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Molecular integrals over spherical Gaussian-type orbitals: I
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Abstract. A novel derivation, involving the Fourier transform and the addition theorem of
harmonic polynomials, is presented for multi-centre molecular integrals over spherical Gaussian-
type orbitals. Compact closed-form formulae, consisting of vector-coupling coefficients and
well known functions only, are obtained for all multi-centre molecular integrals. The resulting
formulae manifest the angular and geometric dependence in vector-coupling coefficients and
spherical harmonic functions, respectively, and requirehalf as many summations as those for
their counterparts, Cartesian Gaussian orbitals. An efficient computational method for molecular
integrals over contracted Gaussian orbitals is suggested based on the present formulae for multi-
centre molecular integrals.

1. Introduction

In ab initio calculations of molecular electronic structure Gaussian-type orbitals (GTOs),
more specifically, Cartesian Gaussian-type orbitals (CGTOs) of the form

φnlm(α, r) = Nnlm(α)xnylzme−αr
2

(1)

have been employed due to the ease of evaluation of multi-centre molecular integrals
(Boys 1950). According to the Boys’ algorithm (1950), the molecular integrals over s-type
(n+l+m = 0) CGTOs are first evaluated and the integrals over CGTOs with higher angular
momentum are then obtained by repeated differentiation of the s-type integrals. But this
procedure rapidly becomes exceedingly complicated as the quantum numbers are increased.
In addition, the resulting formulae are inefficient computationally, because they fail to share
many common intermediates among integrals belonging to the same symmetry class. The
closed-form formulae for the integrals over the general CGTOs have been worked out by
Taketaet al (1966). However, these formulae are also inefficient computationally, since they
contain a large number of summations and fail to take advantage of spherical symmetry
properties. Since these earlier works, a lot of integral algorithms (for the most recent
reviews, see Saunders (1983) and Gill (1994)) over CGTOs have appeared, which try to
overcome these deficiencies. Most of these algorithms use recurrence relations (for instance,
Obara and Saika (1986)) to express integrals of high angular momentum orbitals in terms of
integrals, involving lower angular momentum orbitals. Since recurrence formulae require the
evaluation of unwanted integrals over low angular momentum orbitals, they do not always
guarantee efficient algorithms, especially for relatively large angular momentum orbitals.
Moreover, Cartesian Gaussian-type orbitals of high angular momentum (n + l + m > 2)
are not eigenfunctions of angular momentum; therefore, extra work is necessary in order to
extract the spherical symmetry orbitals (Huzinaga 1985).
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In molecular calculations, one can also use spherical Gaussian-type orbitals (SGTOs)
of the form

φnlm(α, r) = Nnl(α)fn(r2)e−αr
2Ylm(r) Ylm(r) = rlYlm(r̂) (2)

whereNnl(α) is a normalization constant,Ylm(r) is the solid harmonic andYlm(r̂) is the
usual spherical harmonic with the phase convention of Condon and Shortly (1935). There
are two obvious advantages of SGTOs. Firstly, spherical symmetry properties as well as the
geometric dependence can be taken into account naturally. Secondly, the well developed
vector-coupling coefficients can be applied fruitfully to derive compact formulae for all
molecular integrals.

At first glance, multi-centre molecular integrals over SGTOs are more complicated to
evaluate than their counterparts, CGTOs. The Gaussian orbitals withfn(r

2) = r2n have
been considered by Harris (1963) and Krauss (1964). The integrals over these orbitals were
evaluated by repeatedly applying rotation operations until the integrals could eventually be
evaluated analytically. But the resulting formulae are so intricate that the CGTOs have been
preferred in molecular calculations. Applying the Talmi transformation (Talmi 1952) and the
Moshinsky–Smirnov coefficients (Moshinsky 1959, Smirnov 1961) of nuclear shell theory,
Fieck (1979, 1980) and Maretis (1979) were able to evaluate all the multi-centre molecular
integrals over SGTOs. Specifically, Fieck (1980) considered the SGTOs withfn(r

2) = r2n

(1979) andfn(r2) = L
l+1/2
n (αr2), while Maretis consideredfn(r2) = L

l+1/2
n (αr2)e

1
2αr

2
.

Here, Lνn(z) represents the associated Laguerre polynomial. Although these SGTOs are
general, a special type of Gaussian orbital withfn(r2) ≡ 1 has been most widely used
instead. It can be expected that the corresponding formulae of the integrals over this special
type of SGTOs would be significantly simplified, but the simplification procedure of the
general formulae obtained by Fieck and Maretis is not trivial due to the presence of the
sophisticated Moshinsky–Smirnov coefficients.

Recently, Dunlap (1990) has evaluated the overlap and three-centre Coulomb integrals
over these special SGTOs using the differentiation operatorYlm(∇) and the addition theorem
of solid harmonics. The resulting formulae involve the usual vector-coupling coefficients
instead of the Moshinsky–Smirnov coefficients and are therefore much simpler than the
corresponding formulae obtained by Fieck and Maretis. In this paper, we present a novel
derivation for multi-centre molecular integrals over SGTOs using the Fourier transform and
the addition theorem of harmonic polynomials. Molecular integrals over spherical Gaussian
orbitals modified with plane-wave phase factors are presented in the following paper (Kuang
and Lin 1997, hereafter referred to as paper II). Our present work is largely stimulated by
a series of papers from Steinborn’s group (Trivedi and Steinborn 1983, Grotendorst and
Steinborn 1988, Homeier and Steinborn 1992). Here, we have taken advantage of their
techniques, developed for the evaluation of molecular integrals over Slater-type orbitals, to
compute the integrals over spherical Gaussian orbitals.

The rest of the paper is organized as follows. In the next section we will present the
Fourier transform of Gaussian orbitals as well as the basic tools used in their derivation.
In section 3 the conventional molecular integrals: overlap, kinetic energy, tensor operator,
overlap with plane-wave phase factor, nuclear attraction, electron repulsion, electric field,
electric field gradient, spin–orbit coupling and spin–spin interaction, are evaluated over
the special SGTOs. In section 4 the computation of molecular integrals over the general
SGTOs is briefly discussed. Finally, in section 5 numerical strategies for the efficient
implementation of the present formulae are addressed, especially for molecular integrals
over contracted Gaussian orbitals.
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2. Fourier transform of Gaussian orbitals

We shall first consider the Fourier transform of Gaussian orbitals (2). In this paper we will
use the symmetric version of the Fourier transformation, i.e.

f̃ (p) = 1

(2π)3/2

∫
dr e−ip·rf (r)

f (r) = 1

(2π)3/2

∫
dp eir·pf̃ (p) .

(3)

Using the well known Rayleigh (partial-wave) expansion of a plane wave and the
orthonormality of the spherical harmonic (Bransden and Joachain 1983, appendix 5), we
have

φ̃nlm(α,p) = 1

(2π)3/2

∫
dr e−ip·rφnlm(α, r)

= 4πNnl(α)

(2π)3/2
(−i)lYlm(p̂)

∫ ∞
0

dr rl+2jl(pr)fn(r
2)e−αr

2
. (4)

Clearly, the spherical (Gaussian-type) orbitals have the same angular dependences in both
coordinate and momentum space, in contrast to the Cartesian–Gaussian (or Hermite–
Gaussian) Fourier transformation pairs (Živković and Maksíc 1968). To obtain an analytic
and simple radial expression of the Fourier transform of an SGTO, the functional form of
fn(r

2) is critical. From the tables of integrals (Gradshteyn and Ryzhik 1980, pp 718, 847),
we find a pair of formulae∫ ∞

0
dx x2n+ν+1e−αx

2
Jν(βx) = 2nn!βν

(2α)n+ν+1
Lνn

(β2

4α

)
e−β

2/(4α) (5a)∫ ∞
0

dx xν+1Lνn(αx
2)e−αx

2
Jν(βx) = β2n+ν

2nn!(2α)n+ν+1
e−β

2/(4α) (5b)

wheren is a natural number. The above two equations suggest that convenient choices
of fn(r2) are (i) fn(r2) = r2n and (ii) fn(r2) = L

l+1/2
n (αr2). In either case the Fourier

transform of an SGTO has simple analytic radial expression. For convenience in notation,
we shall work with unnormalized orbitals8nlm(α, r) = φnlm(α, r)/Nnl(α), i.e.

8a
nlm(α, r) = e−αr

2
r2nYlm(r) (6)

8b
nlm(α, r) = e−αr

2
Ll+1/2
n (αr2)Ylm(r) . (7)

The Fourier transform of these unnormalized orbitals can be readily derived from
equations (4), (5a) and (5b),

8̃a
nlm(α,p) = (−i)lCanl(α)8b

nlm

( 1

4α
,p
)

(8)

8̃b
nlm(α,p) = (−i)lCbnl(α)8a

nlm

( 1

4α
,p
)

(9)

whereCanl(α) = 2nn!/(2α)n+l+3/2, andCbnl(α) = 1/[2nn!(2α)n+l+3/2]. As can be seen, the
two forms of Gaussian orbitals are reciprocal with respect to each other.

It is of practical interest to consider the special case ofn = 0, in which spherical
Gaussian orbitals possess exactly the same form in both coordinate and momentum space,
which can be seen by noticing thatLl+1/2

0 (z) ≡ 1. These special SGTOs form an important
class of Gaussian orbitals and are most widely used in quantum chemistry. We shall
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first consider these special SGTOs, the representations of which in both coordinate and
momentum space can be explicitly written as

φlm(α, r) = Nl(α)e−αr2Ylm(r) φ̃lm(α,p) = (−i)lÑl(α)e
−p2/(4α)Ylm(p) (10)

where

Nl(α) =
[

2(2α)l+3/2

0(l + 3/2)

]1/2

and

Ñl(α) = Nl(α)

(2α)l+3/2
= Nl

( 1

4α

)
.

It is very useful to extend8a
nlm(α, r) for n > 0 to includen = −1, which will arise in the

evaluation of nuclear attraction and electron repulsion integrals. By means of equation (4),
its Fourier transform can be readily written as

8̃a
−1,lm(α,p) =

1

(2π)3/2

∫
dr e−ip·r8a

−1,lm(α, r)

= (−i)lYlm(p̂)
1

p1/2

∫ ∞
0

dr rl−1/2e−αr
2
Jl+1/2(pr) . (11)

Use is made of the following integral formula (Gradshteyn and Ryzhik 1980, p 717):∫ ∞
0

dx xν−1e−αx
2
Jν(βx) = 2ν−1

βν
γ
(
ν,
β2

4α

)
=
( β

2α

)ν 1

2zν
γ (ν, z) (12)

wherez = β2/4α andγ (ν, z) is the incomplete gamma function (Gradshteyn and Ryzhik
1980, p 940), which, forν = l + 1

2, is related to the well known functionFl(z) (Shavitt
1963) defined by

Fl(z) =
∫ 1

0
u2le−zu

2
du = 1

2zl+1/2
γ
(
l + 1

2, z
)
. (13)

Combining the above three equations (11)–(13), we finally obtain

8̃a
−1,lm(α,p) = (−i)lCa−1,l(α)Fl

(p2

4α

)
Ylm(p) (14)

where we have definedCa−1,l(α) = 1/(2α)l+1/2.
For subsequent reference, we shall state some basic properties regarding solid harmonics.

The so-called addition theorem (Steinborn and Ruedenberg 1973) of solid harmonics reads

Ylm(r1+ r2) = 4π
l∑

l′=0

m′max∑
m′=m′min

G(lm|l′m′)Yl′m′(r1)Yl−l′,m−m′(r2) (15a)

G(lm|l′m′) = (2l + 1)!!

(2l′ + 1)!![2(l − l′)+ 1]!!
〈lm|l′m′|l − l′, m−m′〉

=
[

2l + 1

4π(2l′ + 1)[2(l − l′)+ 1]

(
l +m
l′ +m′

)(
l −m
l′ −m′

)]1/2

(15b)

where m′min = max(−l′, m − l + l′),m′max = min(l′, m + l − l′) and the second
expression ofG(lm|l′m′) in (15b) was introduced by Homeier and Steinborn (1991). Here
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〈l2m2|LM|l1m1〉 is the Gaunt coefficient defined as

〈l2m2|LM|l1m1〉 =
∫

dr̂ Y ∗l2m2
(r̂)YLM(r̂)Yl1m1(r̂)

= (−1)m2

√
[l2][L][ l1]

4π

(
l2 L l1
−m2 M m1

)(
l2 L l1
0 0 0

)
(16)

where [l] = 2l+1 and the quantities in large brackets are 3j symbols. The Gaunt coefficient
is used to simplify the following product expansions of solid harmonics (Edmonds 1974,
p 70):

Y∗l1m1
(r)Yl2m2(r) =

∑
l

〈l2m2|l1m1|lm〉r2nYlm(r) (17a)

Yl1m1(r)Yl2m2(r) =
∑
l

〈lm|l1m1|l2m2〉r2nYlm(r) (17b)

where n = (l1 + l2 − l)/2 and the allowedl values are those satisfying1(l1l2l) and
l1+l2+l = even integer due to the selection rule for the Gaunt coefficients and therefore the
resultingn values are non-negative integers. It should be noted that the two equations (17a)
and (17b) are equivalent except thatm = m2−m1 in (17a) andm = m2+m1 in (17b).

3. Molecular integrals over the special SGTOs

3.1. Overlap integrals

The two-centre overlap integrals over Gaussian orbitals are defined as

S
lbmb
lama

(α, β,A,B) = 〈φlama (α, r −A)|φlbmb (β, r −B)〉
=
∫

dq e−iq·Rφ̃∗lama (α, q)φ̃lbmb (β, q)

= (−1)lb (2π)3/2Ñla (α)Ñlb (β)I
lbmb
lama

(ξ,R)

I
l2m2
l1m1

(ξ,R) = il1+l2

(2π)3/2

∫
dq e−iq·Re−q

2/(4ξ)Y∗l1m1
(q)Yl2m2(q)

(18)

whereR = B−A, ξ = αβ/(α+ β), and we have used the Fourier transform formulae (3)
and (10). TheI integral can be readily evaluated in terms of the expansion (17a),

I
l2m2
l1m1

(ξ,R) = il1+l2
∑
l

〈l2m2|l1m1|lm〉 1

(2π)3/2

∫
dq e−iq·R8a

nlm

( 1

4ξ
, q
)

=
∑
l

(−1)n〈l2m2|l1m1|lm〉Canl
( 1

4ξ

)
8b
nlm(ξ,R) (19)

where we have used equations (4) and (8) as well asn = (l1 + l2 − l)/2. In contrast with
previous work (Harris 1963, Fieck 1979, 1980), this is a remarkably compact formula for
the overlap integral over SGTOs of the form (10). It only contains one sum and all the
quantities in this equation can be evaluated efficiently. We could have chosen to evaluate
the overlap integral in coordinate space; however, the resulting formula would not be as
compact as equation (19). In the case of one-centre overlap integrals, i.e.A = B, thus
R = 0, the above formula can be readily simplified as

I
l2m2
l1m1

(ξ, 0) = (−1)l2δl1l2δm1m20(l2+ 3
2)(4ξ)

l2+3/2/[2(2π)3/2] (20)

by noting the following facts:Ylm(0) = 1√
4π
δl0δm0, 〈l2m2|l1m1|00〉 = 1√

4π
δl1l2δm1m2 and

Lνn(0) =
(
n+ν
n

) = 0(n+ν+1)
n!0(ν+1) .
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3.2. Kinetic energy integrals

The two-centre kinetic energy integrals over Gaussian orbitals are defined as

K
lbmb
lama

(α, β,A,B) = 〈φlama (α, r −A)| − 1
2∇2

r |φlbmb (β, r −B)〉
= − 1

2∇2
B〈φlama (α, r −A)|φlbmb (β, r −B)〉

= − 1
2∇2

BS
lbmb
lama

(α, β,A,B)

= 1
2(−1)lb (2π)3/2Ñla (α)Ñlb (β)K

lbmb
lama

(ξ,R) (21)

whereR = B−A, ξ = αβ/(α+β), and we have used equation (18). TheK integral may
be evaluated in the same way asI :

Kl2m2
l1m1
(ξ,R) = −∇2

BI
l2m2
l1m1

(ξ,R)

= il1+l2

(2π)3/2
(−∇2

B)

∫
dq e−iq·Re−q

2/(4ξ)Y∗l1m1
(q)Yl2m2(q)

= il1+l2

(2π)3/2

∫
dq q2e−iq·Re−q

2/(4ξ)Y∗l1m1
(q)Yl2m2(q)

=
∑
l

(−1)n〈l2m2|l1m1|lm〉Can+1,l

( 1

4ξ

)
8b
n+1,lm(ξ,R) (22)

wheren = (l1+ l2− l)/2 as before.

3.3. Tensor operator integrals

The two-centre integrals of tensor operatorsYkµ(∇) over Gaussian orbitals arise in the study
of electronic properties of molecules and are defined as

T
lbmb
lama

(kµ, α, β,A,B) = 〈φlama (α, r −A)|Ykµ(∇r)|φlbmb (β, r −B)〉
= Ykµ(−∇B)〈φlama (α, r −A)|φlbmb (β, r −B)〉
= Ykµ(−∇B)Slbmblama

(α, β,A,B)

= (−1)lb (2π)3/2Ñla (α)Ñlb (β)T
lbmb
lama

(kµ, ξ,R) (23)

whereR = B−A, ξ = αβ/(α+β), and we have used equation (18). TheT integral may
be evaluated in the same way asK,

T l2m2
l1m1

(kµ, ξ,R) = Ykµ(−∇B)I l2m2
l1m1

(ξ,R)

= il1+l2

(2π)3/2
Ykµ(−∇B)

∫
dq e−iq·Re−q

2/(4ξ)Y∗l1m1
(q)Yl2m2(q)

= il1+l2+k

(2π)3/2

∫
dq e−iq·Re−q

2/(4ξ)Ykµ(q)Y∗l1m1
(q)Yl2m2(q)

= iL
L∑
l=0

〈l2m2, kµ|l1m1, lm〉 1

(2π)3/2

∫
dq e−iq·R8a

nlm

( 1

4ξ
, q
)

=
L∑
l=0

(−1)n〈l2m2, kµ|l1m1, lm〉Canl
( 1

4ξ

)
8b
nlm(ξ,R) (24)

whereL = l1+ l2+ k, n = (l1+ l2+ k− l)/2 is a non-negative integer and we have applied
both equations (17a) and (17b) to expand the product of the three solid harmonics. Here
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〈l2m2, kµ|l1m1, lm〉 stands for the following quantity:

〈l2m2, kµ|l1m1, lm〉 =
∑
l′
〈l2m2|l1m1|l′m′〉〈lm|kµ|l′m′〉

=
∫

dp̂ Y ∗l2m2
(p̂)Y ∗kµ(p̂)Yl1m1(p̂)Ylm(p̂) (25)

where we have used the fact that the Gaunt coefficient is real andYlm forms a complete
set. It should be noted that〈l2m2, kµ|l1m1, lm〉 must satisfy the following conditions:
1(l2l1l

′),1(kl′l), l2+ l1+ l′ = even integer, k+ l′ + l = even integer andm2+µ = m1+m
due to the selection rules of the Gaunt coefficients. Therefore, the allowedl values in
equation (24) are those satisfyingl1+ l2+ k + l = even integer.

3.4. Overlap integrals with PWETF

The two-centre overlap integrals with plane-wave electronic translational factors (PWETF)
arise in the close-coupling treatment of ion–atom collisions. Here, they also serve as the
basic building blocks for three-centre nuclear attraction and four-centre electron repulsion
integrals. This integral can also be viewed as the Fourier transform of a two-centre product
of orbitals and is defined as

S
lbmb
lama

(α, β,A,B,p) = 〈φlama (α, r −A)|e−ip·r|φlbmb (β, r −B)〉
=
∫

dr e−ip·rφ∗lama (α, r −A)φlbmb (β, r −B)

= e−ip·B
∫

dq e−iq·Rφ̃∗lama (α, q)φ̃lbmb (β, q + p) (26)

whereR = B −A. It is clear that we can evaluate this integral in either coordinate space
or momentum space. In either case, we need to expand a product of Gaussian orbitals of
the form (10) on two different centres. We shall first evaluate this integral in momentum
space and refer the evaluation of this integral in coordinate space to appendix B. Using the
following identity:

q2

4α
+ (q + p)

2

4β
= 1

4ξ

(
q + α

ζ
p
)2
+ p

2

4ζ
(27)

whereξ = αβ/(α + β), ζ = α + β and lettingq + (α/ζ )p = q′, we obtain the following
expansion of a two-centre product in momentum space:

φ̃∗lama (α, q)φ̃lbmb (β, q + p) = ila−lb Ñla (α)Ñlb (β)e
−p2/(4ζ )e−q

′2/(4ξ)

×Y∗lama
(
q′ − α

ζ
p
)
Ylbmb

(
q′ + β

ζ
p
)

= (−1)lb (4π)2Ñla (α)Ñlb (β)e
−p2/(4ζ )

×
∑
l′a ,m′a

il
′
aG(lama|l′am′a)Y∗l′am′a

(
−α
ζ
p
)

×
∑
l′b,m

′
b

il
′
bG(lbmb|l′bm′b)Yl′bm′b

(β
ζ
p
)

il
′′
a+l′′b e−q

′2/(4ξ)Y∗l′′am′′a (q
′)Yl′′bm′′b (q

′)

(28)

wherel′′e = le − l′e for e = a, b and we have used the addition theorem of solid harmonics
(15). Substituting (28) into (26), changing the variable fromq → q′ and making use of
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equation (19), we obtain

S
lbmb
lama

(α, β,A,B,p) = (−1)lb (4π)2(2π)3/2Ñla (α)Ñlb (β)e
−ip·Rαβe−p

2/(4ζ )

×
∑
l′a ,m′a

il
′
aG(lama|l′am′a)Y∗l′am′a

(
−α
ζ
p
)

×
∑
l′b,m

′
b

il
′
bG(lbmb|l′bm′b)Yl′bm′b

(β
ζ
p
)
I
l′′bm
′′
b

l′′am′′a
(ξ,R) (29)

whereRαβ = B − (α/ζ )R = (αA + βB)/(α + β). Since the summations overlm in
equation (29) can be readily linearized, there are, in effect, only three summations noting
that there is one sum inside the integralI . Besides its compactness, this formula possesses
another important advantage due to its clear separation of the dependence onp andR.
Hence, the integralSlbmblama

(α, β,A,B,p) can be readily used in the evaluation of three-
centre nuclear attraction and four-centre electron repulsion integrals. It is of interest to note
that the integral can also be evaluated in another way by first absorbing the PWETF into
the Gaussian orbital and then applying equations (18) and (19) (see paper II).

3.5. Nuclear attraction integrals

The three-centre nuclear attraction integrals over Gaussian orbitals are defined as

N
lbmb
lama

(α, β,A,B,C) = 〈φlama (α, r −A)
∣∣∣∣ 1

|r −C|
∣∣∣∣φlbmb (β, r −B)〉

= 1

2π2

∫
dp

p2
eip·C〈φlama (α, r −A)|e−ip·r|φlbmb (β, r −B)〉

= 1

2π2

∫
dp

p2
eip·CSlbmblama

(α, β,A,B,p) (30)

where we have used the identity
1

|r −C| =
1

2π2

∫
dp

p2
e−ip·(r−C). (31)

Substituting equation (29) into (30), we obtain

N
lbmb
lama

(α, β,A,B,C) = 8(−1)lb (2π)3Ñla (α)Ñlb (β)
∑
l′a ,m′a

G(lama|l′am′a)
(
−α
ζ

)l′a
×
∑
l′b,m

′
b

G(lbmb|l′bm′b)
(β
ζ

)l′b
I
l′′bm
′′
b

l′′am′′a
(ξ,Rba)J

l′bm
′
b

l′am′a
(ζ,Rαβc) (32)

whereRba = B −A,Rαβc = Rαβ −C, and

J
l2m2
l1m1

(ζ,R) = il1+l2

(2π)3/2

∫
dp

p2
e−ip·Re−p

2/(4ζ )Y∗l1m1
(p)Yl2m2(p)

= 〈l2m2|l1m1|LM〉Ca−1,L

( 1

4ζ

)
FL(ζR

2)YLM(R)

+
L−2∑
l=lmin

(−1)n〈l2m2|l1m1|lm〉Can−1,l

( 1

4ζ

)
8b
n−1,lm(ζ,R) (33)

whereL = l1 + l2, lmin = |l1 − l2|, n = (l1 + l2 − l)/2 and we have used equations (17a),
(11), (14), (4) and (8). It is of interest to note that integralsI andJ are independent of each
other and therefore can be evaluated simultaneously in (33) on multi-processor machines.
The evaluation of this integral in coordinate space will be presented in appendix B.
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3.6. Electron repulsion integrals

The four-centre electron repulsion integrals over Gaussian orbitals are defined as

V
lbmb,ldmd
lama,lcmc

(α, β, γ, δ,A,B,C,D) = 〈φlama (α, r1−A)φlcmc (γ, r2−C)
∣∣∣∣ 1

|r1− r2|
∣∣∣∣

×φlbmb (β, r1−B)φldmd (δ, r2−D)〉
= 1

2π2

∫
dp

p2
〈φlama (α, r1−A)

×|e−ip·r1|φlbmb (β, r1−B)〉〈φlcmc (γ, r2−C)|eip·r2|φldmd (δ, r2−D)〉
= 1

2π2

∫
dp

p2
S
lbmb
lama

(α, β,A,B,p)

×Sldmdlcmc
(γ, δ,C,D,−p) (34)

where we have used equations (31) and (18). Substituting equation (29) into (34), we obtain

V
lbmb,ldmd
lama,lcmc

(α, β, γ, δ,A,B,C,D) = 32(−1)lb+ld (2π)13/2Ñla (α)Ñlb (β)Ñlc (γ )Ñld (δ)

×
∑
l′a ,m′a

G(lama|l′am′a)
(
− α
ζ1

)l′a ∑
l′b,m

′
b

G(lbmb|l′bm′b)
( β
ζ1

)l′b
I
l′′bm
′′
b

l′′am′′a
(ξ1,Rba)

×
∑
l′c,m′c

G(lcmc|l′cm′c)
( γ
ζ2

)l′c ∑
l′d ,m

′
d

G(ldmd |l′dm′d)
(
− δ
ζ2

)l′d
I
l′′dm
′′
d

l′′c m′′c
(ξ2,Rdc)

×Ul′bm
′
b,l
′
dm
′
d

l′am′a ,l′cm′c
(ζ,Rαβγ δ) (35)

where the parameters appearing in equation (35) are defined as follows:

ξ1 = αβ

α + β ζ1 = α + β ξ2 = γ δ

γ + δ ζ2 = γ + δ (36a)

Rba = B −A Rdc =D −C ζ = ζ1ζ2

ζ1+ ζ2
= (α + β)(γ + δ)
α + β + γ + δ (36b)

Rαβ = αA+ βB
α + β Rγ δ = γC + δD

γ + δ Rαβγ δ = Rαβ −Rγ δ (36c)

and the integralU is defined similarly to theJ integral

U
l2m2,l4m4
l1m1,l3m3

(ζ,R) = iL

(2π)3/2

∫
dp

p2
e−ip·Re−p

2/(4ζ )Y∗l1m1
(p)Y∗l3m3

(p)Yl2m2(p)Yl4m4(p)

= 〈l2m2, l4m4|LM|l1m1, l3m3〉Ca−1,L

( 1

4ζ

)
FL(ζR

2)YLM(R)

+
L−2∑
l=lmin

(−1)n〈l2m2, l4m4|lm|l1m1, l3m3〉Can−1,l

( 1

4ζ

)
8b
n−1,lm(ζ,R) (37)

whereL = l1+ l2+ l3+ l4, n = (L− l)/2= (l1+ l2+ l3+ l4− l)/2 and we have applied
both equations (17a) and (17b) to expand the product of the four solid harmonics. Here,
〈l2m2, l4m4|lm|l1m1, l3m3〉 stands for the following quantity:

〈l2m2, l4m4|lm|l1m1, l3m3〉 =
l2+l1∑

l21=|l2−l1|
〈l2m2|l21, m21|l1m1〉

×
l4+l3∑

l43=|l4−l3|
〈l4m4|l43, m43|l3m3〉〈lm|l21, m21|l43, m43〉. (38)
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From this equation, we have three triangular relations1(l2l1l21),1(l4l3l43),1(l21l43l) and
l2 + l1 + l21, l4 + l3 + l43, l21 + l43 + l are all even integers. Therefore, the onlyl and
m values in equation (37) are those satisfyingl1 + l2 + l3 + l4 + l = even integer and
m1 + m3 + m = m2 + m4 due to the selection rule for the three Gaunt coefficients. If
one can evaluate the angular parts〈l2m2, l4m4|lm|l1m1, l3m3〉 before hand and store them
for later use, equation (37) is expected to be more efficient in actual computation than the
formula evaluated in coordinate space (see appendix B).

3.7. Other molecular integrals

The electric field and electric field gradient operators are obtained by differentiating the
nuclear attraction operator,Ekµ = Ykµ(∇C)/|r − C|. For electric fields, we havek = 1,
while for electric field gradients,k = 2. Using equation (30), we obtain

E lbmblama
(kµ, α, β,A,B,C) = Ykµ(∇C)Nlbmb

lama
(α, β,A,B,C) . (39)

The resulting formula for this integral is similar to equation (32), except that we have to
replace theJ integral by the followingE integral:

E
l2m2
l1m1

(kµ, ζ,R) = Ykµ(∇C)J l2m2
l1m1

(ζ,R)

= il1+l2+k

(2π)3/2

∫
dp

p2
e−ip·Re−p

2/(4ζ )Ykµ(p)Y∗l1m1
(p)Yl2m2(p)

= 〈l2m2, kµ|l1m1, LM〉Ca−1,L

( 1

4ζ

)
FL(ζR

2)YLM(R)

+
L−2∑
l=lmin

(−1)n〈l2m2, kµ|l1m1, lm〉Can−1,l

( 1

4ζ

)
8b
n−1,lm(ζ,R) (40)

where L = l1 + l2 + k, n = (L − l)/2 and 〈l2m2, kµ|l1m1, lm〉 has been defined in
equation (25). The space operator of the spin–orbit coupling is of the formr−3

C rC × ∇r ∼
[Yk1µ1(∇C)/rC ]Yk2µ2(∇r) (uncoupled form), withk1 = k2 = 1. Hence, the uncoupled
spin–orbit coupling integral can be evaluated as follows:

SO
lbmb
lama

(α, β,A,B,C) = 〈φlama (α, r −A)
∣∣∣[Yk1µ1(∇C)

1

rC

]
Yk2µ2(∇r)

∣∣∣φlbmb (β, r −B)〉
= Yk1µ1(∇C)Yk2µ2(−∇B)Nlbmb

lama
(α, β,A,B,C)

= Yk2µ2(−∇B)E lbmblama
(k1µ1, α, β,A,B,C) (41)

where we have used equation (39). The remaining derivative can be carried out similarly
to equation (40) sincek2 = 1,

Y1µ2(−∇B)
[
I
l′′bm
′′
b

l′′am′′a
(ξ,Rba)E

l′bm
′
b

l′am′a
(k1µ1, ζ,Rαβc)

]
= T l′′bm′′bl′′am′′a

(k2µ2, ξ,Rba)

×El′bm′bl′am′a
(k1µ1, ζ,Rαβc)+ (−1)µ1

β

ζ
I
l′′bm
′′
b

l′′am′′a
(ξ,Rba)U

l′bm
′
b,k2µ2

l′am′a ,k1,−µ1
(ζ,Rαβc). (42)

Just as for the electric field and field gradient, integrals over the space part of the electron
spin–spin interaction,Skµ = Ykµ(∇r1)/r12, can be easily evaluated using the following
substitution:

Skµ = Ykµ(∇r1)
1

r12
= 1

2π2

∫
dp

p2
e−ip·(r1−r2)Ykµ(−ip) . (43)

The space part of the two-electron spin–orbit coupling operator has the formr−3
12 r12×∇r1 ∼[

Yk1µ1(∇r1)/r12
]
Yk2µ2(∇r1), with k1 = k2 = 1. The resulting integral can be expressed as
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Yk2µ2(−∇B)S lbmb,ldmdlama,lcmc
(k1µ1, α, β, γ, δ,A,B,C,D), as in equation (40). HereS is the

space integral of the electron spin–spin interaction.

4. Molecular integrals over the general SGTOs

Having evaluated all the molecular integrals over the special type of SGTOs of the form
(10), we shall now consider these integrals for the more general SGTOs. Although the
SGTOs used by Fieck (1979, 1980) and Maretis (1979) are general, the resulting formulae
for molecular integrals contain the sophisticated Moshinsky–Smirnov coefficients from
nuclear shell theory. As pointed out by Niukkanen (1980), these coefficients consist of
very complicated sevenfold sums with two continuous parameters. In this section, we will
show that molecular integrals over the general SGTOs can be evaluated in the same way as
over the special SGTOs with the least modification and the resulting formulae are almost
as simple as in the case of the special SGTOs. Our formulae for the general SGTOs do not
contain the Moshinsky–Smirnov coefficients and therefore are simpler than those obtained
by Fieck and Maretis.

To facilitate the evaluation of molecular integrals in momentum space, we shall first
consider the Gaussian-type orbitals of the form (7), the momentum representation of which
is of the form (9). We will consider Gaussian-type orbitals of the form (6) in appendix B.
Since the two kinds of general SGTOs (6) and (7) are reciprocal with respect to each other,
it is expected that the resulting formulae for the molecular integrals will also be reciprocal.
Before proceeding, we need to generalize the two indispensable tools: the addition theorem
of solid harmonics (15) and the product expansion formulae (17). The general harmonic
polynomial is introduced as

Ynlm(r) = (r · r)nYlm(r) = r2n+lYlm(r̂) (44)

whereYlm(r) is simply the solid harmonic as before andYlm(r̂) is the usual spherical
harmonic. Now the general SGTOs, equation (9), can be written as

φ̃nlm(α,p) = (−i)lÑnl(α)e
−p2/(4α)Ynlm(p) (45)

whereÑnl(α) = Nb
nl(α)Cbnl(α), with

Nb
nl(α) = 2nn!

[
2(2α)l+3/2

0(2n+ l + 3/2)

]1/2

.

Note that we have dropped the indexb of equation (9). It is worth noting that the above
representation of the general SGTOs has exactly the same form as the special SGTOs of
form (10) except that the solid harmonic in equation (10) has been replaced by the general
harmonic polynomial. The translational property (addition theorem) of the general harmonic
polynomial (Niukkanen 1980, Niukkanen and Gribov 1983) can be written as

Ynlm(r1+ r2) = 4π
∑

[n1,n2]

K(n|n1|n2)Yn1
l1m1
(r1)Yn2

l2m2
(r2) (46a)

K(n|n1|n2) = (2n)!!

(2n1)!!(2n2)!!

[2(n+ l)+ 1]!!〈lm|l1m1|l2m2〉
[2(n1+ l1)+ 1]!![2(n2+ l2)+ 1]!!

(46b)

wheren stands for the triad of quantum numbers(n, l,m), andni = (ni, li , mi) for i = 1, 2.
It immediately follows from (46b) thatK(n|n2|n1) = K(n|n1|n2). The square brackets
over the summation indicesn1 andn2 in (46a) mean that the summation is constrained by
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the selection rules of the Gaunt coefficient and by the relationn = n1+n2+1. Specifically,
these constraints are as follows:

06 l1 6 l + 2n |l − l1| 6 l2 6 min(l1+ l, l + 2n− l1)
06 n1 6 n−1 1 = (l1+ l2− l)/2
max(−l1, m− l2) 6 m1 6 min(l1, m+ l2)
n2 = n− n1−1 m2 = m−m1

l1+ l2+ l = even number.

(46c)

It is clear that only four indices out of six(n1,n2) are independent and they can be
either (n1, l1, m1, l2), or (n2, l2, m2, l1). Note that we have simplified the coefficients in
equation (46a) given by Niukkanen and Gribov (1983). A more general derivation of the
above addition theorem will be presented in the appendix of paper II. It immediately follows
that the above formulae (46a)–(46c) reduce to the addition theorem of the solid harmonic
whenn = 0. In this case, we haven1 = n2 = 0 andl1+ l2 = l, thus the 4-tuple summation
will be reduced to a 2-tuple summation and the coefficientK becomesG in equation (15).
Compared with the addition theorem of the solid harmonic, equation (15), the additional
2-tuple summation in equation (46a) is the price we have to pay for the generalization. The
product expansion formulae can be easily derived from equations (17a) and (17b),[

Yn1
l1m1
(r)
]∗Yn2

l2m2
(r) =

∑
l

〈l2m2|l1m1|lm〉Ynlm(r) (47a)

Yn1
l1m1
(r)Yn2

l2m2
(r) =

∑
l

〈lm|l1m1|l2m2〉Ynlm(r) (47b)

wheren = n1+ n2+1 with 1 = (l1+ l2− l)/2 and the allowedl values as well as other
constraints are the same as before.

Since the generalized formulae for the harmonic polynomial have exactly the same
forms as those for the solid harmonic, it is a simple matter to generalize the preceding
formulae of molecular integrals to the general SGTOs (equation (45)). We will illustrate in
detail how the overlap integral over the general SGTOs is evaluated, while the remaining
integrals are summarized in appendix A:

S
nblbmb
nalama

(α, β,A,B) = 〈φnalama (α, r −A)|φnblbmb (β, r −B)〉
=
∫

dq e−iq·Rφ̃∗nalama (α, q)φ̃nblbmb (β, q)

= (−1)lb (2π)3/2Ñnala (α)Ñnblb (β)I
nblbmb
nalama

(ξ,R)

I
n2l2m2
n1l1m1

(ξ,R) = il1+l2

(2π)3/2

∫
dq e−iq·Re−q

2/(4ξ)
[
Yn1
l1m1
(q)
]∗Yn2

l2m2
(q)

(48)

whereR = B −A andξ = αβ/(α + β) as before. The integralI can be evaluated in the
same way as equation (19) by means of the expansion (47a),

I
n2l2m2
n1l1m1

(ξ,R) = il1+l2
∑
l

〈l2m2|l1m1|lm〉 1

(2π)3/2

∫
dq e−iq·R8a

nlm

( 1

4ξ
, q
)

=
∑
l

(−1)1〈l2m2|l1m1|lm〉Canl
( 1

4ξ

)
8b
nlm(ξ,R) (49)

where1 = (l1 + l2 − l)/2, n = n1 + n2 + 1 and we have used equations (4) and (8).
As can be seen, equation (49) is almost as simple as (19). In other words, introducing
the general SGTOs does not increase the complexity of the overlap integral. This also
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holds true for the integrals of kinetic energy and of the tensor operator, see appendix B.
However, the formulae for overlap integrals with PWETF as well as nuclear attraction
and electron repulsion integrals over the general SGTOs will inevitably introduce more
sums because of the two extra summations in the addition theorem of the harmonic
polynomial (46a).

5. Numerical strategies and concluding remarks

Since the relative merits of spherical Gaussian-type orbitals over Cartesian Gaussian-type
orbitals have been addressed by a number of authors (Fieck 1980, Huzinaga 1985, Dunlap
1990), we will not reiterate them. Instead, we shall concentrate on how to efficiently
implement the preceding formulae, especially for four-centre electron repulsion integrals.
Before proceeding, we shall summarize the typical features of the present formulae. Firstly,
all the angular parts are treated analytically by means of vector-coupling coefficients (Gaunt
coefficients), which can be efficiently evaluated to any desired accuracy for arbitrary high
angular momentum. Secondly, the important geometric dependence with respect to multi-
centres comes into play through the solid harmonic functionsYlm(R). Here, we have
to distinguish between the two different cases according to whetherR depends on the
exponents of Gaussian orbitals. Thirdly, only the termYlm(R) in the present formulae
involves complex number operations. The solid harmonics appear in the forms ofY(R)
(equations (19), (22) and (24)),Y(R1)Y(R2) (equation (32)) andY(R1)Y(R2)Y(R3)

(equation (35)). When real Gaussian orbitals are used, these formulae can be readily adapted
so that only real number operations are needed. Finally, for the special SGTO, only two
indiceslm are needed to specify an orbital while for the corresponding CGTO, three indices
are needed. The present formula for each integral only needshalf as many summations
as its Cartesian Gaussian orbitals counterpart (Taketaet al 1966). This is still true even
after we have improved the original treatment (Taketaet al 1966) of nuclear attraction and
electron repulsion integrals over CGTOs, see appendix B of paper II.

As can be seen, Gaunt coefficients appear throughout the present formulation. A reliable
scheme for the evaluation of these coefficients is available (Weniger and Steinborn 1982). It
is advisable that the Gaunt coefficients be pre-evaluated and stored in memory. The storage
requirement is of the order ofl5max, which should not be prohibitive on any reasonable
system. Meanwhile, theG(lm|l′m′) coefficients in equation (15) should also be evaluated
first and the corresponding storage is only of the order ofl4max. It would be desirable that
〈l2m2, l4m4|lm|l1m1, l3m3〉 be evaluated and stored first if the memory is available, since
about l9max values are required. All the integrals require the evaluation of solid harmonics
Ylm(R), and the associated Laguerre polynomials of the formLl+1/2−2n

n (z) with n 6 [l/2].
An efficient recursive scheme for computingYlm(R) is presented in paper II. For low angular
momentum the explicit form of the associated Laguerre polynomials may be used, while
for high angular momentum the recurrence evaluation may be preferable. In the cases of
nuclear attraction and electron repulsion integrals, a sequence of the functionsFm(z) needs
to be evaluated. The efficient computation of this function has been discussed by a number
of authors (Shavitt 1963, Grotendorst and Steinborn 1986 and references therein) and it is
generally agreed that a carefully constructed interpolation scheme, such as that described
by Gill et al (1991), is the most effective approach.

It is computationally more effective to introduce contracted Gaussian-type orbitals,
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which are defined as

φclm(α, r) =
{ K∑
k=1

Cke
−αkr2

}
Ylm(r) (50)

whereK is the degree of contraction andCk are contraction coefficients. The original
uncontracted Gaussian-type orbitals are called the primitive functions. It should be noted
that all the primitive functions in a contracted orbital share the same centre and angular
momentum. The contracted orbitals, in some sense, eliminate our need for the general
spherical Gaussian-type orbitals of the form (45). However, this leads to the so-called
contraction problem. Assuming that all the orbitals areK-fold contracted, the molecular
integrals over these contracted orbitals(AB|CD) may be expressed in a straightforward
way as a sum of their component primitive integrals [AB|CD] which, in turn, are computed
individually, i.e.

(AB|CD) =
K∑
i=1

K∑
j=1

K∑
k=1

K∑
l=1

Cai C
b
j C

c
kC

d
l [AiBj |CkDl ] . (51)

It immediately follows that the computational effort to generate the desired class of
(AB|CD) integrals will rise with the fourth power ofK, which is termed the contraction
problem (for a recent review, see Gill (1994)). To reduce the computational cost of
generating the integral class, it is crucial to make use of the fact that the primitive functions
in a contracted basis orbital all share the same centre and the same angular parts. Our
formulation of the integrals has fully separated the geometric and angular dependence from
the exponent dependence. For instance, in the case of the four-centre electron repulsion
integral (35), we can pull the geometric and angular dependence out of the summation over
the primitive parts by substituting equation (35) into (51) and replacing theI integral with
equation (19),

(AB|CD) = 32(−1)lb+ld (2π)13/2
∑
l′a ,m′a

G(lama|l′am′a)
∑
l′b,m

′
b

G(lbmb|l′bm′b)

×
∑
l1

(−1)n1n1!〈l′′bm′′b|l′′am′′a|l1m1〉Yl1m1(Rba)
∑
l′c,m′c

G(lcmc|l′cm′c)

×
∑
l′d ,m

′
d

G(ldmd |l′dm′d)
∑
l2

(−1)n2n2!〈l′′dm′′d |l′′c m′′c |l2m2〉Yl2m2(Rdc)

×
K∑
i=1

K∑
j=1

K∑
k=1

K∑
l=1

Cai C
b
j C

c
kC

d
l F

l′a ,l
′
b

n1,l1
(αi, βj , Rba)

×F l′d ,l′cn2,l2
(δl, γk, Rdc)U

l′bm
′
b,l
′
dm
′
d

l′am′a ,l′cm′c
(ζ,R

ijkl

αβγ δ) (52)

where ζ and Rijkl

αβγ δ depend on the primitive exponentsαi, βj , γk and δl as defined in
equations (36a)–(36c). HereF stands for

F
l1,l2
n,l (α, β, R) =

(
− α

α + β
)l1( β

α + β
)l2
Canl
( 1

4ξ

)
e−ξR

2
Ll+1/2
n (ξR2) (53)

with ξ = αβ/(α + β). It is clear from (52) that the evaluation of the integral class over
contracted orbitals is nearly optimal under all circumstances, since there is not too much
additional cost in the evaluation of the integral class for contracted orbitals compared with
that for primitive functions.

In summary, we have derived all the multi-centre molecular integrals over spherical
Gaussian-type orbitals by using the Fourier transform and the addition theorem of harmonic
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polynomials. The resulting formulae, involving only the Gaunt coefficients and well known
functions, are simpler than those obtained previously by Fieck (1980). The special spherical
Gaussian orbitals of the form (10) are preferable in the actual molecular computation since
they have simpler integral formulae than the general Gaussian orbitals (45). The loss
of flexibility with the special SGTOs may be readily compensated for by using contracted
Gaussian orbitals. Most importantly, the present formulation supports the efficient evaluation
of molecular integrals over contracted Gaussian orbitals.
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Appendix A. Molecular integrals over the general SGTOs in momentum space

The molecular integrals of kinetic energy and tensor operators for general spherical
Gaussian-type orbitals can be easily worked out as for the special SGTOs. We shall just
provide the corresponding formulae below.

Kinetic energy integral

K
nblbmb
nalama

(α, β,A,B) = 〈φnalama (α, r −A)| − 1
2∇2

r |φnblbmb (β, r −B)〉
= 1

2(−1)lb (2π)3/2Ñnala (α)Ñnblb (β)K
nblbmb
nalama

(ξ,R) (A1)

Kn2l2m2
n1l1m1

(ξ,R) =
∑
l

(−1)1〈l2m2|l1m1|lm〉Can+1,l

( 1

4ξ

)
8b
n+1,lm(ξ,R) (A2)

whereξ = αβ(α + β) as before,1 = (l1+ l2− l)/2 andn = n1+ n2+1.

Integral of a tensor operatorYlm(∇)

T
nblbmb
nalama

(α, β,A,B) = 〈φnalama (α, r −A)|Ylm(∇r)|φnblbmb (β, r −B)〉
= (−1)lb (2π)3/2Ñnala (α)Ñnblb (β)T

nblbmb
nalama

(ξ,R) (A3)

T n2l2m2
n1l1m1

(ξ,R) =
l1+l2+k∑
l=0

(−1)1〈l2m2, kµ|l1m1, lm〉Canl
( 1

4ξ

)
8b
nlm(ξ,R) (A4)

whereξ = αβ(α+β) as before,1 = (l1+ l2+ k− l)/2 andn = n1+n2+1. The allowed
l values are the same as before.

As we mentioned in section 4, overlap integrals with PWETF as well as nuclear attraction
and electron repulsion integrals may be evaluated by means of the addition theorem of
harmonic polynomials, at the expense of introducing more sums. However, the derivation
is straightforward.
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Overlap integral with PWETF

S
nblbmb
nalama

(α, β,A,B,p) = 〈φnalama (α, r −A)|e−ip·r|φnblbmb (β, r −B)〉
= ila−lb Ñnala (α)Ñnblb (β)e

−ip·Rαβe−p
2/(4ζ )

×
∫

dq e−iq·Re−q
2/(4ξ)

[
Ynalama

(
q − α

ζ
p
)]∗
Ynblbmb

(
q + β

ζ
p
)

(A5)

where all the parameters appearing in the above equation have the same definitions as
before. Now the integral (A5) can be evaluated by means of the addition theorem of
harmonic polynomials (46a),

S
nblbmb
nalama

(α, β,A,B,p) = (−1)lb (4π)2(2π)3/2Ñnala (α)Ñnblb (β)e
−ip·Rαβe−p

2/(4ζ )

×
∑

[n′a ,n′′a ]

ila−l
′′
aK(na|n′a|n′′a)

[
Yn

′
a

l′am′a

(
−α
ζ
p
)]∗

×
∑

[n′b,n
′′
b ]

ilb−l
′′
bK(nb|n′b|n′′b)Yn

′
b

l′bm
′
b

(β
ζ
p
)
I
n′′b l
′′
bm
′′
b

n′′a l′′am′′a
(ξ,R) (A6)

wherena stands for the triad of quantum numbers(na, la,ma),n′a = (n′a, l
′
a,m

′
a), and

n′′a = (n′′a, l′′a ,m′′a).

Nuclear attraction integral

N
nblbmb
nalama

(α, β,A,B,C) = 〈φnalama (α, r −A)
∣∣∣∣ 1

|r −C|
∣∣∣∣φnblbmb (β, r −B)〉

= 8(−1)lb (2π)3Ñnala (α)Ñnblb (β)
∑

[n′a ,n′′a ]

(−1)1aK(na|n′a|n′′a)
(
−α
ζ

)2n′a+l′a

×
∑

[n′b,n
′′
b ]

(−1)1bK(nb|n′b|n′′b)
(β
ζ

)2n′b+l′b
I
n′′b l
′′
bm
′′
b

n′′a l′′am′′a
(ξ,Rba)J

n′bl
′
bm
′
b

n′a l′am′a
(ζ,Rαβc) (A7)

where1a = (l′a + l′′a − la)/2,1b = (l′b + l′′b − lb)/2, and all the rest of parameters are the
same as before. The integralJ is defined similarly

J
n2l2m2
n1l1m1

(ξ,R) = 〈l2m2|l1m1|LM〉Ca−1,L

( 1

4ζ

)
FL(ζR

2)YLM(R)

+
L−2∑
l=lmin

(−1)1〈l2m2|l1m1|lm〉Can−1,l

( 1

4ζ

)
8b
n−1,lm(ζ,R) (A8)

whereL = l1+ l2,1 = (l1+ l2− l)/2 andn = n1+ n2+1.

Electron repulsion integral

V
nblbmb,nd ldmd
nalama,nclcmc

(α, β, γ, δ,A,B,C,D) = 1

2π2

∫
dp

p2
S
nblbmb
nalama

(α, β,A,B,p)

×Snd ldmdnclcmc
(γ, δ,C,D,−p)

= 32(−1)lb+ld (2π)13/2Ñnala (α)Ñnblb (β)Ñnclc (γ )Ñnd ld (δ)

×
∑

[n′a ,n′′a ]

(−1)1aK(na|n′a|n′′a)
(
− α
ζ1

)2n′a+l′a
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×
∑

[n′b,n
′′
b ]

(−1)1bK(nb|n′b|n′′b)
( β
ζ1

)2n′b+l′b
I
n′′b l
′′
bm
′′
b

n′′a l′′am′′a
(ξ1,Rba)

×
∑

[n′c,n′′c ]

(−1)1cK(nc|n′c|n′′c )
( γ
ζ2

)2n′c+l′c

×
∑

[n′d ,n
′′
d ]

(−1)1dK(nd |n′d |n′′d)
(
− δ
ζ2

)2n′d+l′d
I
n′′d l
′′
dm
′′
d

n′′c l′′c m′′c
(ξ2,Rdc)

×Un′bl
′
bm
′
b,n
′
d l
′
dm
′
d

n′a l′am′a ,n′cl′cm′c
(ζ,Rαβγ δ) (A9)

where1e = (l′e + l′′e − le)/2 for e = a, b, c, d, and all the rest of parameters have the same
definitions as before. The integralU may be evaluated accordingly,

U
n2l2m2,n4l4m4
n1l1m1,n3l3m3

(ζ,R) = 〈l2m2, l4m4|LM|l1m1, l3m3〉Ca−1,L

( 1

4ζ

)
FL(ζR

2)YLM(R)

+
L−2∑
l=lmin

(−1)1〈l2m2, l4m4|lm|l1m1, l3m3〉Can−1,l

( 1

4ζ

)
8b
n−1,lm(ζ,R) (A10)

whereL = l1+ l2+ l3+ l4,1 = (L− l)/2 andn = n1+ n2+ n3+ n4+1. The allowedl
values are those satisfyingl1+ l2+ l3+ l4+ l = even integer.

Appendix B. Molecular integrals over the general SGTOs in coordinate space

As we mentioned in the text, overlap integrals with PWETF as well as nuclear attraction and
electron repulsion integrals can also be evaluated in coordinate space without introducing
too much complexity. To evaluate overlap integrals with PWETF, we need to expand a
product of Gaussian orbitals of the form (6) on two different centres. Using the following
identity:

α(r −A)2+ β(r −B)2 = ζ(r −Rαβ)
2+ ξR2 (B1)

with ξ = αβ/(α + β), ζ = α + β,Rαβ = (αA+ βB)/(α + β) and lettingr −Rαβ = r′,
we obtain the following expansion:

8∗nalama (α, r −A)8nblbmb (β, r −B)
= e−[α(r−A)2+β(r−B)2]

[
Ynalama (r −A)

]∗Ynblbmb (r −B)
= e−ξR

2
e−ζ r

′2
[
Ynalama

(
r′ + β

ζ
R

)]∗
Ynblbmb

(
r′ − α

ζ
R

)
= (4π)2e−ξR

2
∑

[n′a ,n′′a ]

K(na|n′a|n′′a)
[
Yn

′
a

l′am′a

(
β

ζ
R

)]∗
×

∑
[n′b,n

′′
b ]

K(nb|n′b|n′′b)Yn
′
b

l′bm
′
b

(
−α
ζ
R
)

×
∑
l2

〈l′′bm′′b|l′′am′′a|l2m2〉8a
n2l2m2

(ζ, r′) with R = B −A (B2)

wheren2 = n′′a + n′′b + 12 with 12 = (l′′a + l′′b − l2)/2 and we have used equations (46a)
and (47a). Combining the two solid harmonicsY with (47a), we could obtain a more
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symmetric formula,

8∗nalama (α, r −A)8nblbmb (β, r −B)

= (4π)2
∑

[n′a ,n′′a ]

K(na|n′a|n′′a)
(β
ζ

)2n′a+l′a ∑
[n′b,n

′′
b ]

K(nb|n′b|n′′b)
(
−α
ζ

)2n′b+l′b

×
∑
l1

〈l′bm′b|l′am′a|l1m1〉
∑
l2

〈l′′bm′′b|l′′am′′a|l2m2〉8a
n1l1m1

(ξ,R)8a
n2l2m2

(ζ, r′)

(B3)

wheren1 = n′a+n′b+11 with 11 = (l′a+ l′b− l1)/2. If all the coefficients in equation (B3)
are collectively written as a single coefficient, the above formula (B3) would look like that
obtained by Fieck (1979) using the Talmi transformation. However, it should be noted that
formula (B3), though more symmetric, does not bear any computational advantage over
formula (B2) and is actually more complicated because of one more summation involved.
In the following derivation, formula (B2) will be used exclusively.

Overlap integral with PWETF

S
nblbmb
nalama

(α, β,A,B,p) = 〈φnalama (α, r −A)|e−ip·r|φnblbmb (β, r −B)〉
=
∫

dr e−ip·rφ∗nalama (α, r −A)φnblbmb (β, r −B)

= (4π)2(2π)3/2Nnala (α)Nnblb (β)e−ξR
2
e−ip·Rαβ

×
∑

[n′a ,n′′a ]

K(na|n′a|n′′a)
[
Yn

′
a

l′am′a

(
β

ζ
R

)]∗
×

∑
[n′b,n

′′
b ]

K(nb|n′b|n′′b)Yn
′
b

l′bm
′
b

(
−α
ζ
R
)

×
∑
l

(−i)l〈l′′bm′′b|l′′am′′a|lm〉Canl(ζ )8b
nlm

( 1

4ζ
,p
)

(B4)

where Nnl(α) =
[

2(2α)2n+l+3/2

0(2n+l+3/2)

]1/2
is the normalization constant, and we have used

equations (B2), (4) and (8).

Nuclear attraction integral

N
nblbmb
nalama

(α, β,A,B,C) = 〈φnalama (α, r −A)
∣∣∣∣ 1

|r −C|
∣∣∣∣φnblbmb (β, r −B)〉

= 1

2π2

∫
dp

p2
eip·CSnblbmbnalama

(α, β,A,B,p)

= 8(2π)3Nnala (α)Nnblb (β)e
−ξR2

×
∑

[n′a ,n′′a ]

K(na|n′a|n′′a)
[
Yn

′
a

l′am′a

(
β

ζ
Rba

)]∗
×

∑
[n′b,n

′′
b ]

K(nb|n′b|n′′b)Yn
′
b

l′bm
′
b

(
−α
ζ
Rba

)
×
∑
l

(−1)l〈l′′bm′′b|l′′am′′a|lm〉Canl(ζ )Nnlm(ζ,Rαβc) (B5)
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whereRba = B −A,Rαβc = Rαβ −C, and

Nnlm(ζ,R) = il

(2π)3/2

∫
dp

p2
e−ip·R8b

nlm

( 1

4ζ
,p
)

=
(
n+ l + 1

2

n

)
Ca−1,l

( 1

4ζ

)
Fl(ζR

2)Ylm(R)

+
n∑
k=1

(−1)k

k!(4ζ )k

(
n+ l + 1/2

n− k
)
Cak−1,l

( 1

4ζ

)
8b
k−1,lm(ζ,R) (B6)

where we have used equations (11), (14), (4) and (8) as well as the explicit form of the
associated Laguerre polynomialLνn(z) (Gradshteyn and Ryzhik 1980, p 1037)

Lνn(z) =
n∑
k=0

(−1)k
(
n+ ν
n− k

)
zk

k!
. (B7)

Electron repulsion integral

V
nblbmb,nd ldmd
nalama,nclcmc

(α, β, γ, δ,A,B,C,D)

= 32(2π)13/2Nnala (α)Nnblb (β)Nnclc (γ )Nnd ld (δ)e
−(ξ1R

2
ba+ξ2R

2
dc)

×
∑

[n′a ,n′′a ]

K(na|n′a|n′′a)
[
Yn

′
a

l′am′a

(
β

ζ1
Rba

)]∗
×

∑
[n′b,n

′′
b ]

K(nb|n′b|n′′b)Yn
′
b

l′bm
′
b

(
− α
ζ1
Rba

)
×

∑
[n′c,n′′c ]

K(nc|n′c|n′′c )
[
Yn

′
c

l′cm′c

(
δ

ζ2
Rdc

)]∗
×

∑
[n′d ,n

′′
d ]

K(nd |n′d |n′′d)Yn
′
d

l′dm
′
d

(
− γ
ζ2
Rdc

)
×
∑
l1

(−1)l1〈l′′bm′′b|l′′am′′a|l1m1〉Can1l1
(ζ1)

×
∑
l2

〈l′′dm′′d |l′′c m′′c |l2m2〉Can2l2
(ζ2)Vn2l2m2

n1l1m1
(ζ1, ζ2,Rαβγ δ) (B8)

where all the parameters have been defined in (36a)–(36c), and

Vn2l2m2
n1l1m1

(ζ1, ζ2,R) = il1−l2

(2π)3/2

∫
dp

p2
e−ip·R8b

n1l1m1

( 1

4ζ1
,p
)
8b
n2l2m2

( 1

4ζ2
,−p

)
= 〈LM|l1m1|l2m2〉Dl1l2n1n2,0

( 1

4ζ1
,

1

4ζ2

)
Ca−1,L

( 1

4ζ

)
FL(ζR

2)YLM(R)

+
∑
l

〈lm|l1m1|l2m2〉

×
n1+n2∑
k(n6=0)

(−1)nDl1l2n1n2,k

( 1

4ζ1
,

1

4ζ2

)
Can−1,l

( 1

4ζ

)
8b
n−1,lm(ζ,R) (B9)
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whereL = l1+ l2, n = (l1+ l2− l)/2+k andD is determined through the product expansion
of the two associated Laguerre polynomials, i.e.

Lν1
n1
(a1z)L

ν2
n2
(a2z) =

n1+n2∑
k=0

Dl1l2n1n2,k
(a1, a2)(−z)k (B10)

with νi = li + 1
2. By means of (B7), we can find

Dl1l2n1n2,k
(a1, a2) =

min(n1,k)∑
j=max(0,k−n2)

a
j

1a
k−j
2

j !(k − j)!
(
n1+ ν1

n1− j
)(

n2+ ν2

n2− k + j
)
. (B11)

As can be seen, the formula forV, equation (B10), is much more complicated than the one
for U , equation (37). Therefore, formula (35) is expected to more effective for computation
than (B9), especially, when one can evaluate the angular parts〈l2m2, l4m4|lm|l1m1, l3m3〉
before hand and store them for later use. The formulae forN andV are similar to those
obtained by Krauss (1964). Nevertheless, they are not recommended for the evaluation of
nuclear attraction and electron repulsion integrals.
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