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Abstract. Multi-centre molecular integrals over spherical Gaussian-type orbitals modified with
plane-wave phase factors, which arise in the close-coupling treatment of ion—atom collisions as
well as in some molecular structure calculations, are evaluated analytically in closed form by
means of the Fourier transform and the addition theorem of harmonic polynomials. The resulting
integral formulae for spherical Gaussian orbitals, consisting of vector-coupling coefficients and
well known functions, are more compact than those for their counterparts, Cartesian Gaussian
orbitals. Practical techniques are suggested for the efficient implementation of the present
formulae.

1. Introduction

In the impact parameter close-coupling treatment of ion—atom collisions, basis orbitals
modified with plane-wave phase factors were first introduced by Bates and McCarroll (1958)
to meet the asymptotic boundary conditions in reaction channels represented by the basis
orbitals. The physical significance of the phase factors, also called electronic translational
factors (ETF), is related to the Galilean invariance when a transformation is made from
one frame to another. Failure to include the proper phase factors in basis orbitals leads
to nonvanishing interactions in the asymptotic region and cross sections of the individual
channel depending on the choice of the origin of electronic coordinates. In molecular
structure calculations the s-type basis orbitals with plane-wave phase factors can simulate
orbitals with larger angular momentum quantum numbers (Allisbral 1973). These
orbitals also arise when molecular integrals are evaluated in momentum space (see our
preceding paper, Kuang and Lin (1997), hereafter referred to as paper I) as well as when
the relativistic interactions are included in molecular integrals.

Multi-centre molecular integrals over basis orbitals, modified with plane-wave phase
factors containing exjpk - r), cannot be completely reduced to analytic expressions, and
they are time consuming to compute if the basis orbitals are expanded in terms of Slater-type
functions. The existing computational methods of the integrals over Slater-type functions
have been reviewed by Bransden and McDowell (1992, appendix E). For one-electron
systems, the integrals over Slater-type functions can be evaluated efficiently with the proper
care being taken for one-dimensional numerical quadrature (Kuang and Lin 1996). However,
for many-electron systems, the evaluation of electron repulsion integrals over Slater-type
functions has proven to be a formidable task when the phase factors are present, particularly
for the electron exchange term. In contrast, all the multi-centre molecular integrals with
plane-wave phase factors, including the difficult electron repulsion term, can be evaluated
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analytically (Allisonet al 1973, Erreat al 1979, Obara and Saika 1988) if basis orbitals are
expressed in terms of Gaussian-type functions. The obvious drawback of Gaussian orbitals
is that they exhibit neither cusps at the nuclei nor exponential decay at large distances.
Although it is known (Dose and Semini 1974, Huzinaga 1985) that more Gaussian orbitals
are required to achieve the equivalent accuracy as Slater functions, the simplicity of Gaussian
integrals more than compensates for this.

Following the classic work by Boys (1950), Cartesian Gaussian-type orbitals (CGTOS)
of the forma¢,.;,,, (o, ) = Nym (oz)x”y’z’”e“”2 have been used almost by default in molecular
structure calculations (for a recent review see Gill (1994)) as well as in the close-coupling
treatment of ion—atom collisions (Erreaal 1979). This is because molecular integrals over
CGTOs can be evaluated in a straightforward manner. However, the obvious disadvantage
of CGTOs is that they do not possess spherical symmetry ol + m > 2 and therefore
extra work is necessary in order to extract the spherical symmetry orbitals (Huzinaga 1985).
As mentioned in paper |, spherical Gaussian-type orbitals (SGTOs) have a few obvious
advantages: (i) spherical symmetry properties and the geometric dependence can be taken
into account naturally; (ii) the well developed vector-coupling coefficients can be applied
fruitfully to derive compact formulae for all molecular integrals; (iii) the resulting formulae
support the efficient computation of the integrals over contracted Gaussian orbitals.

Multi-centre molecular integrals over the general Cartesian Gaussian orbitals modified
with plane-wave phase factors have been considered by Etrak(1979) and by Obara
and Saika (1988). The closed-form formulae for nuclear attraction and electron repulsion
integrals obtained by Erreat al contain a large number of sums which slow down
the numerical computation of the formulae significantly, particularly for high angular
momentum orbitals. Obara and Saika derived recurrence relations to evaluate the integrals of
high angular momentum orbitals in terms of integrals, involving lower angular momentum
orbitals. Since recurrence formulae require the evaluation of unwanted integrals of lower
angular momentum, they need not always guarantee efficient algorithms, especially for
relatively large angular momentum orbitals. In this paper we present closed-form formulae
for all the multi-centre molecular integrals over spherical Gaussian orbitals with plane-
wave phase factors using the same tools as in paper I. The resulting formulae are more
compact than those obtained by Eredaal and are expected to be efficient in computation
for Gaussian orbitals with arbitrary angular momentum. Based on our analysis, contracted
Gaussian orbitals may be used effectively in the close-coupling calculations of ion—atom
collisions.

2. Basic Gaussian functions and their properties

As in paper |, we shall only consider two types of basic (unnormalized) Gaussian functions:

cbiilm (O{, T) = or® (T ¢ T)nylm (T) (1)
@b, (@, 1) = € L2 (a(r - 1)) Vi (r) @)

where ), (r) is the solid harmonic (Biedenharn and Louck 1981, p 71) @) is the

associated Laguerre polynomial. If these functions are used as basis orbiaisotes the
real position vector of an electron in three-dimensional spacenaisda natural humber;
otherwise,r is a complex vector and the indexin (1) may start from—1. Although®”

nlm

is more complicated tha®¢, , its Fourier transform is much simpler than thatdf,,,. In

nlm?

fact, they are reciprocal with respect to each other, see equations (8) and (9) in paper I. To
simplify the reference notation, we will use (1.8) to indicate equation (8) of paper I.
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Introducing harmonic polynomials

Vim () = (- 7)" Y (1) ()
T (1) = L2 7)Y (r) @)
for n > 0, then Gaussian orbitals in equations (1) and (2) can be written as
%, (@, 1) = e Y (r) (5)
b, (. m) = e L) (Var) | (6)

The harmonic polynomials defined in (3) and (4) possess unique translational properties
(addition theorems) (Niukkanen and Gribov 1983, Niukkanen 1984), which were applied
fruitfully to derive compact formulae for multi-centre molecular integrals over spherical
Gaussian orbitals (paper I). Since the previous derivation procedure (Niukkanen and Gribov
1983, Niukkanen 1984) of the addition theorems for these polynomials does not apply to
the complex arguments, a more general derivation is presented in appendix A.

It is trivial to show (Allisonet al 1973, Dose and Semini 1974) that an s-type Gaussian
orbital modified with a plane-wave phase factor is still an s-type Gaussian orbital but with
a complex centre, i.e.

eik:q'efot(rfR)2 — Ne*a(T*R?)z (7)

whereR' = R+ik/2x and N = exp(ik - R — k?/4x). By means of the addition theorems

of harmonic polynomials, equations (A8) and (A13) of appendix A, it follows that the
above spherical Gaussian orbital modified with a plane-wave phase factor can be reduced
to a linear combination of Gaussian orbitals with a complex ceRire

ik
&7l (.7 — R) = 41N Y K(nlnajny) /'Em( ) o, (a7 — R ®)
[n1,m2]
et (a,r —R) =47N" Y B(nlnzlnl)y/1m1<2f) @)1, 0, 7 — RY) ©
[n1,m2]
where N/ = o'\ and n stands for the triad of quantum numbers, i( m), see

appendix A. It is interesting to note that one can also expand the prodt&ple , in

terms of®¢, by exchanging the two vectors in (A13):
el (@, 1 — R) = dr N’ [n;ﬂ B(n|n1|n2)a”2+12/2£711m1(2 [) o0, (a,7—R.
(10)

If molecular integrals are evaluated in momentum space, equation (10) does not bear any
advantage over equation (9) since the momentum representatibtisfmore complicated

than that of®”. As in paper |, it is of practical interest to consider the special Gaussian
orbitals withn = 0, i.e. ®,,(a,r) = e—mzy,m(r). In this case, the above three
equations (8)—(10) become identical and therefore can be written as a single equation

_ ik
&7y, (.7 — R) = 4nN' Y G(lm|llm1)yllml( ><I>12m2(oz r— RY) (11)

l]_ml
wherel, = | — I3,my; = m — my and G is defined in equation (1.1g. Clearly, the
transformation for these special Gaussian orbitals, equation (11), is simpler than that for the
general SGTO, equations (8)—(10), because it only contains two summations. In contrast,
the similar transformation for CGTOs needs three summations (Obara and Saika 1988).
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Interestingly, one can also expand Gaussian orbidals(«, »r — R) directly in terms of

Oy (e, 1), €.

Oy (e, 7 — R) = 4w ® Y G(Umllymy) Viym, (—R)E Ry (@0, 7). (12)
]1’7‘[1

Thus we obtain an alternative expansion to equation (11),
&5 d,, (@, r — R) = 4ne Z G (Im|lym 1) Vyym, (— R)EP T @pypy (et 1) (13)

limq
wherep = k — 2ieR. The alternative expansions to equations (8)—(10) follow in the
same way. These transformation formulae, equations (8)—(13), will definitely facilitate
the evaluation of multi-centre molecular integrals over SGTOs modified with plane-wave
phase factors. Specifically, equation (13) may be used when the integrals are evaluated in
coordinate space, while equations (8)—(11) are used when they are computed in momentum
space.

Before proceeding, we need to justify that the basic integral formulae, equations (1.8),
(1.9) and (1.14), still hold true for complex argumernjs As in paper |, the symmetric
version of the Fourier transformation is used. Consider the following Fourier transform of
Gaussian orbitals (5):

~ 1 )
cDZlm (O{, p) = W / dr eﬁlp'TCDZ]m (O{, 'f‘) (14)

wherep, in general, is a complex vector, whiteis a real vector. Note that the well known
Rayleigh (partial-wave) expansion of a plane wave cannot be used here any more. Instead,
we really have to use expansion (A5) of appendix A, which is valid for complex vectors.
Substituting (A5) into (14), we obtain

~ 1 . ’ 2
(bzlm (Ol, p) = W Z akl/yﬁ,m’(_lp) / dr (_1)171 yﬁ,7’11,(7“)y;:11 (,r.)e—w"

kl'm’

1 > k . o d(rZ) 2\k+n+1+1/2 —or?
= — - A €
(271)3/2 ; aklylm( Ip) /0 2 (r )

3
i 27%%(—p-p) Th+n+1+3)
g UHIT (k +1+ 3)  2aktntl+3)2

2"V (=ip) T +1+3) 3
- (Zu)il+l+3/2 F(l + %) ]_F]_(fl +i+ E’ [+ E’ _ﬂ)

where we have used the orthonormal property of spherical harmonics, and the integral

formula f;°x"~"*e**dx = I'(v)/u” for Re(u) > 0 and Rév) > 0 (Gradshteyn and

Ryzhik 1980, p 317). Now we need to distinguish between two different cases,se-1

andn > 0, in which the confluent hypergeometric functigfyi(n + 1 + 3,1 + 2, —2)

will be reduced to the different known functions. Fer = —1, using the formula

Fi(z)=@Q/2+1)F1(+ % l+ % —z), whereF;(z) is the well known function (Shavitt

1963), we obtain

B 4o p) = (D)€ @) Fr ) Vi (P) (15)

where we have defineg? = p-p andC*, () = 1/(20)"*/2. As can be seen, this formula
has exactly the same form gsds a real vector (compare equation (1.14)). kop 0, using
1Fi(e, y, —2) =€ 1Ry —a, 7, 2) and Ly (z) = S i Fi(—n, v + 1, 2), we have

~ _ 1
B, p) = (=) i) @0y, (2= 7) (16)

1 .
= Wylm(_uj)

3 p-p
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whereC% (a) = 2'n!/(22)"*'*3/2, as in paper I. Similarly, we can prove

~ . 1
e p) = (@@, (2= P) (17)

with C?,(a) = 1/2"n!(2x)"+'+3/2, In the case ofi = 0, we haveC (¢) = C4(a) = Ci(a).

3. Molecular integrals over spherical Gaussian orbitals—modified with plane-wave
phase factors

As in paper |, we shall mainly consider the special SGTOs, which have exactly the same
form in both coordinate and momentum space,

- o~ 1
Gim (o, 1) = Ni(@) P (e, ) im0, p) = (_l)lNl(a)CDlm(Ev p) (18)

where Nj(a) = [2(20)*¥2/T'(1 + $)]*/? and Ni(a) = Ni(a)Ci(a) are the normalization
constants in coordinate and momentum space, respectively. We choose to do so because
these SGTOs of the form (18) have been widely used in real applications, and the resulting
integral formulae for the special SGTOs are much simpler than those for the general SGTOs.
However, the integral formulae for the general SGTOs can be obtained straightforwardly
by making some simple modifications of the corresponding formulae for the special SGTOs
(refer to paper I).

3.1. Overlap integrals with ETF

The two-centre overlap integrals with ETF arise in the close-coupling treatment of ion—atom
collisions and in the evaluation of three-centre nuclear attraction and four-centre electron
repulsion integrals. As can be seen from the previous section, Gaussian functions are the
natural choice of the basis orbitals when ETF is presented. The overlap integrals with ETF
over Gaussian orbitals have been evaluated in paper | in a different context. We shall now
compute them using the technique developed in the previous section,

Sim (@, B, A, B K) = {1, (@7 — A)|€" (g, (B. 7 — B))
= (ékq‘(bl,,m,, (a, 7 — A)|¢lhmb (B, 7 —B))

ik
= 47 N, () N;, (B)N; Z G (lamallym) Vi, (Z>
Z]_m;[

X (D, (0, 7 — AN Dy, (B, 7 — B))
= (=147 (21)¥2N,, (@) N, (BN

x Y Gum, |llm1)y;;ml(%)cb(aﬂf;,ﬁ; & R (19)
limq

where AT = A +ik/20,R" = B — (A)* = R+ ik/20,R = B — A*§ =
af/(a + B), Ni,(B) = N, (B)C,(B), N = exp(—ik - A* — k?/4a)), and we have used
equations (11) and (18). Here we have assumed thand B are generally complex
vectors andA* denotes the complex conjugate d&f. In addition, we have also used
formula (1.18) for the overlap integral without ETF. Integrlilf,;ff(é, R) was defined in
equation (1.19). As has been justified in the previous section, the evaluation procedure for
this integral given in paper | is valid for the complex vecfgf, i.e.

, 1
e R = D) Gamallymalim) ()@l €. B (20)
l



2554 J Kuang amdl C D Lin

wheren = (I1 + I — 1)/2. For comparison, we shall generalize the previous formulés for
with real centres, equation (1.29), to the one with complex centres:

Sime(@, B, A, B, k) = (=1 (47)*(27)** N, (@) N, (B)e " Fer g /40
« 3 iz;G(zamau,;m;)y;Zm;(—%k)
o,m

< 3 Gl Vi () i e, B (21)
1,.my,

wherel! =1,—1, fore =aandb, { = a+B, R= B—A*andRy; = (¢ A*+BB)/(a+p).
It is clear that formula (19) is apparently more compact than formula (21). However,
formula (19) explicitly requires complex operations even if badttand B are real vectors.
In contrast, use of formula (21) may avoid complex operations in this special case by taking
proper care of thé terms. It is also possible to avoid complex operations with the use of (19)
by expandingd?, (¢, R') in terms of®’, (£, R) and)!, (ik/2c) (refer to equation (11)).
But the resulting formula is more complicated than formula (21). Since the molecular
integrals with ETF are complex, complex operations are inevitable in the evaluation of
other integrals, for example, nuclear attraction and electron repulsion integrals.

3.2. Kinetic energy integrals with ETF

The two-centre kinetic energy integrals with ETF over Gaussian orbitals are defined as
Kt (e, B, A, B, k) = (im, (o, 7 — A)|&*{=3V2} |§y,m, (B, 7 — B))

ll,m
= —1V&(pm, (@, v — A)|e*T|Py,, (B, T — B))
= —1VESm (o, B, A, B, k)
= (-D"(2n)*?N, (Ol)Nl,,(,B)N*

% 3 Glumaltm) Vi, ()Gl €. B (22)
llml
where we have used equation (19), and all the parameters have the same meaning as in
(19). TheK integral is the same as before, but with the complex veRtar

Iclzmz(s’ R]‘) — _VB llsz(E RT)

lymy ima

1
— —_1)* a -
= L1 lamalmalimiCo, (¢ )
wheren = (I3 +1, —1)/2 as before. It is of interest to note that the kinetic energy integrals
can also be evaluated in terms of equation (21) since the derivative with respBctsto
straightforward. Thus, we have

Kim' (@, B, A, B, k) = 3(=1)" (4m)2(20) V2N, (@) N, (B)e~ kT g4/

G amall,m )V}, (— 2k
XIZ mal|lymy) Yy a( : )

a’a

x Zili,G(lbmbll;m;)yl,;m;,(?k)[(ﬁg—k) Limi (€. R)

1. E RH  (23)

L, my,

S v T au e Ry + K. B (24)
123
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where we have introduced the spherical tensor notation for the scalar product of two vectors,
ie. k-Vg = th(—l)”k,ﬂylu(VB). Both formulae (22) and (24) for kinetic energy
integrals have the same respective merits as those, formulae (19) and (21), for overlap
integrals.

3.3. Tensor operator integrals with ETF

The two-centre integrals of tensor operatd}s (V) with ETF over Gaussian orbitals arise
in the dynamical coupling matrix elements of the close-coupling treatment of ion—atom
collisions as well as in the study of electronic properties of molecules. They are of the form
]}i}yn’/zlh (kﬂ» (X, /37 Av Ba k) = <¢l“mu (av rT— A)leiik'ryku(vT”gblbmp (,Bv r— B))

= Viu(=VB) Bim, (@, 7 — A) & |y, (B, 7 — B))

= Veu(=VB)S/mi (@, B, A, B, k)

= (147 (27)*?N,, ()N, (BN}

* ik 1,my,
X 32 Gllamallimn)V, (5 )@ Tl (i, . R (25)

limy

where we have used equation (19), and Thintegral has the same meaning as before,
T2k, £, RN = Vi (V) 202 (5, RY)

l1+l+k

1
- (—1)" (I, kptllymy, Im)C% (—) @b, (&, R (26)
IZO: 22 1M1 [(4{:) I

wheren = (I3 +1>2+k—1)/2 is a non-negative integer, atldmy, ku|limy, Im) was defined
in equation (1.25). Fok = 1, a simple alternative formula can be derived by applying
equation (21) directly,

T (1p, o, B, A, B, k) = (1) (4r)2(2m)*2 N, (@) N, ()& -For g7/
x 3 i’er(zama|1;m;)y;2m;(—51@)
I

b, g
x> iléG(lbmbllém/b)y’ém’b(gk)
I.mj,
X [ylu <| %)12?’"; ¢é R)+ 7;2%,”(1#, 3 R)] . -

For k > 1, a similar formula can be derived, but the resulting formula is not as simple as
equation (27). In this case, equation (25) may be preferred.

3.4. Angular momentum integrals with ETF

The three-centre angular momentum integrals with ETF over Gaussian orbitals arise in the
rotational coupling matrix elements of the close-coupling treatment of ion—atom collisions,
as well as in the study of magnetic properties of molecules. They are of the form

L (o, B, A, B, C. k) = (¢1,m, (0.7 — A) e LE ¢y, (B.7 — B)) (28)
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whereL¢ = —i(r — C) x V. SinceL¢ = L? —i(B — C) x V, the above integrals can be
written as

L (a, B, A, B, C, k) = (¢m, (., 7 — A& * L\, (B, 7 — B))
—i(B = C) x (pym, (@, 7 — A) € *TV|B;,, (B, 7 — B)). (29)

Note that the second integral has been evaluated in equations (25) and (27). Introducing
Ly = L, £iL, and usingL. Y, (r) = [ F m)( £ m + D]Y?Y, usa(r) as well as
L. Yy (r) = mY,, (1), we obtain the following formulae:

LB l;,mj,( B. A, B, k)= (¢ m (@, — A)le'* rLB|¢l,,m;, B, r—B))
= [y F mp) Uy £ my + DIY25P" (@, B, A, B, k)

Bloms —ik-r 1 B (30)
L) (@ B A B, k) = (¢,m, (.7 — A) € L |dyym, (B, 7 — B))
=mpSm" (o, B. A, B, k).
3.5. Nuclear attraction integrals with ETF
The three-centre nuclear attraction integrals with ETF are defined as
—|k r
l”m”(a B. A, B,C,k) = (¢,m,(, T—A)‘| ¢>z,,m,,(/3,7'—B))
(é ¢lamu (C( T — A)'| ¢meb(ﬂ T — B))
y ik
= 47N, (@)N,, (BN ZG(Z ma|zlm1)y,lml( )
11m1
X (P, (o, 7 — AT) = C| @y, (B, 7 — B))
= (-1 (@1)*N, (a)ﬁlb(ﬂw*
I
x Y Gl )V, (5 )Cu@) Gllamaltzmy)(~)”
lamy 1y, m’y
’o :B b lm7 Iym) +
<3 Gomln)(2)' 1k € B L 6 Rl @)
b M
whereR], = B — (A", R, = Rl; — C. R}, = («(A")* + BB)/(« + p), and we have

used equations (11) and (21) as WeII as equations (1.30)—(1.32). The mIF}ﬂf%(l{ R) in
equation (31) was defined in equation (1.33) for réal It also holds true for compleR,
ie.

i 1 i
I (¢, R = <lzmz|llml|LM>czl,L(E)FL(r;(R'F)yLM(RT )

L-2

1
2 D Camaltumslim)Cy, (3 ) @haim € B (32)

[=lmin

where(RN2 =R/ - R, L =11+ 15, Imin = |l1 — Iz, n = (I + 1> — 1) /2. As before, we can
derive the alternative formulae for nuclear attraction integrals without using the trick of the



Molecular integrals over Gaussian orbitals: Il 2557

complex centre, equation (11). Using the identityrt- C| = (1/272) [(dp/p?e P =),
we obtain
7|k: -r

Nit @ B 4. B.C.K) = (i, .7 = )| o (8.7~ B)

d
=53 f D &P C (o, (e, 7 — A)|e*'“’+’“>"|¢,,7mb (8,7 — B))

. 1
T 2x2

where A and B are both real vectors. Substituting equation (1.29) into (33), we have

d
p’z’ &rCsimi (o, 8, A, B,p+ k) (33)

N (a, B, A, B,C, k) = (— 1" (47)3N,, () Ny, (B)e™ "+ Res K/ (40)

x Z G(lama|l;m;)<—z> ‘ 12,,; G(lbmbu,’,m;,)(?) A

,ﬁ it (€, Rpa) Alfmt (2, Roge, k) (34)
whereR,, = B — A, Rys. = R,s — C, and

it dp iRy /)y
(27)3/2 —e e Viem, @ + ) Vim, (p + k)

=@n)? ) i 1G<11m1|l’1m’1>y,j,,,/1 (k)

T
I,my

X 315G Lomallymb) Vi, (k)i (¢, R (35)

ly,m)

lzmz(é, R )_

llmi

wherel! = [; [} for j = 1 and 2,R' = R—ik/2¢, and we have used the addition theorem

of solid harmonics, equation (.2» TheJ integral in (35) has been given in equation (32).

As can be seen, most of quantities in formulae (34) and (35) are real and therefore can be
computed relatively faster. However, these formulae require one more summation than
equation (31). Since functiof; (z) depends on the complex argument ¢ R’ - R, it is
impossible to avoid complex operations completely in either case. Which one of the two
sets of formulae is more efficient in computation really depends on the implementation.

3.6. Electron repulsion integrals with ETF

The four-centre electron repulsion integrals with ETF are defined as
vemelind (g By, 8, A, B, C, D, ki, k)

lamg,lom,
@ i(ky-T1tkaT2)
= (G1,m, (@, 71 — A)Pr.m, (v, T2 — C)’—

X@1m, (B, 71 — B)@yym, (8, 72 — D))
. . 1
= (€, (o, 71— A)ERZT2 L (1 — C)‘_’
ri2

X@tym, (B, 11— B)P1m, (8, 72 — D))
= (47)2N,, (a)N,,)(ﬂ)N,{_(y)N,d((S)N*J\/'&"

«3 G(lamalllml)yz’iml( ) Z G(l.m, |13m3))}l3m3(lk2>

limy

|r1 — 72
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X (D, (@, 71 — AN By, (v, 72 — CT) —
12

X D1y, (B, 71 — By, (8, 72 — D))
= 32— (4x)2(2n) 2N, (a)zvzb (BN, ()N, )N NG

% 3" Gllym,llimy)C, <a>y11,,,1( =) Z Glm, |13m3)cl4<y>y,3m3('k2)

llml

x Y G(lzmzuzmz)(——) Z G(lbmbub:m,)(’3 )" 1t e, R))

ly,m)
x Z G(l4m4|l4m4)( ) Z G(ldmd|ldmd)( ) 1 &2, Rb,)
Iy.my
Lymi, ldmd T
XUy i (€ R ) (36)
where the parameters WhICh appeared in equation (36) are defined as follows:
. - K . : k3
4 _exp<—|kzl.A— E> ¢ _exp<—|k2-C— E)
af y8
&1 py h=a+p & N o=y

o @+py+s 0

R =B - (A R =D— (chH* - -
ba (49 de ©h ¢ a+& a+pHy+s

. a(Ah* +BB y(C)* +8D ;
aff = R)"S = Raﬂy
a+p y+34

The U integral with the complex vectoR' is defined in the same way as with the real
vector, equation (1.37),

T T
S_Raﬂ_Ryé‘

ma,lgm T 1
Upiniiins (€ RY) = loma, Lamal LM yms, om3)C24 1 () Fr (€ (RD) Vi (R

L-2
1
22 D ama, Lamalimliyms, tams)Ci_y (3 )@ B (39)

[=lmin

where L = i +lo+Il3+1ly, n = (L—-0D/2 = h+bL+13+1s—-1)2
and (lomy, lamgallm|lymq, Iam3) are as defined in (1.38). We shall now evaluate the
electron repulsion integral in the ‘real’ form. Using the identity|sd — ro| =
(1/27?) [(dp/p?)e P "1=2) we obtain

Vlbmb,[dmd(a’ 13, Y, 3,A,B,C,D, kls k2)

lamg.leme

1 d
= —/ ? Simt (e, B, A, B, k1 + p)Sin(y.8, C, D, ks — p)
272 | P2 lams

= 32(—1)"*(27) 132N, (a)ﬁzb(mﬁz ()N, (8) (kv Raprtha Bs)
x Z G (lamallm, )(——) Z G(z,,m,,ul,m,,)(’8 ) : 1wt (€1, Rpa)

o,

x 3 Gllemeltm)( ) Z G(ldmdu;m;,)(— a |REFICE

I.,m,

xe~ [k2/(4¢0)+k3/(4¢2)] Elb’"h Idmd (é’ By s k1, k) (39)
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where all the parameters in (39) are the same as those in equatios—()36énd integral
E is defined as follows:

Elzmz.l4m4( R k k ) _ iL d_pe—ip'Rfe—Pz/(llC)
é‘v , V1, h2) = (271_)3/2 pz

limy,lzam3
XV s @+ kD Vi m, (P + kDY), 0, (0 — k2) Vs (P — k2)
= @m)* Y G lmallym) Yy, (k1) Y 12G (lamallym) Vi, (k1)
Iy.m} ly.my
x Y 153G (lam3llymy) Yy, (—k2)
15,ml

x 3 8G ULamallmly) Vi, (~k) U i (¢, R (40)

imy.l3my
Iy.my
whereL =11+l + 13+ 14, R' = R —i(k1/2¢1 — k2/2¢5), and we have used the addition
theorem of solid harmonics, equation (la)5 The U integral in (40) has been given in
equation (38). Compared with formula (36), formulae (39) and (40) introduce two more
summations. However, most of the terms in the latter are real.

4. Computational consideration and concluding remarks

In section 3 we have derived two sets of formulae for all the molecular integrals over
spherical Gaussian orbitals, modified with plane-wave phase factors. If complex operations
can be executed efficiently in a computer, the first set of formulae with complex centres may
be used. Otherwise, the second set of formulae should be used. Since the formulae have
exactly the same form as those in paper | without the phase factors, the general numerical
strategies discussed there should still be applicable here for the efficient computation of
these integrals. However, due to the presence of the phase factors, both sets of formulae for
three-centre nuclear attraction and four-centre electron repulsion integrals contain complex
vectors. Therefore, the complex operations can no longer be avoided. As in paper |, there
are three basic functions, i.e. solid harmonjgs (R), Laguerre ponnomiaIiff“l/z(z) and
auxiliary functionsF,,(z), which have to be evaluated over a range of indices. Note that the
argumentsR andz are complex vectors and numbers, respectively. We shall now consider
how to evaluate them.

First of all, we notice thaty,,(R), for a complex vectorR € C®, has only the
polynomial definition (Biedenharn and Louck 1981, pp 71, 302). In other words, one cannot
write V,,,(R) = R'Y;,,(R) since R is meaningless here. Secondly, the complex conjugate
of Vi (R) has the forny, (R) = (—1)" Y, _,(R*), which can be readily proved from the
definition polynomial of solid harmonics. The most efficient and reliable way to generate a
sequence of solid harmonics is to use the following recurrence formula:

c+1m)Yiim(R) = ZYm(R) —c(l,m)(R - R)Y_1.m(R) (41)

wherec(l, m) = [{(l —m)( + m)}/{(2] — 1)(2 + 1)}]*/? and Z is the third component of

R = (X,Y,Z). Note that equation (41) holds true not only for the real vector but also
for the complex vector, which can be readily justified by the definition of solid harmonics.
The choice of this recurrence relation is based on the argument by érais€1 992) about

the stable computation of the associated Legendre functions. The recurrence evaluation of
solid harmonics starts from the following two values:

Vi-1.(R) =0 Vu(R) = s()(X +iY) (42)
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wheres(l) = [(—=1)!/2'I"[ (2l + 1)!/47]¥2. To achieve the maximum performance, we
suggest that the constantgl, m) and s(l) be pre-computed. Fom: < 0, we can first
calculate the), _,,(R*), and then take its complex conjugate multiplied (sy1)™.

As in paper |, most integrals here require the computation of a sequence of associated
Laguerre polynomials of the form,™ 2_2"(1) with n < [I/2]. Regardless of whetheris
complex or not, the associated Laguerre polynomials can be computed straightforwardly by

means of its explicit form
LIFY2720(2) = ag(nl) + z{ay(nl) + z[az(nl) + - - - + za, (n)]} (43)

where a;(nl) = [(—D*/k!](""2") are the coefficients of the associated Laguerre
polynomials. Again, we suggest that these coefficients be pre-computed and stored in
memory. The storage requirement fgr(n/) is of the orderi3_,. In the cases of nuclear
attraction and electron repulsion integrals, we need to evaluate a sequence of auxiliary
functions F, (z) with a complex argument. This is the most difficult part with the phase
factors in Gaussian orbitals. Since there are two free parameters (real part and imaginary
part) for F,,(z), the interpolation scheme may not be very effective any more. The procedure
for calculating F,,,(z) for a limited range ofim and z has been discussed by Erretaal
(1979). As a supplement, we think that the nonlinear convergence accelerators (Grotendorst
and Steinborn 1986) may be employed for the efficient evaluatiaf,¢f), even though

is a complex number.

In the actual close-coupling calculations of ion—atom collisions, equations (36)—(39)
for the general four-centre electron repulsion integrals can be immediately simplified, since
there are only two centres. In this case, the most difficult integral is the so-called two-centre
exchange one, i.eA = C and B = D; then we haveR,, = R,., which implies that we
only have to calculate one set of solid harmonig (R,.). On the other handk; and
k, are either parallel or anti-parallel to the incident direction; therefore, we only have to
compute one set of solid harmonid’, (k1) in equation (40). Further reduction is possible
by choosing the proper quantization axis (i.e. thaxis of a coordinate frame). In fact,
in the actual calculations we choose either the internuclear direction (the so-called body
frame) or the incident direction (laboratory frame) as the quantization axis. In the body
frame we haveR,, = R,;. = Rz, while in the laboratory frame we havg = +k, = k2.

By noticing that)),,(r = r2) = ((21 +1)/4m7)Y25,,0r', we can immediately get rid of quite
a few summations over magnetic quantum numbers and meanwhile the corresponding solid
harmonics need not be computed. By inspection of equations (39) and (40), the laboratory
frame is preferred if these two formulae are chosen to evaluate the exchange integral.

In summary, we have evaluated multi-centre molecular integrals over spherical Gaussian
orbitals in closed form. The resulting formulae are more compact than those obtained
by Erreaet al (1979), even after we have significantly improved the kernel part of their
treatment, see appendix B. Considering that Cartesian Gaussian orbitals of high angular
momentum £ + [ + m > 2) are not the eigenfunctions of angular momentum, therefore
additional sums have to be included in order to extract the spherical orbitals. This is also true
for the recursive evaluation of the integrals (Obara and Saika 1988). Furthermore, we can
rearrange the formulae for the electron repulsion integral in a way similar to equation (1.52)
so that the integral over contracted Gaussian orbitals can be efficiently computed. We expect
that the present work will encourage researchers to explore the spherical Gaussian orbitals
with plane-wave phase factors in the study of ion—atom collisions as well as in molecular
structure calculations.
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Appendix A. Addition theorem for harmonic polynomials

Since the derivation procedure of the addition theorem of harmonic polynomials given by
Niukkanen and Gribov (1983) does not apply to the complex arguments, we shall present
a general derivation with the help of rotational invariants of two complex vectors under
(complex) rotations (Biedenharn and Louck 1981, p 302),

A
1) = 5 Z( D" Vi -m @) Vi (r) . (A1)

Clearly, I;(p, r) is a polynomial that is homogeneous of degrée p andr separately, and
is symmetric under the interchange pfand r; therefore, it should be possible to expand
the rotational invariantp - )" in terms of[;(p, ) and the other two basic invariangs p
andr - r, i.e.

[n/2]

(p-r)' =) cu® P -7 Lialp.7) (A2)
=0

~

where the coefficients,; can be determined as follows. Choosipgndr to be real unit
vectorsp = p andr = 7, then equations (A1) and (A2) yield

[n/2]
(c080)" = ) cux Po-2(COSH) (A3)
k=0

where co® = p - 7 and P, is the Legendre polynomial. Here we have used the addition
theorem of the spherical harmonic and thHu®, ) = P,(cosf). Comparing equation (A3)
with the known expansion ofcost)” (Gradshteyn and Ryzhik 1980, p 1027), we obtain

the coefficients:,; = Tzﬁ% Using equation (A2), we can readily expand
00 o0 [11/2]
& = =y Z @-p)er ) Lap. ). (A4)
n=0 n=0 k=0 !

Inserting equation (Al) into (A4) and rearranging the summation indices, we finally obtain

Mz

00 ]
> Z (=D"auf )V, () (A5)

=0 m=—

~
Il
o

whereay, = M‘#ﬂ)” and Yt (r) = (r - »)*Y,,(r). Forp = iq and real vectorg

and r, the summation ovek can be readily identified as a spherical Bessel function of
order k (Gradshteyn and Ryzhik 1980, p 959), and therefore equation (A5) becomes the
well known Rayleigh expansion of a plane wave. In fact, Niukkanen and Gribov (1983)
derived equation (A5) for the real arguments using the modified expansion of a plane wave.
It should be noted that expansion (A5) applies to the complex case based on the present
derivation.
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The addition theorem fop), follows directly from the obvious identityP&m+m) =
em1gPm2 - Applying equation (A5) for all three terms, we obtain

> au(=)"Y @)V, (rL +72)

nlm

= Y D G, (DY PV, (DY, (r)VE, (r2) . (A6)

nilim nalomo
Using the product expansion of two solid harmonics (Edmonds 1974, p 70), one obtains

i+l

Vi Vi, @) = 3 (mliymalizm2) Y, (p) (A7)

[=|l1~1|

wherem = mj; +m, and the only values are those satisfyirdg-/; + 1, = even integer and
A(l1l5]) due to the selection rules of the Gaunt coefficient. Here the variaidedefined

asn =n;+n+ A with A = (I3 + 1, —1)/2. It can be readily justified that equation (A7)

also applies to complex vectors based on the rotational property of solid harmonics under
(complex) rotations. Substituting (A7) into the right-hand side of (A6) and rearranging
the summation indices, we find that the right-hand side of equation (A6) can be written in
the same form as the left-hand side with respec¥to,, (p). Since the functiong’}, are
linearly independent, the corresponding coefficients can be equated with each other. Thus,
we obtain

Vi (ritr) =4r Y K(nlnan) Vi, (r)Vi, (r2) (A8)

7]
[n1,m2]

K(ninaing) = Knlminslimalnglams) = “2222 (il |loma) - (A9)

nl

wheren stands for the triad of quantum numbetsi(, m), andn; = (n;,l;, m;) fori =1, 2.
It follows immediately from (A9) thatC(n|n,|n;) = K(n|niiny). The square brackets
over the summation indicea; andn, in (A8) mean that the summation is constrained
by the selection rules of the Gaunt coefficient and by the relatiean; + n, + A. The
detailed constraints on the summation indices were given in paper I.

With the help of expansion (A5), we can also derive the addition theorem for the
harmonic Laguerre polynomials}, (r) = Lﬁ,*l/z(r - 7)Vim(r) (Niukkanen 1984). To do
that we need to expand the generating functioh®&?P", Using formula (A5), we obtain

e PP =N N (—1)" {e’“’ Y aw?®H @ -p)ar-m)t }yz,m (D) Vim (1) (A10)
k=0

Im

where we have used the homogeneous propertybf i.e. Vi (Ar) = AZHY! (7).
With T(n + 2) = (Jm/2H(@2n + DI and 20! = 2!, we have g 2%+ =
2n3/2/[k!1"(k+l+§’)]. Using the Taylor expansion for—&, one can perform the
multiplication of power series (Gradshteyn and Ryzhik 1980, p 15) explicitly as follows:

I N Co) MR N GO bR S S GO GO MR »
© Zk'r‘(k—i—v—i-l) N kX:; k! Zklr(k—i-v—i—l) = ch(_x) (A11)

k=0 k=0 n=0

Wherex=p-p,y='r-'r,v=l+%and

n vk v
I (=) Ly

- KTk+v+1) Th+v+l
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where we have used the explicit form for the associated Laguerre polyndifiia)
(Gradshteyn and Ryzhik 1980, p 1037). Substituting equation (Al11) into (A10), we obtain
the following expansion formula:

oo 00 ]
e‘P-p-‘er.r — Z Z Z (_1)mbnly]n'7m (p)ﬂ?m (,’,,) (A12)

n=0 =0 m=—I
with b,; = 27%2(=1)"/T(n +1 + %). The expansion formula (A12) is the same as that
obtained by Kumar (1966) as well as by Niukkanen (1984) via different procedures for the
real arguments. However, our derivation also applies to the complex case. The addition
theorem forCy follows from the identity ePP+2p-(ntra) — g-pp+2pmig2pr2. By applying
equations (A12) and (A5), and through the same procedure as for deriving (A8), we obtain

Ly, (rit+72) =4m Y B(nlnalno) L), (r)Vi, (r2) (A13)
[n1,m2]
bn N 22nz+12
B(nlnylny) = 59228~ 1|1 |1m)
47Tbn1
|
e ) (A14)
n.

where the summation constraints over the indices are the same as those for formula (A8).
Note thatB(n|ny|n1) # B(n|ni|n,), in contrast with/C. The addition theorem (A13) was

first derived by Niukkanen (1984) for the real vectors. Based on the present derivation, it
clearly holds true for the complex vectors. It is interesting to note that both formulae (A8)
and (A13) include the addition theorem of solid harmonics as the special case 6f

Appendix B. Improved treatment for molecular integrals over CGTOs

We have noticed that the original closed form formulae (Talattal 1966) for three-
centre nuclear attraction and four-centre electron repulsion integrals can be simplified with
the following transformation. Consider an isotropic three-dimensional harmonic oscillator,
the eigenfunctions of which can be expressed in both spherical polar coordinates and in
Cartesian coordinates,

I»[fnlm (05, T‘) = an (a)e—arz/ZLij—l/Z(arZ)ylm (ﬁr) (Bl)
Yinon, (&, T) = Ny ()& 12H, (Vax)H, (Vay)H, (vVaz) (B2)
n: 1 2 o/ 3/2 1 2 . .
where N, (o) = [mzfz—/-isl/z)] /2 and N, () = [m] /2 are the normalization

constants, respectively. Het®,(z) denotes the Hermite polynomial of degree The
eigenvalues corresponding to the eigenfunctions, in unitsao{a = mw/h), are Ey =
2n+1+4+3 =n,+n,+n,+32=N+32 These energy levels are degenerate of degree
(N+1)(N+2)/2. The two sets of eigenfunctions are related to each other through a unitary
transformation,

Vnnyn (@, 1) = Y (nlm|nenyn2) Yo (@, 7) (B3)

Im
where (nlm|n.nyn;) as well as the summation ovéris constrained by 24+ = N =
ny +n, +n,. The transformation matrix elements read

(nlm|nynyn;) = nz(ot)Nn(a)/dTﬁ,m(a, T)Unnyn. (@, 1)

= BOSD [dre LY 0, 00 H, 0 H, ) (©4)
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where we have changed the integral variable frgfar — ». It is obvious that the
transformation matrix elements are independent.oBy eliminating the exponential factor
on both sides of equation (B3), we obtain the transformation equations of the polynomials,

H,, (x)Hy, (y)H, (z) = Y _(alm|nonyn.) L, (r) (B5)
Im

1 (T) = (nenyn|nlm) H, (x) Hy, (3) Hy, (2) (B6)
[n]

where the symbols] indicates that the summation over,(n,, n;) is subjectto 2 +1 =
ny + ny + n;, and we have definetim|n,nyn,) = [Ny(a)/Np(@)](nim|n.nyn,) and
(nenyng|nlm) = [Np(@)/Nu(a)](nlm|ninyn;)*. Notice that both transformation matrix
elements(nim|n.nyn;) and (ncnyn;|nlm) are independent ok. These matrix elements
can be readily evaluated from equation (B4) using symbolic manipulation languages, for
instance Mathematica It is of interest to note that equations (B5) and (B6) also provide
the transformation between solid harmonds, (r) and H, (x)H,, (y)H,.(z) by imposing
the restriction/ = n, + n, + n.. By multiplying exp—ar?) on both sides of (B5) and
changing variables from — /a7, we can transform Cartesian Hermite—Gaussian orbitals
(Zivkovit and Makst 1968) to spherical Gaussian orbitals (Fieck 1980) and vice versa.

Following the derivation procedure by Taketal (1966), the nuclear attraction integral
requires the evaluation of the followingintegral (Taketaet al 1966, p 2317):

I= an/drp %x}y{;z’,ﬁ exp(—yr3)
_ <%)3/2($)<i+j+k>/2/ Crd iy (j;_y)%<ji7)Hk(jZ_y>e—kz/<4y>
- <£)3/2($)<i+j+k>/zZ(_l)n(nlm“jk)(%) / & grrgp (% k)

14

=2 (7) e ntmiio ()" M. <) ®7)

where we have used equations (B5) and (6), and the faci that+ k = 2n + 1. N, in

(B7) has been defined in equation (I.B6). The above formula (containing three sums, where
one sum is insideV,,,,) is clearly more compact than the original one (containing six sums)
obtained by Taketat al, who evaluated the integrdl in a more elaborate way. Since

the transformation matrixnim|ijk) can be computed and stored in memory beforehand
(storage of the order df,,,), we expect that formula (B7) is more efficient in computation
than the original one. Similarly, for the electron repulsion integral, we can improve the
evaluation procedure of integral (Taketaet al 1966, p 2318) as follows:

1 k 2
I/:// drp, erz)cPlyPlzP1 exp(— )/ﬂ’pl) xQZijzzzQZZ exp(—yarp,)

7T(27T)3/2 N1ty 1 \mth
= WZ( D (n111m1|11]1k1)< 1)

lymq
na+lo
X Z( 1)'12(n212m2|12/2k2)( ) ,:llefnr;lf(l/l 72, —R) (B8)
lomy
where R = Q — P according to Taketaet al (1966) andV”z’Z’”2 has been defined in
equation (1.B8). Again, by pre-computing all necessary constants, it is expected that
equation (B8) is more efficient in computation than the original one.
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The McMurchie-Davidson (MD) algorithm (McMurchie and Davidson 1978) is
certainly among the most important algorithms in quantum chemistry. The basic integral in
the MD algorithm is defined as

INLM|rg'] = (8/d P)™ (8/8 P,)"(3/9 P,)M[000]r- "] (B9)

where [OO(Drgl] = fdr(l/rc)e“"’%. By means of equation (B5), we can derive a compact
closed form formula for this integral as follows:

1
[NLM|rc'] =/drr—AN(xP;a)AL(yp;a)AM(zP;a)e_“’g
C

Ol(NJrHM)/Zde Hy (@Y?xp)Hy (@Y2yp) Hy (Y22 p)e "7

> (nlm|NLM)o" / dr—@Z,m(a, Tp)

Im

1
=53 Z(nlm|NLM)a"+1/ 2 e'kR/dr e kel (o, Tp)

3/2
(2”) Z( Im|NLM)a" (=i)'C? (oe)/dk:e'k Rga W(%,k)
21

e (B10)
o

where we have used the identitfl/|r — C|) = (1/27?) [(dk/k?)e *T-O  and
equations (1)—(6) as well as (14)—(17). It should be noted that the summatiori over
(B10) is subjectto2+1 =N+ L+ M = ¢. Here R = C — P and Ry represents the
rest of the integral

=2 n+l
— 4 2 o
Ryim = ;(oemNLM)a Fy(aR*)Yum(R) + ;(nlmuvLM) 5 i (@ B)
2 =2 Oln
=o' F,(@RY)OY,; ,(R) + ek Z L2 R0, ,,(R) (B11)
l

WhereG)ﬁVLM(R) stands for the angular par@i\,LM(R) =, mlm|NLM)Y,,(R). The
remarkable feature of equation (B11) for the auxiliary functiyy , is that it contains only

one Fy,(T) function and the remainder consists of just Laguerre polynomials. In contrast,
both the closed form formula and recurrence relationkgy », derived by McMurchie and
Davidson (1978) depend on a sequence gfT) functions. Careful coding of the present
formula should speed up the evaluationR)f, 5, which is of critical importance in the MD
algorithm.

For molecular integrals over CGTOs modified with plane-wave phase factors, érrea
al (1979) derived the closed-form formulae for all the integrals using exactly the same
technique as Taketat al (1966). Therefore, there is room for improvement, as can be
seen from our preceding sections, see equations (B7) and (B8). As an illustration, we shall
evaluate thel;;; integral (Erreaet al 1979, p 73), resulting from the three-centre nuclear
attraction integral,

dK | K, —u K, —u K,—u 2
L = —e'K'RHi( - ")H( 2 ")H (‘*—’“)e“‘“’ /¢y B12
a sz Vi )N VEy )T VEy e

whereR = P — C, following their notation. To reduce the integral into the standard form,
equation (B7), we have to use the addition theorem for Hermite polynomials (Gradshteyn
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and Ryzhik 1980, p 1035):"2H, (x+y) = > }_o (}) He(x~/2) H,_1(y+/2). Then we obtain

T = 27 g ) 3 Hw( _;J"/ ) H]( _Z;‘/ ) ka/( _Z; ) Iy

l-/j/k/

K K, K.
KR (22 g, —K2/(4y)
ljk / x2° («/2)/)1—1] (4/2)/)Hk<4/2y)e
where R = R —iu/2y andn’ +n” = n for n = i, j, k. Notice the difference between

equations (B7) and;,, i.e. the scaling factor for Hermite polynomials. Using equation (B5),
we obtain

Iy = (271)3/22( ) (nimi' j'K YN,y (v, RT)

(B13)

, i —I«/ )I dK K-R' K —K2/(4y)
'/\[nlm(yf R )= 2r )3/2 K2 é ﬁlm (E)e

n+1+ 1 (814)
= ( )call( )Ey R - R)Yi (R

n
"EDE R,
+;k!(2y)k( n—k C"_l‘l(4y> k- 1,m(y,R)

Compared with the corresponding formula fgg, equation (25) (Erreat al 1979, p 74), the
present formulae, equations (B13) and (B14), contain only six sums in total and are therefore
much more concise (their equations contain 12 sums). Although the present formulae need to
evaluate Hermite and Laguerre polynomials, their computational advantage is obvious since
the required polynomials can be computed efficiently with the known recurrence relations.
Similarly, we can apply the above technique to derive compact expressions for four-centre
electron repulsion integrals. Alternatively, one can also use the complex centre (Obara and
Saika 1988) to find more concise closed-form formulae for molecular integrals over CGTOs
modified with plane-wave phase factors. In particular, we can develop the MD algorithm
for the molecular integrals over Cartesian Gaussian orbitals with complex centres.
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