
2F°, pbut the energy difference between the two states is 3 _ N
small. Note that the energy differences among these four F T — *of - — -
states are understood to be due to the relative orientation of * F
the coplanar equilateral triangle with respect to the direction o= Fi F

of L. In Table IV we have listed théF° state to be the head ] — —_
P

state of the four. All the other three=3 states have not been 0175} ®
observed; thus a test of the present rule is not possible.

®)

P
1

Q=0 1 2 3 4 5 0 2 3 4 5

FIG. 4. Selective calculated energy levels of th81331” states
5 L=4 of He™ rearranged in rotor series. Each of these states has a rota-
tional component whose imaginary p;ﬁb has no nodes. The rotor
series is obtained by grouping these states that have the@atag

. e 4m0 2+0 shows the rotor series using energies obtained from the actual
Ex%ected energy Qrde””g should B& , "G G_’ and model calculations(b) shows the rotor series expected out of a
G®. For then=3 intrashell states, the last one is not al- rigid rotor. In (a) the subscripi is used to denote thigh lowest

lowed. This prediction is to be compared with the calculatedsiate of that symmetry.

values 2.64, 3.66, and 4.15 eV for Heand 7.99, 9.52, and

11.27 eV for N*. When ther -frozen model is used for the (3/2 0e) containing *P%(1), “F&(1), “H%(1)

n=4 intrashell states, the calculated energies for the four ' ’ '
states are 0.83, 1.14, 1.35, and 1.56 eV, confirming the prg1/2 1 0) containing 2P°(1), 2D°(1), 2F°(1),
diction. In Table IV the only experimental data is for the

2Ge® state, which is assigned to be the lowest state. 2G°(1),

Three of the four states have frég componentsQ=4
and 2 for?G®, Q=3 for *G°, andQ=1 for °G°. Thus the

(1/2 2 e) containing ?D%(1), 2F%(1), 2G%(2),

6.L=5
(3/2 30) containing *F°(1), *G°(1), *H°(1),

All the four states have freé; componentQ=5 and 1

f40r ?H°, Q=4 and 2 for?H®, Q=3 for *H° andQ=0 for  (1/2 4e) containing 2G%1), 2H%(1),
HE. When there are twdQ) components accessible, the
largerQ will be the dominant one. Thus the predicted ener-(1/2 50) containing 2H°(1),
gies in increasing order will b8H°, 2H®, “H°, and*H®. For
the n=3 intrashell states the two quartet states are not alThe existence of these rotor series was suggesteibinbut
lowed. The?H®° and ?H® state energies calculated for He the model Hamiltonian used there is more limited and the
and N°" are 3.99 and 5.31 eV and 11.94 and 14.49 eV pattern is not very clear, as discussed in Sec. Il E.
respectively. For then=4 intrashell states of He, the To check the validity of the rotor series model, we com-
r-frozen model gives 1.26, 1.67, 1.82, and 2.03 eV, respeddare the calculated energy levels from the present model
tively, in the order as predicted. We have found only onewith the energies expected from a rigid rotor given by
L=5 state in the experimental data in?Bi, and this state is ) s
20 A%2(LT L5 L

the lowest“H°® state. ( 1, b2 3)

Erot= 2 (15

R PR
wherel; is the moment of inertia with respect to thta body
axis. If the three electrons form a rigid coplanar equilateral
The existence of truncated rotor series is well understootriangle with the third axis normal to the plane, thep=
for doubly excited states of atoms. The states within the sek,=1,/2. In this case the rotational energy can be written as
ries are known to have similar internal structure. All the
intrashell states discussed above that have nodeless rotational
components are shown to have coplanar equilateral triangle
shapes and they have nearly conser@edy grouping these
states that have identical domina@t we explore if these WhereI3=3mer§. Inserting ther used in the present calcu-
states form a rotor series as in the case for doubly excitethtion, the energy spectrum of the rigid rotor is compared
states. If there is more than one nodeless rotational compavith the calculated energies in Fig. 4. The strong similarity
nent, the first state will have the larg€r and the second between Figs. @ and 4b) implies that the energy differ-
state will have the smalleQ. The rotor series can be ence in this group arises essentially from the collective rota-
grouped according to the total spin, the domin@niand the tion. In Fig. 4 each of the §,Q, ) rotor series discussed
parity 7= and each series is denoted Q@r). Referring to  above(except the one represented Qy=5) is represented.
Table |, it is clear that we can observe the following series:The rotational energy depends strongly @nthe larger the

C. The Rotor series

hZ
Ero=5[2L(L+1)—Q?], (16)
2,
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Q, the smaller the rotational energy,, that is characteristic 150
of an oblate rotor. This feature is clear in the present model,

as shown in Fig. @); but not in[19] since the latter model R N P .
neglects the first term in the Hamiltoni&h3). Accordingly, s Vil N Tt .........
the Q dependence of the rotational energy{ 119] has errors. . O Q B TR
Furthermore, th&) designations for some states there were LU I N
wrong. Specifically, the domina® for 2G®(1) is 4 (not 2), 2P £ © [P 2)f! @
for 2G®(2) it is 2 (not 4), for 2H°(1) it is 5 (not 1), and for 1 0

2He(1) it is 4 (not 2. Once theQ designations have been 00’ O [P .
corrected, the energy levels calculated by Vaeck and Hansen R .\" > o
[9] (the A’ group in Fig. 3 of their papgfor N2* do indeed N el
show rotor series similar to Figs(a} and 4b). The spectrum 30 1

of the corresponding states of'N in [9] is also qualitatively n D31l @ 2Py . ®
2 e

2 [*DYD) L
[raof i efpwg

similar, but there are a few deviations from the order of the .
rigid rotor. The fact that energy spectrum for theSB 31" - L 0, | e mEEE
states for He from the model calculation and forN from RN R S A

the configuration-interaction calculation both display the ro- B % I -

o

tor structure is very appealing and renders the analysis of 307 T T R
wave funct[ons in the body frame of the three electrons a D) @ 4D°(3)ff, @
very attractive approach. : i < )

Let us explore the rotor structure in more detail. Note that R smmmmmTS
the lowest member of each of the rotor series, except for the IS O Ly,
first series that starts withP¢, all haveQ=L. Accordingly, N R R I S
E,o=h2L(L+2)/2 5. If the rigid rotor description is correct 3071 2 NS ) {

rot 3 H
and if the energy is measured from the lowest st&®, then T
the expected ratios fdE(’D®)/E(*F°), E(2G®)/E(*F°), and 9,
E(?H°)/E(*F°) are 0.417, 1.75, and 2.667, respectively. The
same ratios from our model calculations are 0.417, 1.70, and FIG. 5. Selected plots of the real or imaginary part of the rota-
2.56, while for N°* from [9] the ratios are 0.50, 1.74, and tional component wave functiorfg, as a function ofp; and 5. The
2.97. There are deviations from a rigid rotor, but the devia-¢ is given at 90° in(a)—(g), but is given at 75° inh). All the
tions are not large. symbols are the same as in Fig. 3.

We have predicted that farinl’nl” states, the’P° and R - |
4pe gre the two lower states far=1 and 2D® and 2D° are hé f5 is Iad+s, andf; is a_d+h. The last two components
the two lower states fot.=2. All of them have nodeless fz andf; have small amplitudesee Table )i because each
rotational components and their energies are differentiatelias two nodal surfaces. For the other three comporfgnts
mostly by the rotational excitation. On the other hand, all thef?, and f'l their relative magnitudes are about equal. We
L =0 states do not have nodeless rotational components; thiisus conclude first that there is no domin&htcomponent,
their energies are higher. We can check how well the actuale., the mixing among the rotational components is large and
atomic energy levels follow this ordering. For Hehe ex-  we thus should not expect rotor series to exist here.
citation energies fofP°, *P® and2D® (n=2) are known at We next examine the nature of each rotational component
57.22, 57.42, and 58.28 eV, respectively. This is also thaising the wave function generated from thé&ozen model.
correct order for C. The order of these three states alsoThed mode of the*D° state(thef'O componentwas found
exists in many other atoms and ions with three valence eleqo have the maximum of the wave functions whey=
trons. Using the independent-particle model, these threggp°. When we fixp3=180°, the rotational component of
states have the electronic configurationsnefnp, nsni?,  the wave function can be plotted in thed plane, as shown
andnsnp?, respectively. However, it is well known that the in Fig. 3(c), where the maximum and the minimum of the
3s3p® ?D° and %?3d °D* interact strongly from the con- wave function occur ag= 90°+23°, respectively, with a
figuration mixing viewpoint[21]. The energy ordering of nodal line atd=90° (indicated by a thick dotted lineSuch
these states is easily understood as rotational excitations ofawave function illustrates an excitettoscillation mode.
rotor instead. The f¥ and f; components displag andh modes, respec-

tively. They have the maximum a1=90°, i.e., they have
D. First states where the rotational components have inherent  coplanar structure. By fixing=90°, the wave functions on

nodal surfaces the ¢5-7 plane are shown in Figs.(& and 8b), respec-

The states discussed in Sec. IV C belong to those where &vely. In Fig. 5a) there is a maximum at;=180°+44°
least one rotational component of the wave function has n@nd a minimum at 186°44°. From the definition o, this
nodes. From Table | it is clear that there are states where ai$ clearly a swing of electron 3 with respect to electrons 1
the rotational components exhibit one form of nodal surfaceand 2. The swing is coplanar with a nodal line¢st=180°
or another. They are distinguished byd, h, andS as ex- (indicated by a thick dotted linelIn Fig. 5b) there is no
plained earlier. As an example, consid#®°. From Table |  nodal line alongps, but there is a nodal linéndicated by a
we note thatf§ is forbidden,fy is ad, ff is ans, f} is an  thick dotted ling along 7, with the maximum aty=89°
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(flattened isosceles triangleand a minimum atzn=39° We emphasize that the additional nodal liessurfaces
(sharpened isosceles triangl&his implies a coplanar hinge discussed in this subsection for the nodeless rotational com-
motion with a nodal line aty=60° (the coplanar equilateral ponents are not due to the inherent symmetries of the states.
triangle. They are the results of the higher quanta of the elementary

It turns out that the above analysis is quite general for alnormal modes and they are called the dynamic nodal sur-
thed, s, andh modes. Figures(8), 5(a), and Jb) are typical faces. In Figs. 3 and 5 we have used thick dotted lines to
of thed, s, andh components, respectively, where the inher-denote inherent nodal surfaces and thick dashed lines to de
ent nodal lines are model independent. Thus the basic modé®te dynamic nodal surfaces.
are embedded in the rotational component of the wave func- For rotational components that have intrinsic nodal sur-
tion via the existence of nodal surfaces. The existence dfaces, excitation in that component in general is accompa-
these nodal surfaces implies higher excitation energies. Onied by the excitation of other modes. For example,ftf\e
the other hand, each state has several different modes coesemponent for the*D° symmetry is a swing mode, but its
isting among the different rotational components; thus theréhird state acquires an additional hinge mode, as can be seen
is not a single dominarft, component. Such states are saidin Fig. 5g). An example of the excitation of thé compo-
to have strong mode mixing d@ mixing. In general, it is nent is given in Fig. &), where thez-¢; plot is given for
more difficult to predict the relative energies of mode-mixing #="75°. An identical pattern but of opposite sign in wave
states. They do not have the rotor structure since the lattdinction appears a#=105°. In this case, the-oscillation
requires an approximate consen@d mode is accompanied by the occurrence of the coupling of
the swing and the hinge modes. Other examples can be found
in Fig. 3(b) of [10] for the 2S%(2) state and Fig. 2b df11]
for the 4S°(2) state.

So far we have discussed the wave functions of states The excited states of a given symmetry do not necessarily
where the rotational components are not dynamically excorrespond to the excitation of@ component. With respect
cited, including those components that exhibit inherent nodalo the nodeless rotational component of the lowest state of a
surfaces. For states at higher energies, some of the rotatiorsymmetry, the second state of the same symmetry can
components can be dynamically excited as wellg., v achieve orthogonality by having a new dynamic nodal sur-
#0). Clearly, the next group of higher-energy states ardace in the sam€& component or by acquiring amplitudes in
those where the nodeless rotational components are excitegtherQ components that have intrinsic nodal surfaces of the
This subsection examines the nature of these excitations. s, d, or h types or their combinations. In either case, the

In Figs. 3d) and Hc) we consider the second state of the existence of nodal surfaces implies higher excitation ener-
2p° symmetry, i.e., the?P°(2) state. Comparing Fig.(8)  gies, but there is na priori rule of knowing which one will
with Fig. 3@), we note that the?P°(2) state has an addi- have lower energies. In most cases the excitation energies are
tional nodal line aty»=60° (indicated by a thick dashed comparable, thus resulting in strong mixing of tecom-
line). For this state, there is no nodedr} . Thus the second ponents. Such strong mixings are shown in Table V, where
state acquires a new hinge mode) (and nod-oscillation  the relative magnitude of the rotational components for the
(d) or swing (s) modes are produced. This has been found tésecond states are given. Again, the entries that are underlined
be the case for th&=1/2 states. belong to the free components. Unlike the case for the first

In Figs. 3e) and Fd) we consider the*P®(2) state. For state, in Table V these components are no longer dominant,
“Pe(1) the component}, is nodeless, but from Fig.(® we  thus implying strond) mixing. We further comment that for
note that this component for the second state has a pair € Second state of a given symmetry, it was found that those
nodal lines in# symmetric with respect t@=90°. This Q components that have intrinsic nodal surfaces do not have
means that it is an excitation of tieoscillation mode(in- ~ 2dditional dynamic nodal surfaces. In fact, t@ecompo-
dicated by two thick dashed linesTogether with Fig. &), ~ nents that are excited with comparable weights have essen-
this shows that for théP®(2) state, thed-oscillation mode tially identical numbers of nodal surfaces, ietv is iden-
is excited but the swing and the hinge modes are not excitedical-

This has been found to be true for the second states for

E. Second states where the rotational components are excited

S=3/2. The fact thas andh modes are not excited means F. Relative energy separations between the first
that S=3/2 states can keep the shape of an equilateral tri- and second states
angle better than th8=1/2 states. In analyzing the first states we have shown that it is im-

For states with even higher energies, say, the third state ¢fortant to enumerate the nodal structure of each of the rota-
a given symmetry, the coupling between the modes may afonal component. For the first states there are no dy-
pear. Consider the nodeless rotational comporigrior the  namical nodal surfaces. The dominatcomponent for the
’D4(3) state, as shown in Fig(&. The evolution fromAto  first state is the one that has the fewest inherent nodal sur-
B (see the figureimplies a decrease ig; as well as a faces. We can thus characterize each first state by the indices
decrease iny, thus the swing and the hinge modes arei,y =0,Q for the specificQ component. For the second state
coupled. The coupling of different modes is quite commonof each symmetry, the state will try to lower its energy, but
for higher excited states. Another example is shown in Figsunder the constraint that its wave function be orthogonal to
3(f) and Jf) for the f'l component of the?P°(3) state. To- the first state. This implies that the way the second state is
gether they show the coupling of tleoscillation and the excited depends much on the inherent nodal structure of the
hinge modes. rotational components of each symmetry, which in turn de-
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TABLE V. Same as Table II, but for the second state of eachin Table V, where the weight for the second state is domi-

symmetry. nated by theQ=0 component, indicating that the second

state is mostly due to the excitation of the free component.

Since the coplanar equilateral triangle configuration in the
f§ fc{ flR f1I sz fzI st f:f ff ff free component is very stable, it is rather difficult to excite.
2 cre Thus the energy separation between the first and the second
5° 4.2 states for they=1 type excitation in general is rather large.
2o 3.9 From Table I, the second state for tAB° symmetry clearly
) belongs to this type as well.
2
pe 3.310.7]2.2 2. Excitation of a different Q component where,i=1
2pe 2.812.6 Consider the?D° states where, besides the free compo-
nent, twoi =1 components are contained. Since the first state
*De 0.312.5{1.3|1.8 has §,v,Q)=(0,0,1), the second state can achieve orthogo-
nality by occupying theQ=2 component i(=1) without
‘De 0.111.4)1.8|1.0{3.1 exciting the Q=1 component, ie., having
2 e (1,v,Q)=(1,0,2). In Table V we see that the most important
F 1.011.0|2.8]1.3]1.710.2|0.3 component in théD°(2) state is indeed the excitation of the
2 10 d mode with Q=2 rather than the free component with
F?10.5 0.4]1.0/1.0/2.2/1.5/2.5 Q=1. Analysis of the wave function shows that in the sec-
20¢ (1.0 o1losl1.112.710210511.611.6 ond state all of its rotational components havev=1; i.e.,
i B I T bl I RO B b an additional dynamic nodal surface is present for the
2030 0.310.911.810.510.6/0.6/0.911.613.0 Q=1 component. Although the free component is excited,
— its weight is small. We thus expect that the energy separation
between the first and the second states will be smaller for this
type than for the type discussed in Sec. IV F 1. From Table |
4go 3.7 we can identify that the second state f@¢ also belongs to
this type.
4pe 3.3(1.3[1.6
3. Excitation of a smaller Q component wherg)i=1
‘pe 3.213.3 WhenL is larger, any change of the rotation energy dur-
4 e 1.411.712.012.5 ing excitation is noticeable. Let us examine tHe® states.
S B Bl I ) Evidently, the second state is excited by occupying the new
4o components, which havey=1. Since the first state has
D 182.9]3.1)0.4]0.4 i=0 for Q=2, the secoer$d state can occu@=0 or 1,
4 e 1.810.310.410.710.711.4(3.1 which hasi=1. The Q=1 component will be preferred
— since it has a smaller rotational energy in comparison with
4o 1.9127(1.411.410.7(1.8 the Q=0 component. Indeed the coefficients in Table V con-
— firm this prediction. However, in comparison with the first
16 2.410.9(1.0(1.2]|1.2(1.1{1.8/0.5{0.6 state, which has=0 for Q=2, the second state has 1 for

Q=1. Thus, in going from the first state to the second state
not only is a nodal surface excited but also more rotational
energy is excited sinc® decreases from 2 to 1. We thus
termines the energy separation between the first two stategxpect that the energy gap between the first two states in this
By analyzing the nature of nodal surfaces for the rotationatase is also somewhat larger. From Table | we conclude that
components as given in Table I, we can draw the followingthe first two states fofG® also belong to this type.

general conclusions on how the second state is excited for

each symmetry. 4. Excitation of a larger Q component whereg,i=1

We also have situations analogous to Sec. IV F 3 but the
Q for the second state is larger than for the first state. This
Table | shows that théP® state contains a free compo- occurs for the first tw@F° states. The first state hias 0 for
nent @Q=0) and an =2 componentQ=1). The free com- Q=1 and the second state can occlpyl for Q=3 and
ponent is already occupied by the first state and thu€=2. The coefficients in Table V indeed confirm that these
(i,v,Q)=(0,0,0) for this state. For the second state, thereawo components are large. In this case, we note that the
are two choices: either to occupy the free component agaisecond state acquires one inherent nodal surface, but its ro-
but with one additional dynamic nodal surface tational energy is decreased. Thus the energy separation be-
(i,v,Q)=(0,1,0) or to occupy thei=2 component tween the first and the second states will be smaller in com-
(i,v,Q)=(2,0,1). Since the total number of nodal surfacesparison to the previous cases. From Table | we conclude that
i+v is smaller for the former, it is the preferred choice for the first two states fofG°, *F®, *H®, and*H° belong to this
the second state. This choice was indeed confirmed as se&pe.

1. Dynamic excitation of the the same rotational component
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TABLE VI. Energy separation of the first two states for tH&I33|” states. The types of excitations are
referred to in Sec. IV F. The results of Heare from ther -frozen model and the results of?N are from a
Hartree-Fock multiconfiguration calculatidr®]. In both cases the energy separations of the first two
2pO states are scaled as unity.

Type of excitation 25t ™ He™ N2+t
1 2po 1 1

4pe 1.60 1.24

2 ’Fe 0.58 0.62

4Fo 1.44 1.13

3 ’pe 0.68 0.43

peo 0.56 0.41

4 2Fo 0.28 0.28

2Go 0.30 0.46

4pe 0.43 0.06

5 el 0.55 0.45

5. Rotational excitation of a smaller Q component wherg+0 nodal surfaces on each of the rotational components of the

Let us inspect states that have more than one free comp${ave functions. The existence .of an _inherent noda_l.surface
nents. For the?G® symmetry, the first state will definitely iMPplies that the wave function is forbidden at specific geo-
occupy the free component wit®=4 (refer to Table 1. metric symmetries and at the same time implies a specific
Since there is another free Component that remains esseﬁSCi”ation about an equilibrium Configuration. With respect
tially empty, the second state can simply occupy Qis2  to a coplanar equilateral triangle geometry where the plane
component. In this way, the internal structutee coplanar of the three electrons coincides with the core, three basic
equilateral triangle structuyeremains unchanged, but the modes of oscillations have been identified. They are the
dominantQ has decreased, resulting in an increase of rotaswing mode §) of the third electron with respect to the first
tion energy. Thus the second state is a pure rotational exctwo, the hinge modeh) of the first two electrons with re-
tation and this type is associated with an incline of the plangpect to the third, or thd-oscillation mode where the plane
of the three electrons, from being perpendicular to the of the three electrons moves up and down with respect to the
vector to being parallel. Evidently, since no internal excita-core. There are some higher-order swing modes and combi-
tion is involved, the energy separation in this type will be nations of these fundamental modes in each of the rotational
small. components. Excitation of each of these modes implies

So far, based on the inherent nodal structure, the excitenigher energies.
tions of all the second states containing the free components (ii) Since the existence of nodal surfaces implies higher
have been classified. The states without a free componeehergies, the lower states belong to those symmetries that
can also be classified likewise, but will not be discussed herhave rotational components that are free from any nodal sur-
to avoid tedium. faces, meaning that the basé¢c d, and h modes are not

Let us check the theoretical results of the energy separaxcited. These states can maintain the shape of a coplanar
tions as listed in Table VI. Here we normalize the energyequilateral triangle, which has the lowest potential energy.
separation between the twidP° states to unity. Clearly the They are further differentiated by the orientation of the plane
separation for type 4 is significantly smaller than for thewith respect to the direction of the orbital angular momen-
other cases. For the pure rotational excitatioR@f, there is  tum. This group of states have a nice rotor structure that is
a change ofQ from 4 to 2 such that the energy separationsimilar to that for a rigid rotor, as illustrated by Fig. 4.
between these two states is not quite small. (iii) The second group of states involves the excitation of

one of thes, h, andd modes(i.e.,i=1). These states have

higher energies. The next group belongs to states where new
V. SUMMARY AND FINAL REMARKS dynamic nodal su_rfaces are crea(é.d., v=1). These often

belong to the excited states of a given symmetry. By exam-

In this paper we have studied in detail the inherent nodaining the nature of what kinds of modes are excited, the
structure of a three-electron system. By projecting the totatelative energy levels are explained. The numerical calcula-
wave function onto the body frame of the three electrondions are used to support qualitative interpretations that are
[Eq. (5)] where the body-frame quantization axis is chosen tdbased on the symmetry alone. In other words, the relative
be perpendicular to the plane of the three electrons, we ananergy ordering of intrashell states for different symmetries
lyzed the nodal structure of each of the rotational compo+evealed in the calculation or in actual atom are less affected
nents and the following conclusions have been obtained. by the specific Coulomb forces between the electrons, but

(i) Since each wave function is required to have well-more strongly affected by the symmetry condition. We have
defined total orbital and spin angular momentum quantunexplored the relationship between the inherent symmetry and
numbers, well-defined parity, and permutation symmetry unthe relative energy levels to great details.
der electron exchange, these symmetry conditions impose The inherent nodal structure affects not only the geomet-
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ric character and the mode of internal oscillation of the firstwhen the wave functions are examined in hyperspherical co-
states, but also the ways of excitation adopted by the secorgtdinates. One of the eventual goals of the study of three-
states. Thus, by investigating the nature of the inherent noda&lectron atoms is to be able to analyze the nodal surfaces or
structure, a classification scheme for explaining the energyshapes” with both the radial and angular degrees of free-
separation has been proposed. While the features of the wawem included.

functions obtained from the-frozen model may be viewed

as incomplete as far as the real atom is concerned, they

would serve as a starting point for investigations where the ACKNOWLEDGMENTS
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