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Abstract. Multi-centre molecular integrals over spherical Gaussian-type orbitals modified with
plane-wave phase factors, which arise in the close-coupling treatment of ion–atom collisions as
well as in some molecular structure calculations, are evaluated analytically in closed form by
means of the Fourier transform and the addition theorem of harmonic polynomials. The resulting
integral formulae for spherical Gaussian orbitals, consisting of vector-coupling coefficients and
well known functions, are more compact than those for their counterparts, Cartesian Gaussian
orbitals. Practical techniques are suggested for the efficient implementation of the present
formulae.

1. Introduction

In the impact parameter close-coupling treatment of ion–atom collisions, basis orbitals
modified with plane-wave phase factors were first introduced by Bates and McCarroll (1958)
to meet the asymptotic boundary conditions in reaction channels represented by the basis
orbitals. The physical significance of the phase factors, also called electronic translational
factors (ETF), is related to the Galilean invariance when a transformation is made from
one frame to another. Failure to include the proper phase factors in basis orbitals leads
to nonvanishing interactions in the asymptotic region and cross sections of the individual
channel depending on the choice of the origin of electronic coordinates. In molecular
structure calculations the s-type basis orbitals with plane-wave phase factors can simulate
orbitals with larger angular momentum quantum numbers (Allisonet al 1973). These
orbitals also arise when molecular integrals are evaluated in momentum space (see our
preceding paper, Kuang and Lin (1997), hereafter referred to as paper I) as well as when
the relativistic interactions are included in molecular integrals.

Multi-centre molecular integrals over basis orbitals, modified with plane-wave phase
factors containing exp(ik · r), cannot be completely reduced to analytic expressions, and
they are time consuming to compute if the basis orbitals are expanded in terms of Slater-type
functions. The existing computational methods of the integrals over Slater-type functions
have been reviewed by Bransden and McDowell (1992, appendix E). For one-electron
systems, the integrals over Slater-type functions can be evaluated efficiently with the proper
care being taken for one-dimensional numerical quadrature (Kuang and Lin 1996). However,
for many-electron systems, the evaluation of electron repulsion integrals over Slater-type
functions has proven to be a formidable task when the phase factors are present, particularly
for the electron exchange term. In contrast, all the multi-centre molecular integrals with
plane-wave phase factors, including the difficult electron repulsion term, can be evaluated
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analytically (Allisonet al 1973, Erreaet al 1979, Obara and Saika 1988) if basis orbitals are
expressed in terms of Gaussian-type functions. The obvious drawback of Gaussian orbitals
is that they exhibit neither cusps at the nuclei nor exponential decay at large distances.
Although it is known (Dose and Semini 1974, Huzinaga 1985) that more Gaussian orbitals
are required to achieve the equivalent accuracy as Slater functions, the simplicity of Gaussian
integrals more than compensates for this.

Following the classic work by Boys (1950), Cartesian Gaussian-type orbitals (CGTOs)
of the formφnlm(α, r) = Nnlm(α)xnylzme−αr

2
have been used almost by default in molecular

structure calculations (for a recent review see Gill (1994)) as well as in the close-coupling
treatment of ion–atom collisions (Erreaet al 1979). This is because molecular integrals over
CGTOs can be evaluated in a straightforward manner. However, the obvious disadvantage
of CGTOs is that they do not possess spherical symmetry forn+ l +m > 2 and therefore
extra work is necessary in order to extract the spherical symmetry orbitals (Huzinaga 1985).
As mentioned in paper I, spherical Gaussian-type orbitals (SGTOs) have a few obvious
advantages: (i) spherical symmetry properties and the geometric dependence can be taken
into account naturally; (ii) the well developed vector-coupling coefficients can be applied
fruitfully to derive compact formulae for all molecular integrals; (iii) the resulting formulae
support the efficient computation of the integrals over contracted Gaussian orbitals.

Multi-centre molecular integrals over the general Cartesian Gaussian orbitals modified
with plane-wave phase factors have been considered by Erreaet al (1979) and by Obara
and Saika (1988). The closed-form formulae for nuclear attraction and electron repulsion
integrals obtained by Erreaet al contain a large number of sums which slow down
the numerical computation of the formulae significantly, particularly for high angular
momentum orbitals. Obara and Saika derived recurrence relations to evaluate the integrals of
high angular momentum orbitals in terms of integrals, involving lower angular momentum
orbitals. Since recurrence formulae require the evaluation of unwanted integrals of lower
angular momentum, they need not always guarantee efficient algorithms, especially for
relatively large angular momentum orbitals. In this paper we present closed-form formulae
for all the multi-centre molecular integrals over spherical Gaussian orbitals with plane-
wave phase factors using the same tools as in paper I. The resulting formulae are more
compact than those obtained by Erreaet al and are expected to be efficient in computation
for Gaussian orbitals with arbitrary angular momentum. Based on our analysis, contracted
Gaussian orbitals may be used effectively in the close-coupling calculations of ion–atom
collisions.

2. Basic Gaussian functions and their properties

As in paper I, we shall only consider two types of basic (unnormalized) Gaussian functions:

8a
nlm(α, r) = e−αr

2
(r · r)nYlm(r) (1)

8b
nlm(α, r) = e−αr

2
Ll+1/2
n

(
α(r · r)

)
Ylm(r) (2)

whereYlm(r) is the solid harmonic (Biedenharn and Louck 1981, p 71) andLνn(z) is the
associated Laguerre polynomial. If these functions are used as basis orbitals,r denotes the
real position vector of an electron in three-dimensional space andn is a natural number;
otherwise,r is a complex vector and the indexn in (1) may start from−1. Although8b

nlm

is more complicated than8a
nlm, its Fourier transform is much simpler than that of8a

nlm. In
fact, they are reciprocal with respect to each other, see equations (8) and (9) in paper I. To
simplify the reference notation, we will use (I.8) to indicate equation (8) of paper I.
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Introducing harmonic polynomials

Ynlm(r) = (r · r)nYlm(r) (3)

Lnlm(r) = Ll+1/2
n (r · r)Ylm(r) (4)

for n > 0, then Gaussian orbitals in equations (1) and (2) can be written as

8a
nlm(α, r) = e−αr

2Ynlm(r) (5)

8b
nlm(α, r) = α−l/2e−αr

2Lnlm(
√
αr) . (6)

The harmonic polynomials defined in (3) and (4) possess unique translational properties
(addition theorems) (Niukkanen and Gribov 1983, Niukkanen 1984), which were applied
fruitfully to derive compact formulae for multi-centre molecular integrals over spherical
Gaussian orbitals (paper I). Since the previous derivation procedure (Niukkanen and Gribov
1983, Niukkanen 1984) of the addition theorems for these polynomials does not apply to
the complex arguments, a more general derivation is presented in appendix A.

It is trivial to show (Allisonet al 1973, Dose and Semini 1974) that an s-type Gaussian
orbital modified with a plane-wave phase factor is still an s-type Gaussian orbital but with
a complex centre, i.e.

eik·re−α(r−R)
2 = Ne−α(r−R

†)2 (7)

whereR† = R+ ik/2α andN = exp(ik ·R− k2/4α). By means of the addition theorems
of harmonic polynomials, equations (A8) and (A13) of appendix A, it follows that the
above spherical Gaussian orbital modified with a plane-wave phase factor can be reduced
to a linear combination of Gaussian orbitals with a complex centreR†:

eik·r8a
nlm(α, r −R) = 4πN

∑
[n1,n2]

K(n|n1|n2)Yn1
l1m1

( ik

2α

)
8a
n2l2m2

(α, r −R†) (8)

eik·r8b
nlm(α, r −R) = 4πN ′

∑
[n1,n2]

B(n|n2|n1)Yn1
l1m1

( ik

2
√
α

)
8b
n2l2m2

(α, r −R†) (9)

where N ′ = α−l/2N and n stands for the triad of quantum numbers (n, l,m), see
appendix A. It is interesting to note that one can also expand the product, eik·r8b

nlm, in
terms of8a

nlm by exchanging the two vectors in (A13):

eik·r8b
nlm(α, r −R) = 4πN ′

∑
[n1,n2]

B(n|n1|n2)α
n2+l2/2Ln1

l1m1

( ik

2
√
α

)
8a
n2l2m2

(α, r −R†) .

(10)

If molecular integrals are evaluated in momentum space, equation (10) does not bear any
advantage over equation (9) since the momentum representation of8a is more complicated
than that of8b. As in paper I, it is of practical interest to consider the special Gaussian
orbitals with n = 0, i.e. 8lm(α, r) = e−αr

2Ylm(r). In this case, the above three
equations (8)–(10) become identical and therefore can be written as a single equation

eik·r8lm(α, r −R) = 4πN
∑
l1m1

G(lm|l1m1)Yl1m1

( ik

2α

)
8l2m2(α, r −R†) (11)

where l2 = l − l1, m2 = m − m1 and G is defined in equation (I.15b). Clearly, the
transformation for these special Gaussian orbitals, equation (11), is simpler than that for the
general SGTO, equations (8)–(10), because it only contains two summations. In contrast,
the similar transformation for CGTOs needs three summations (Obara and Saika 1988).
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Interestingly, one can also expand Gaussian orbitals8lm(α, r − R) directly in terms of
8lm(α, r), i.e.

8lm(α, r −R) = 4πe−αR
2
∑
l1m1

G(lm|l1m1)Yl1m1(−R)e2αR·r8l2m2(α, r) . (12)

Thus we obtain an alternative expansion to equation (11),

eik·r8lm(α, r −R) = 4πe−αR
2
∑
l1m1

G(lm|l1m1)Yl1m1(−R)eip·r8l2m2(α, r) (13)

where p = k − 2iαR. The alternative expansions to equations (8)–(10) follow in the
same way. These transformation formulae, equations (8)–(13), will definitely facilitate
the evaluation of multi-centre molecular integrals over SGTOs modified with plane-wave
phase factors. Specifically, equation (13) may be used when the integrals are evaluated in
coordinate space, while equations (8)–(11) are used when they are computed in momentum
space.

Before proceeding, we need to justify that the basic integral formulae, equations (I.8),
(I.9) and (I.14), still hold true for complex argumentsp. As in paper I, the symmetric
version of the Fourier transformation is used. Consider the following Fourier transform of
Gaussian orbitals (5):

8̃a
nlm(α,p) =

1

(2π)3/2

∫
dr e−ip·r8a

nlm(α, r) (14)

wherep, in general, is a complex vector, whiler is a real vector. Note that the well known
Rayleigh (partial-wave) expansion of a plane wave cannot be used here any more. Instead,
we really have to use expansion (A5) of appendix A, which is valid for complex vectors.
Substituting (A5) into (14), we obtain

8̃a
nlm(α,p) =

1

(2π)3/2
∑
kl′m′

akl′Ykl′,m′(−ip)
∫

dr (−1)m
′Ykl′,−m′(r)Ynlm(r)e−αr

2

= 1

(2π)3/2

∞∑
k=0

aklYklm(−ip)
∫ ∞

0

d(r2)

2
(r2)k+n+l+1/2e−αr

2

= 1

(2π)3/2
Ylm(−ip)

∞∑
k=0

2π3/2(−p · p)k
22k+lk!0(k + l + 3

2)

0(k + n+ l + 3
2)

2αk+n+l+3/2

= 2nYlm(−ip)

(2α)n+l+3/2

0(n+ l + 3
2)

0(l + 3
2)

1F1

(
n+ l + 3

2
, l + 3

2
,−p · p

4α

)
where we have used the orthonormal property of spherical harmonics, and the integral
formula

∫∞
0 xν−1e−µx dx = 0(ν)/µν for Re(µ) > 0 and Re(ν) > 0 (Gradshteyn and

Ryzhik 1980, p 317). Now we need to distinguish between two different cases, i.e.n = −1
and n > 0, in which the confluent hypergeometric function1F1(n + l + 3

2, l + 3
2,−z)

will be reduced to the different known functions. Forn = −1, using the formula
Fl(z) = (1/(2l + 1))1F1(l + 1

2, l + 3
2,−z), whereFl(z) is the well known function (Shavitt

1963), we obtain

8̃a
−1,lm(α,p) = (−i)lCa−1,l(α)Fl

(p2

4α

)
Ylm(p) (15)

where we have definedp2 = p ·p andCa−1,l(α) = 1/(2α)l+1/2. As can be seen, this formula
has exactly the same form asp is a real vector (compare equation (I.14)). Forn > 0, using
1F1(α, γ,−z) = e−z1F1(γ − α, γ, z) andLνn(z) = 0(n+ν+1)

n!0(ν+1) 1F1(−n, ν + 1, z), we have

8̃a
nlm(α,p) = (−i)lCanl(α)8b

nlm

( 1

4α
,p
)

(16)
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whereCanl(α) = 2nn!/(2α)n+l+3/2, as in paper I. Similarly, we can prove

8̃b
nlm(α,p) = (−i)lCbnl(α)8a

nlm

( 1

4α
,p
)

(17)

with Cbnl(α) = 1/2nn!(2α)n+l+3/2. In the case ofn = 0, we haveCa0l(α) = Cb0l(α)⇒ Cl(α).

3. Molecular integrals over spherical Gaussian orbitals—modified with plane-wave
phase factors

As in paper I, we shall mainly consider the special SGTOs, which have exactly the same
form in both coordinate and momentum space,

φlm(α, r) = Nl(α)8lm(α, r) φ̃lm(α,p) = (−i)lÑl(α)8lm

( 1

4α
,p
)

(18)

whereNl(α) = [2(2α)l+3/2/0(l + 3
2)]

1/2 and Ñl(α) = Nl(α)Cl(α) are the normalization
constants in coordinate and momentum space, respectively. We choose to do so because
these SGTOs of the form (18) have been widely used in real applications, and the resulting
integral formulae for the special SGTOs are much simpler than those for the general SGTOs.
However, the integral formulae for the general SGTOs can be obtained straightforwardly
by making some simple modifications of the corresponding formulae for the special SGTOs
(refer to paper I).

3.1. Overlap integrals with ETF

The two-centre overlap integrals with ETF arise in the close-coupling treatment of ion–atom
collisions and in the evaluation of three-centre nuclear attraction and four-centre electron
repulsion integrals. As can be seen from the previous section, Gaussian functions are the
natural choice of the basis orbitals when ETF is presented. The overlap integrals with ETF
over Gaussian orbitals have been evaluated in paper I in a different context. We shall now
compute them using the technique developed in the previous section,

S
lbmb
lama

(α, β,A,B,k) = 〈φlama (α, r −A)|e−ik·r|φlbmb (β, r −B)〉
= 〈eik·rφlama (α, r −A)|φlbmb (β, r −B)〉
= 4πNla (α)Nlb (β)N ∗A

∑
l1m1

G(lama|l1m1)Y∗l1m1

( ik

2α

)
×〈8l2m2(α, r −A†)|8lbmb (β, r −B)〉
= (−1)lb4π(2π)3/2Nla (α)Ñlb (β)N ∗A

×
∑
l1m1

G(lama|l1m1)Y∗l1m1

( ik

2α

)
Cl2(α)I

lbmb
l2m2

(ξ,R†) (19)

where A† = A + ik/2α,R† = B − (A†)∗ = R + ik/2α,R = B − A∗, ξ =
αβ/(α + β), Ñlb (β) = Nlb(β)Clb (β),N ∗A = exp(−ik · A∗ − k2/4α), and we have used
equations (11) and (18). Here we have assumed thatA andB are generally complex
vectors andA∗ denotes the complex conjugate ofA. In addition, we have also used
formula (I.18) for the overlap integral without ETF. IntegralI l2m2

l1m1
(ξ,R) was defined in

equation (I.19). As has been justified in the previous section, the evaluation procedure for
this integral given in paper I is valid for the complex vectorR†, i.e.

I
l2m2
l1m1

(ξ,R†) =
∑
l

(−1)n〈l2m2|l1m1|lm〉Canl
( 1

4ξ

)
8b
nlm(ξ,R

†) (20)
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wheren = (l1+ l2− l)/2. For comparison, we shall generalize the previous formula forS

with real centres, equation (I.29), to the one with complex centres:

S
lbmb
lama

(α, β,A,B,k) = (−1)lb (4π)2(2π)3/2Ñla (α)Ñlb (β)e
−ik·Rαβe−k

2/(4ζ )

×
∑
l′a ,m′a

il
′
aG(lama|l′am′a)Y∗l′am′a

(
−α
ζ
k
)

×
∑
l′b,m

′
b

il
′
bG(lbmb|l′bm′b)Yl′bm′b

(β
ζ
k
)
I
l′′bm
′′
b

l′′am′′a
(ξ,R) (21)

wherel′′e = le−l′e for e = a andb, ζ = α+β,R = B−A∗ andRαβ = (αA∗+βB)/(α+β).
It is clear that formula (19) is apparently more compact than formula (21). However,
formula (19) explicitly requires complex operations even if bothA andB are real vectors.
In contrast, use of formula (21) may avoid complex operations in this special case by taking
proper care of the il terms. It is also possible to avoid complex operations with the use of (19)
by expanding8b

nlm(ξ,R
†) in terms of8b

nlm(ξ,R) andYnlm(ik/2α) (refer to equation (11)).
But the resulting formula is more complicated than formula (21). Since the molecular
integrals with ETF are complex, complex operations are inevitable in the evaluation of
other integrals, for example, nuclear attraction and electron repulsion integrals.

3.2. Kinetic energy integrals with ETF

The two-centre kinetic energy integrals with ETF over Gaussian orbitals are defined as

K
lbmb
lama

(α, β,A,B,k) = 〈φlama (α, r −A)|e−ik·r{− 1
2∇2

r

}|φlbmb (β, r −B)〉
= − 1

2∇2
B〈φlama (α, r −A)|e−ik·r|φlbmb (β, r −B)〉

= − 1
2∇2

BS
lbmb
lama

(α, β,A,B,k)

= (−1)lb (2π)5/2Nla (α)Ñlb (β)N ∗A

×
∑
l1m1

G(lama|l1m1)Y∗l1m1

( ik

2α

)
Cl2(α)K

lbmb
l2m2

(ξ,R†) (22)

where we have used equation (19), and all the parameters have the same meaning as in
(19). TheK integral is the same as before, but with the complex vectorR†:

Kl2m2
l1m1
(ξ,R†) = −∇2

BI
l2m2
l1m1

(ξ,R†)

=
∑
l

(−1)n〈l2m2|l1m1|lm〉Can+1,l

( 1

4ξ

)
8b
n+1,lm(ξ,R

†) (23)

wheren = (l1+ l2− l)/2 as before. It is of interest to note that the kinetic energy integrals
can also be evaluated in terms of equation (21) since the derivative with respect toB is
straightforward. Thus, we have

K
lbmb
lama

(α, β,A,B,k) = 1
2(−1)lb (4π)2(2π)3/2Ñla (α)Ñlb (β)e

−ik·Rαβe−k
2/(4ζ )

×
∑
l′a ,m′a

il
′
aG(lama|l′am′a)Y∗l′am′a

(
−α
ζ
k
)

×
∑
l′b,m

′
b

il
′
bG(lbmb|l′bm′b)Yl′bm′b

(β
ζ
k
)[(βk

ζ

)2
I
l′′bm
′′
b

l′′am′′a
(ξ,R)

+2iβ

ζ

∑
µ

(−1)µk−µT
l′′bm
′′
b

l′′am′′a
(1µ, ξ,R)+Kl′′bm′′bl′′am′′a

(ξ,R)
]

(24)
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where we have introduced the spherical tensor notation for the scalar product of two vectors,
i.e. k · ∇B =

∑
µ(−1)µk−µY1µ(∇B). Both formulae (22) and (24) for kinetic energy

integrals have the same respective merits as those, formulae (19) and (21), for overlap
integrals.

3.3. Tensor operator integrals with ETF

The two-centre integrals of tensor operatorsYkµ(∇) with ETF over Gaussian orbitals arise
in the dynamical coupling matrix elements of the close-coupling treatment of ion–atom
collisions as well as in the study of electronic properties of molecules. They are of the form

T
lbmb
lama

(kµ, α, β,A,B,k) = 〈φlama (α, r −A)|e−ik·rYkµ(∇r)|φlbmb (β, r −B)〉
= Ykµ(−∇B)〈φlama (α, r −A)|e−ik·r|φlbmb (β, r −B)〉
= Ykµ(−∇B)Slbmblama

(α, β,A,B,k)

= (−1)lb4π(2π)3/2Nla (α)Ñlb (β)N ∗A

×
∑
l1m1

G(lama|l1m1)Y∗l1m1

( ik

2α

)
Cl2(α)T

lbmb
lama

(kµ, ξ,R†) (25)

where we have used equation (19), and theT integral has the same meaning as before,

T l2m2
l1m1

(kµ, ξ,R†) = Ykµ(−∇B)I l2m2
l1m1

(ξ,R†)

=
l1+l2+k∑
l=0

(−1)n〈l2m2, kµ|l1m1, lm〉Canl
( 1

4ξ

)
8b
nlm(ξ,R

†) (26)

wheren = (l1+ l2+k− l)/2 is a non-negative integer, and〈l2m2, kµ|l1m1, lm〉 was defined
in equation (I.25). Fork = 1, a simple alternative formula can be derived by applying
equation (21) directly,

T
lbmb
lama

(1µ, α, β,A,B,k) = (−1)lb (4π)2(2π)3/2Ñla (α)Ñlb (β)e
−ik·Rαβe−k

2/(4ζ )

×
∑
l′a ,m′a

il
′
aG(lama|l′am′a)Y∗l′am′a

(
−α
ζ
k
)

×
∑
l′b,m

′
b

il
′
bG(lbmb|l′bm′b)Yl′bm′b

(β
ζ
k
)

×
[
Y1µ

(
i
βk

ζ

)
I
l′′bm
′′
b

l′′am′′a
(ξ,R)+ T l′′bm′′bl′′am′′a

(1µ, ξ,R)
]
. (27)

For k > 1, a similar formula can be derived, but the resulting formula is not as simple as
equation (27). In this case, equation (25) may be preferred.

3.4. Angular momentum integrals with ETF

The three-centre angular momentum integrals with ETF over Gaussian orbitals arise in the
rotational coupling matrix elements of the close-coupling treatment of ion–atom collisions,
as well as in the study of magnetic properties of molecules. They are of the form

Llbmblama
(α, β,A,B,C,k) = 〈φlama (α, r −A)|e−ik·rLC |φlbmb (β, r −B)〉 (28)
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whereLC = −i(r−C)×∇. SinceLC = LB − i(B−C)×∇, the above integrals can be
written as

Llbmblama
(α, β,A,B,C,k) = 〈φlama (α, r −A)|e−ik·rLB |φlbmb (β, r −B)〉

−i(B −C)× 〈φlama (α, r −A)|e−ik·r∇|φlbmb (β, r −B)〉 . (29)

Note that the second integral has been evaluated in equations (25) and (27). Introducing
L± = Lx ± iLy and usingL±Ylm(r) = [(l ∓ m)(l ± m + 1)]1/2Yl,m±1(r) as well as
LzYlm(r) = mYlm(r), we obtain the following formulae:

LB±,
lbmb

lama
(α, β,A,B,k) = 〈φlama (α, r −A)|e−ik·rLB±|φlbmb (β, r −B)〉
= [(lb ∓mb)(lb ±mb + 1)]1/2S

lb,mb±1
lama

(α, β,A,B,k)

LBz,
lbmb

lama
(α, β,A,B,k) = 〈φlama (α, r −A)|e−ik·rLBz |φlbmb (β, r −B)〉

= mbSlbmblama
(α, β,A,B,k) .

(30)

3.5. Nuclear attraction integrals with ETF

The three-centre nuclear attraction integrals with ETF are defined as

N
lbmb
lama

(α, β,A,B,C,k) = 〈φlama (α, r −A)
∣∣∣∣ e−ik·r

|r −C|
∣∣∣∣φlbmb (β, r −B)〉

= 〈eik·rφlama (α, r −A)
∣∣∣∣ 1

|r −C|
∣∣∣∣φlbmb (β, r −B)〉

= 4πNla (α)Nlb (β)N ∗A
∑
l1m1

G(lama|l1m1)Y∗l1m1

( ik

2α

)
×〈8l2m2(α, r −A†)

∣∣∣∣ 1

|r −C|
∣∣∣∣8lbmb (β, r −B)〉

= (−1)lb (4π)4Nla (α)Ñlb (β)N ∗A

×
∑
l1m1

G(lama|l1m1)Y∗l1m1

( ik

2α

)
Cl2(α)

∑
l′2,m

′
2

G(l2m2|l′2m′2)
(
−α
ζ

)l′2
×
∑
l′b,m

′
b

G(lbmb|l′bm′b)
(β
ζ

)l′b
I
l′′bm
′′
b

l′′2m
′′
2
(ξ,R

†
ba)J

l′bm
′
b

l′2m
′
2
(ζ,R

†
αβc) (31)

whereR†ba = B− (A†)∗,R†αβc = R†αβ −C,R†αβ = (α(A†)∗ + βB)/(α+ β), and we have
used equations (11) and (21) as well as equations (I.30)–(I.32). The integralJ

l2m2
l1m1

(ζ,R) in
equation (31) was defined in equation (I.33) for realR. It also holds true for complexR,
i.e.

J
l2m2
l1m1

(ζ,R†) = 〈l2m2|l1m1|LM〉Ca−1,L

( 1

4ζ

)
FL
(
ζ(R†)2

)
YLM(R†)

+
L−2∑
l=lmin

(−1)n〈l2m2|l1m1|lm〉Can−1,l

( 1

4ζ

)
8b
n−1,lm(ζ,R

†) (32)

where(R†)2 = R† ·R†, L = l1+ l2, lmin = |l1− l2|, n = (l1+ l2− l)/2. As before, we can
derive the alternative formulae for nuclear attraction integrals without using the trick of the



Molecular integrals over Gaussian orbitals: II 2557

complex centre, equation (11). Using the identity 1/|r−C| = (1/2π2)
∫
(dp/p2)e−ip·(r−C),

we obtain

N
lbmb
lama

(α, β,A,B,C,k) = 〈φlama (α, r −A)
∣∣∣ e−ik·r

|r −C|
∣∣∣φlbmb (β, r −B)〉

= 1

2π2

∫
dp

p2
eip·C〈φlama (α, r −A)|e−i(p+k)·r|φlbmb (β, r −B)〉

= 1

2π2

∫
dp

p2
eip·CSlbmblama

(α, β,A,B,p+ k) (33)

whereA andB are both real vectors. Substituting equation (I.29) into (33), we have

N
lbmb
lama

(α, β,A,B,C,k) = (−1)lb (4π)3Ñla (α)Ñlb (β)e
−ik·Rαβe−k

2/(4ζ )

×
∑
l′a ,m′a

G(lama|l′am′a)
(
−α
ζ

)l′a ∑
l′b,m

′
b

G(lbmb|l′bm′b)
(β
ζ

)l′b
×I l′′bm′′bl′′am′′a

(ξ,Rba)A
l′bm
′
b

l′am′a
(ζ,Rαβc,k) (34)

whereRba = B −A,Rαβc = Rαβ −C, and

Al2m2
l1m1
(ζ,R,k) = il1+l2

(2π)3/2

∫
dp

p2
e−ip·R†e−p

2/(4ζ )Y∗l1m1
(p+ k)Yl2m2(p+ k)

= (4π)2
∑
l′1,m

′
1

il
′
1G(l1m1|l′1m′1)Y∗l′1m′1(k)

×
∑
l′2,m

′
2

il
′
2G(l2m2|l′2m′2)Yl′2m′2(k)J

l′′2m
′′
2

l′′1m
′′
1
(ζ,R†) (35)

wherel′′j = lj− l′j for j = 1 and 2,R† = R− ik/2ζ , and we have used the addition theorem
of solid harmonics, equation (I.15a). TheJ integral in (35) has been given in equation (32).
As can be seen, most of quantities in formulae (34) and (35) are real and therefore can be
computed relatively faster. However, these formulae require one more summation than
equation (31). Since functionFL(z) depends on the complex argumentz = ζR† ·R†, it is
impossible to avoid complex operations completely in either case. Which one of the two
sets of formulae is more efficient in computation really depends on the implementation.

3.6. Electron repulsion integrals with ETF

The four-centre electron repulsion integrals with ETF are defined as

V
lbmb,ldmd
lama,lcmc

(α, β, γ, δ,A,B,C,D,k1,k2)

= 〈φlama (α, r1−A)φlcmc (γ, r2−C)
∣∣∣∣e−i(k1·r1+k2·r2)

|r1− r2|
∣∣∣∣

×φlbmb (β, r1−B)φldmd (δ, r2−D)〉
= 〈eik1·r1φlama (α, r1−A)eik2·r2φlcmc (γ, r2−C)

∣∣∣∣ 1

r12

∣∣∣∣
×φlbmb (β, r1−B)φldmd (δ, r2−D)〉
= (4π)2Nla (α)Nlb (β)Nlc (γ )Nld (δ)N ∗AN ∗C
×
∑
l1m1

G(lama|l1m1)Y∗l1m1

( ik1

2α

)∑
l3m3

G(lcmc|l3m3)Y∗l3m3

( ik2

2γ

)
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×〈8l2m2(α, r1−A†)8l4m4(γ, r2−C†)
∣∣∣∣ 1

r12

∣∣∣∣
×8lbmb (β, r1−B)8ldmd (δ, r2−D)〉
= 32(−1)lb+ld (4π)2(2π)13/2Nla (α)Ñlb (β)Nlc (γ )Ñld (δ)N ∗AN ∗C

×
∑
l1m1

G(lama|l1m1)Cl2(α)Y∗l1m1

( ik1

2α

)∑
l3m3

G(lcmc|l3m3)Cl4(γ )Y∗l3m3

( ik2

2γ

)
×
∑
l′2,m

′
2

G(l2m2|l′2m′2)
(
− α
ζ1

)l′2 ∑
l′b,m

′
b

G(lbmb|l′bm′b)
( β
ζ1

)l′b
I
l′′bm
′′
b

l′′2m
′′
2
(ξ1,R

†
ba)

×
∑
l′4,m

′
4

G(l4m4|l′4m′4)
( γ
ζ2

)l′4 ∑
l′d ,m

′
d

G(ldmd |l′dm′d)
(
− δ
ζ2

)l′d
I
l′′dm
′′
d

l′′4m
′′
4
(ξ2,R

†
dc)

×Ul′bm
′
b,l
′
dm
′
d

l′2m
′
2,l
′
4m
′
4
(ζ,R

†
αβγ δ) (36)

where the parameters which appeared in equation (36) are defined as follows:

N ∗A = exp
(
−ik1 ·A− k2

1

4α

)
N ∗C = exp

(
−ik2 ·C − k2

2

4γ

)
ξ1 = αβ

α + β ζ1 = α + β ξ2 = γ δ

γ + δ ζ2 = γ + δ

R
†
ba = B − (A†)∗ R

†
dc =D − (C†)∗ ζ = ζ1ζ2

ζ1+ ζ2
= (α + β)(γ + δ)
α + β + γ + δ

R
†
αβ =

α(A†)∗ + βB
α + β Rγ δ = γ (C†)∗ + δD

γ + δ R
†
αβγ δ = R†αβ −R†γ δ .

(37)

The U integral with the complex vectorR† is defined in the same way as with the real
vector, equation (I.37),

U
l2m2,l4m4
l1m1,l3m3

(ζ,R†) = 〈l2m2, l4m4|LM|l1m1, l3m3〉Ca−1,L

( 1

4ζ

)
FL
(
ζ(R†)2

)
YLM(R†)

+
L−2∑
l=lmin

(−1)n〈l2m2, l4m4|lm|l1m1, l3m3〉Can−1,l

( 1

4ζ

)
8b
n−1,lm(ζ,R

†) (38)

where L = l1 + l2 + l3 + l4, n = (L − l)/2 = (l1 + l2 + l3 + l4 − l)/2
and 〈l2m2, l4m4|lm|l1m1, l3m3〉 are as defined in (I.38). We shall now evaluate the
electron repulsion integral in the ‘real’ form. Using the identity 1/|r1 − r2| =
(1/2π2)

∫
(dp/p2)e−ip·(r1−r2), we obtain

V
lbmb,ldmd
lama,lcmc

(α, β, γ, δ,A,B,C,D,k1,k2)

= 1

2π2

∫
dp

p2
S
lbmb
lama

(α, β,A,B,k1+ p)Sldmdlcmc
(γ, δ,C,D,k2− p)

= 32(−1)lb+ld (2π)13/2Ñla (α)Ñlb (β)Ñlc (γ )Ñld (δ)e
−i(k1·Rαβ+k2·Rγ δ)

×
∑
l′a ,m′a

G(lama|l′am′a)
(
− α
ζ1

)l′a ∑
l′b,m

′
b

G(lbmb|l′bm′b)
( β
ζ1

)l′b
I
l′′bm
′′
b

l′′am′′a
(ξ1,Rba)

×
∑
l′c,m′c

G(lcmc|l′cm′c)
( γ
ζ2

)l′c ∑
l′d ,m

′
d

G(ldmd |l′dm′d)
(
− δ
ζ2

)l′d
I
l′′dm
′′
d

l′′c m′′c
(ξ2,Rdc)

×e−[k2
1/(4ζ1)+k2

2/(4ζ2)]E
l′bm
′
b,l
′
dm
′
d

l′am′a ,l′cm′c
(ζ,Rαβγ δ,k1,k2) (39)
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where all the parameters in (39) are the same as those in equation (I.36a–c), and integral
E is defined as follows:

E
l2m2,l4m4
l1m1,l3m3

(ζ,R,k1,k2) = iL

(2π)3/2

∫
dp

p2
e−ip·R†e−p

2/(4ζ )

×Y∗l1,m1
(p+ k1)Yl2,m2(p+ k1)Y∗l3,m3

(p− k2)Yl4,m4(p− k2)

= (4π)4
∑
l′1,m

′
1

il
′
1G(l1m1|l′1m′1)Y∗l′1m′1(k1)

∑
l′2,m

′
2

il
′
2G(l2m2|l′2m′2)Yl′2m′2(k1)

×
∑
l′3,m

′
3

il
′
3G(l3m3|l′3m′3)Y∗l′3m′3(−k2)

×
∑
l′4,m

′
4

il
′
4G(l4m4|l′4m′4)Yl′4m′4(−k2)U

l′′2m
′′
2,l
′′
4m
′′
4

l′′1m
′′
1,l
′′
3m
′′
3
(ζ,R†) (40)

whereL = l1+ l2+ l3+ l4,R† = R− i(k1/2ζ1− k2/2ζ2), and we have used the addition
theorem of solid harmonics, equation (I.15a). The U integral in (40) has been given in
equation (38). Compared with formula (36), formulae (39) and (40) introduce two more
summations. However, most of the terms in the latter are real.

4. Computational consideration and concluding remarks

In section 3 we have derived two sets of formulae for all the molecular integrals over
spherical Gaussian orbitals, modified with plane-wave phase factors. If complex operations
can be executed efficiently in a computer, the first set of formulae with complex centres may
be used. Otherwise, the second set of formulae should be used. Since the formulae have
exactly the same form as those in paper I without the phase factors, the general numerical
strategies discussed there should still be applicable here for the efficient computation of
these integrals. However, due to the presence of the phase factors, both sets of formulae for
three-centre nuclear attraction and four-centre electron repulsion integrals contain complex
vectors. Therefore, the complex operations can no longer be avoided. As in paper I, there
are three basic functions, i.e. solid harmonicsYlm(R), Laguerre polynomialsLl+1/2

n (z) and
auxiliary functionsFm(z), which have to be evaluated over a range of indices. Note that the
argumentsR andz are complex vectors and numbers, respectively. We shall now consider
how to evaluate them.

First of all, we notice thatYlm(R), for a complex vectorR ∈ C3, has only the
polynomial definition (Biedenharn and Louck 1981, pp 71, 302). In other words, one cannot
write Ylm(R) = RlYlm(R̂) sinceR̂ is meaningless here. Secondly, the complex conjugate
of Ylm(R) has the formY∗lm(R) = (−1)mYl,−m(R∗), which can be readily proved from the
definition polynomial of solid harmonics. The most efficient and reliable way to generate a
sequence of solid harmonics is to use the following recurrence formula:

c(l + 1, m)Yl+1,m(R) = ZYlm(R)− c(l,m)(R ·R)Yl−1,m(R) (41)

wherec(l,m) = [{(l −m)(l +m)}/{(2l − 1)(2l + 1)}]1/2 andZ is the third component of
R = (X, Y, Z). Note that equation (41) holds true not only for the real vector but also
for the complex vector, which can be readily justified by the definition of solid harmonics.
The choice of this recurrence relation is based on the argument by Presset al (1992) about
the stable computation of the associated Legendre functions. The recurrence evaluation of
solid harmonics starts from the following two values:

Yl−1,l(R) = 0 Yll(R) = s(l)(X + iY )l (42)
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where s(l) = [(−1)l/2l l!][ (2l + 1)!/4π ]1/2. To achieve the maximum performance, we
suggest that the constantsc(l,m) and s(l) be pre-computed. Form < 0, we can first
calculate theYl,−m(R∗), and then take its complex conjugate multiplied by(−1)m.

As in paper I, most integrals here require the computation of a sequence of associated
Laguerre polynomials of the formLl+1/2−2n

n (z) with n 6 [l/2]. Regardless of whetherz is
complex or not, the associated Laguerre polynomials can be computed straightforwardly by
means of its explicit form

Ll+1/2−2n
n (z) = a0(nl)+ z{a1(nl)+ z[a2(nl)+ · · · + zan(nl)]} (43)

where ak(nl) = [(−1)k/k!]
(
l+1/2−n
n−k

)
are the coefficients of the associated Laguerre

polynomials. Again, we suggest that these coefficients be pre-computed and stored in
memory. The storage requirement forak(nl) is of the orderl3max. In the cases of nuclear
attraction and electron repulsion integrals, we need to evaluate a sequence of auxiliary
functionsFm(z) with a complex argument. This is the most difficult part with the phase
factors in Gaussian orbitals. Since there are two free parameters (real part and imaginary
part) forFm(z), the interpolation scheme may not be very effective any more. The procedure
for calculatingFm(z) for a limited range ofm and z has been discussed by Erreaet al
(1979). As a supplement, we think that the nonlinear convergence accelerators (Grotendorst
and Steinborn 1986) may be employed for the efficient evaluation ofFm(z), even thoughz
is a complex number.

In the actual close-coupling calculations of ion–atom collisions, equations (36)–(39)
for the general four-centre electron repulsion integrals can be immediately simplified, since
there are only two centres. In this case, the most difficult integral is the so-called two-centre
exchange one, i.e.A = C andB = D; then we haveRba = Rdc, which implies that we
only have to calculate one set of solid harmonicsYlm(Rba). On the other hand,k1 and
k2 are either parallel or anti-parallel to the incident direction; therefore, we only have to
compute one set of solid harmonicsYlm(k1) in equation (40). Further reduction is possible
by choosing the proper quantization axis (i.e. thez-axis of a coordinate frame). In fact,
in the actual calculations we choose either the internuclear direction (the so-called body
frame) or the incident direction (laboratory frame) as the quantization axis. In the body
frame we haveRba = Rdc = Rẑ, while in the laboratory frame we havek1 = ±k2 = kẑ.
By noticing thatYlm(r = rẑ) = ((2l+1)/4π)1/2δm,0rl , we can immediately get rid of quite
a few summations over magnetic quantum numbers and meanwhile the corresponding solid
harmonics need not be computed. By inspection of equations (39) and (40), the laboratory
frame is preferred if these two formulae are chosen to evaluate the exchange integral.

In summary, we have evaluated multi-centre molecular integrals over spherical Gaussian
orbitals in closed form. The resulting formulae are more compact than those obtained
by Erreaet al (1979), even after we have significantly improved the kernel part of their
treatment, see appendix B. Considering that Cartesian Gaussian orbitals of high angular
momentum (n + l + m > 2) are not the eigenfunctions of angular momentum, therefore
additional sums have to be included in order to extract the spherical orbitals. This is also true
for the recursive evaluation of the integrals (Obara and Saika 1988). Furthermore, we can
rearrange the formulae for the electron repulsion integral in a way similar to equation (I.52)
so that the integral over contracted Gaussian orbitals can be efficiently computed. We expect
that the present work will encourage researchers to explore the spherical Gaussian orbitals
with plane-wave phase factors in the study of ion–atom collisions as well as in molecular
structure calculations.
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Appendix A. Addition theorem for harmonic polynomials

Since the derivation procedure of the addition theorem of harmonic polynomials given by
Niukkanen and Gribov (1983) does not apply to the complex arguments, we shall present
a general derivation with the help of rotational invariants of two complex vectors under
(complex) rotations (Biedenharn and Louck 1981, p 302),

Il(p, r) = 4π

2l + 1

l∑
m=−l

(−1)mYl,−m(p)Ylm(r) . (A1)

Clearly,Il(p, r) is a polynomial that is homogeneous of degreel in p andr separately, and
is symmetric under the interchange ofp andr; therefore, it should be possible to expand
the rotational invariant(p · r)n in terms ofIl(p, r) and the other two basic invariantsp · p
andr · r, i.e.

(
p · r

)n = [n/2]∑
k=0

cnk(p · p)k(r · r)kIn−2k(p, r) (A2)

where the coefficientscnk can be determined as follows. Choosingp andr to be real unit
vectorsp = p̂ andr = r̂, then equations (A1) and (A2) yield

(cosθ)n =
[n/2]∑
k=0

cnkPn−2k(cosθ) (A3)

where cosθ = p̂ · r̂ andPl is the Legendre polynomial. Here we have used the addition
theorem of the spherical harmonic and thusIl(p̂, r̂) = Pl(cosθ). Comparing equation (A3)
with the known expansion of(cosθ)n (Gradshteyn and Ryzhik 1980, p 1027), we obtain
the coefficientscnk = n![2(n−2k)+1]

(2k)!!(2n−2k+1)!! . Using equation (A2), we can readily expand

ep·r =
∞∑
n=0

(
p · r

)n
n!

=
∞∑
n=0

[n/2]∑
k=0

cnk

n!
(p · p)k(r · r)kIn−2k(p, r) . (A4)

Inserting equation (A1) into (A4) and rearranging the summation indices, we finally obtain

ep·r =
∞∑
k=0

∞∑
l=0

l∑
m=−l

(−1)maklYkl,−m(p)Yklm(r) (A5)

whereakl = 4π
(2k)!!(2k+2l+1)!! andYklm(r) = (r · r)kYlm(r). For p = iq and real vectorsq

and r, the summation overk can be readily identified as a spherical Bessel function of
order k (Gradshteyn and Ryzhik 1980, p 959), and therefore equation (A5) becomes the
well known Rayleigh expansion of a plane wave. In fact, Niukkanen and Gribov (1983)
derived equation (A5) for the real arguments using the modified expansion of a plane wave.
It should be noted that expansion (A5) applies to the complex case based on the present
derivation.
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The addition theorem forYnlm follows directly from the obvious identity ep·(r1+r2) =
ep·r1ep·r2. Applying equation (A5) for all three terms, we obtain∑
nlm

anl(−1)mYnl,−m(p)Ynlm(r1+ r2)

=
∑
n1l1m1

∑
n2l2m2

an1l1an2l2(−1)m1+m2Yn1
l1,−m1

(p)Yn2
l2,−m2

(p)Yn1
l1m1
(r1)Yn2

l2m2
(r2) . (A6)

Using the product expansion of two solid harmonics (Edmonds 1974, p 70), one obtains

Yn1
l1m1
(p)Yn2

l2m2
(p) =

l1+l2∑
l=|l1−l2|

〈lm|l1m1|l2m2〉Ynlm(p) (A7)

wherem = m1+m2 and the onlyl values are those satisfyingl+ l1+ l2 = even integer and
1(l1l2l) due to the selection rules of the Gaunt coefficient. Here the variablen is defined
asn = n1+ n2+1 with 1 = (l1+ l2− l)/2. It can be readily justified that equation (A7)
also applies to complex vectors based on the rotational property of solid harmonics under
(complex) rotations. Substituting (A7) into the right-hand side of (A6) and rearranging
the summation indices, we find that the right-hand side of equation (A6) can be written in
the same form as the left-hand side with respect toYnl,−m(p). Since the functionsYnlm are
linearly independent, the corresponding coefficients can be equated with each other. Thus,
we obtain

Ynlm(r1+ r2) = 4π
∑

[n1,n2]

K(n|n1|n2)Yn1
l1m1
(r1)Yn2

l2m2
(r2) (A8)

K(n|n1|n2) = K(nlm|n1l1m1|n2l2m2) = an1l1an2l2

4πanl
〈lm|l1m1|l2m2〉 (A9)

wheren stands for the triad of quantum numbers (n, l,m), andni = (ni, li , mi) for i = 1, 2.
It follows immediately from (A9) thatK(n|n2|n1) = K(n|n1|n2). The square brackets
over the summation indicesn1 andn2 in (A8) mean that the summation is constrained
by the selection rules of the Gaunt coefficient and by the relationn = n1 + n2 + 1. The
detailed constraints on the summation indices were given in paper I.

With the help of expansion (A5), we can also derive the addition theorem for the
harmonic Laguerre polynomialsLnlm(r) = L

l+1/2
n (r · r)Ylm(r) (Niukkanen 1984). To do

that we need to expand the generating function e−p·p+2p·r. Using formula (A5), we obtain

e−p·p+2p·r =
∑
lm

(−1)m
{

e−p·p
∞∑
k=0

akl2
2k+l(p · p)k(r · r)k

}
Yl,−m(p)Ylm(r) (A10)

where we have used the homogeneous property ofYnlm, i.e. Ynlm(λr) = λ2k+lYnlm(r).
With 0(n + 3

2) = (
√
π/2n+1)(2n + 1)!! and (2k)!! = 2kk!, we have akl22k+l =

2π3/2/[k!0(k + l + 3
2)]. Using the Taylor expansion for e−x , one can perform the

multiplication of power series (Gradshteyn and Ryzhik 1980, p 15) explicitly as follows:

e−x
∞∑
k=0

(xy)k

k!0(k + ν + 1)
=
∞∑
k=0

(−x)k
k!

∞∑
k=0

(−y)k(−x)k
k!0(k + ν + 1)

=
∞∑
n=0

cn(−x)n (A11)

wherex = p · p, y = r · r, ν = l + 1
2 and

cn =
n∑
k=0

1

(n− k)!
(−y)k

k!0(k + ν + 1)
= Lνn(y)

0(n+ ν + 1)
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where we have used the explicit form for the associated Laguerre polynomialLνn(z)

(Gradshteyn and Ryzhik 1980, p 1037). Substituting equation (A11) into (A10), we obtain
the following expansion formula:

e−p·p+2p·r =
∞∑
n=0

∞∑
l=0

l∑
m=−l

(−1)mbnlYnl,−m(p)Lnlm(r) (A12)

with bnl = 2π3/2(−1)n/0(n+ l + 3
2). The expansion formula (A12) is the same as that

obtained by Kumar (1966) as well as by Niukkanen (1984) via different procedures for the
real arguments. However, our derivation also applies to the complex case. The addition
theorem forLnlm follows from the identity e−p·p+2p·(r1+r2) = e−p·p+2p·r1e2p·r2. By applying
equations (A12) and (A5), and through the same procedure as for deriving (A8), we obtain

Lnlm(r1+ r2) = 4π
∑

[n1,n2]

B(n|n1|n2)Ln1
l1m1
(r1)Yn2

l2m2
(r2) (A13)

B(n|n1|n2) = bn1l1an2l222n2+l2

4πbnl
〈lm|l1m1|l2m2〉

= (−1)n−n1
n1!

n!
K(n|n1|n2) (A14)

where the summation constraints over the indices are the same as those for formula (A8).
Note thatB(n|n2|n1) 6= B(n|n1|n2), in contrast withK. The addition theorem (A13) was
first derived by Niukkanen (1984) for the real vectors. Based on the present derivation, it
clearly holds true for the complex vectors. It is interesting to note that both formulae (A8)
and (A13) include the addition theorem of solid harmonics as the special case ofn = 0.

Appendix B. Improved treatment for molecular integrals over CGTOs

We have noticed that the original closed form formulae (Taketaet al 1966) for three-
centre nuclear attraction and four-centre electron repulsion integrals can be simplified with
the following transformation. Consider an isotropic three-dimensional harmonic oscillator,
the eigenfunctions of which can be expressed in both spherical polar coordinates and in
Cartesian coordinates,

ψnlm(α, r) = Nnl(α)e−αr2/2Ll+1/2
n (αr2)Ylm(

√
αr) (B1)

ψnxnynz (α, r) = Nn(α)e−αr
2/2Hnx (

√
αx)Hny (

√
αy)Hnz(

√
αz) (B2)

whereNnl(α) =
[

2α3/2n!
0(n+l+3/2)

]1/2
andNn(α) =

[
(α/π)3/2

(2nx)!!(2ny)!!(2nz)!!

]1/2
are the normalization

constants, respectively. HereHn(z) denotes the Hermite polynomial of degreen. The
eigenvalues corresponding to the eigenfunctions, in units of ¯hω (α = mω/h̄), areEN =
2n + l + 3

2 = nx + ny + nz + 3
2 = N + 3

2. These energy levels are degenerate of degree
(N+1)(N+2)/2. The two sets of eigenfunctions are related to each other through a unitary
transformation,

ψnxnynz (α, r) =
∑
lm

〈nlm|nxnynz〉ψnlm(α, r) (B3)

where 〈nlm|nxnynz〉 as well as the summation overl is constrained by 2n + l = N =
nx + ny + nz. The transformation matrix elements read

〈nlm|nxnynz〉 = Nnl(α)Nn(α)
∫

drψ∗nlm(α, r)ψnxnynz (α, r)

= Nnl(α)Nn(α)

α3/2

∫
dr e−r

2
Ll+1/2
n (r2)Y∗lm(r)Hnx (x)Hny (y)Hnz(z) (B4)
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where we have changed the integral variable from
√
αr → r. It is obvious that the

transformation matrix elements are independent ofα. By eliminating the exponential factor
on both sides of equation (B3), we obtain the transformation equations of the polynomials,

Hnx (x)Hny (y)Hnz(z) =
∑
lm

(nlm|nxnynz)Lnlm(r) (B5)

Lnlm(r) =
∑
[n]

(nxnynz|nlm)Hnx (x)Hny (y)Hnz(z) (B6)

where the symbol [n] indicates that the summation over (nx, ny, nz) is subject to 2n+ l =
nx + ny + nz, and we have defined(nlm|nxnynz) = [Nnl(α)/Nn(α)]〈nlm|nxnynz〉 and
(nxnynz|nlm) = [Nn(α)/Nnl(α)]〈nlm|nxnynz〉∗. Notice that both transformation matrix
elements(nlm|nxnynz) and (nxnynz|nlm) are independent ofα. These matrix elements
can be readily evaluated from equation (B4) using symbolic manipulation languages, for
instance,Mathematica. It is of interest to note that equations (B5) and (B6) also provide
the transformation between solid harmonicsYlm(r) andHnx (x)Hny (y)Hnz(z) by imposing
the restrictionl = nx + ny + nz. By multiplying exp(−αr2) on both sides of (B5) and
changing variables fromr→√αr, we can transform Cartesian Hermite–Gaussian orbitals
(Živković and Maksíc 1968) to spherical Gaussian orbitals (Fieck 1980) and vice versa.

Following the derivation procedure by Taketaet al (1966), the nuclear attraction integral
requires the evaluation of the followingI integral (Taketaet al 1966, p 2317):

I = 2π2
∫

drP
1

rC
xiP y

j

P z
k
P exp(−γ r2

P )

=
(π
γ

)3/2( 1

4γ

)(i+j+k)/2 ∫ dk

k2
eik·Rii+j+kHi

( kx√
4γ

)
Hj

( ky√
4γ

)
Hk

( kz√
4γ

)
e−k

2/(4γ )

=
(π
γ

)3/2( 1

4γ

)(i+j+k)/2∑
lm

(−1)n(nlm|ijk)
( 1

4γ

)l/2
il
∫

dk

k2
eik·R8b

nlm

( 1

4γ
,k
)

= (2π)3/2
(π
γ

)3/2∑
lm

(−1)n(nlm|ijk)
( 1

4γ

)n+l
Nnlm(γ,−R) (B7)

where we have used equations (B5) and (6), and the fact thati + j + k = 2n+ l. Nnlm in
(B7) has been defined in equation (I.B6). The above formula (containing three sums, where
one sum is insideNnlm) is clearly more compact than the original one (containing six sums)
obtained by Taketaet al, who evaluated the integralI in a more elaborate way. Since
the transformation matrix(nlm|ijk) can be computed and stored in memory beforehand
(storage of the order ofl5max), we expect that formula (B7) is more efficient in computation
than the original one. Similarly, for the electron repulsion integral, we can improve the
evaluation procedure of integralI ′ (Taketaet al 1966, p 2318) as follows:

I ′ =
∫ ∫

drP1 drQ2 x
i1
P1
y
j1
P1
z
k1
P1

exp(−γ1r
2
P1
)

1

r12
x
i2
Q2
y
j2
Q2
z
k2
Q2

exp(−γ2r
2
Q2
)

= π(2π)3/2

2(γ1γ2)3/2

∑
l1m1

(−1)n1+l1(n1l1m1|i1j1k1)
( 1

4γ1

)n1+l1

×
∑
l2m2

(−1)n2(n2l2m2|i2j2k2)
( 1

4γ2

)n2+l2
Vn2l2m2
n1l1m1

(γ1, γ2,−R) (B8)

whereR = Q − P according to Taketaet al (1966) andVn2l2m2
n1l1m1

has been defined in
equation (I.B8). Again, by pre-computing all necessary constants, it is expected that
equation (B8) is more efficient in computation than the original one.
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The McMurchie–Davidson (MD) algorithm (McMurchie and Davidson 1978) is
certainly among the most important algorithms in quantum chemistry. The basic integral in
the MD algorithm is defined as

[NLM|r−1
C ] = (∂/∂Px)N(∂/∂Py)L(∂/∂Pz)M [000|r−1

C ] (B9)

where [000|r−1
C ] = ∫ dr(1/rC)e−αr

2
P . By means of equation (B5), we can derive a compact

closed form formula for this integral as follows:

[NLM|r−1
C ] =

∫
dr

1

rC
3N(xP ;α)3L(yP ;α)3M(zP ;α)e−αr2

P

= α(N+L+M)/2
∫

dr
1

rC
HN(α

1/2xP )HL(α
1/2yP )HM(α

1/2zP )e
−αr2

P

=
∑
lm

(nlm|NLM)αn+l
∫

dr
1

rC
8b
nlm(α, rP )

= 1

2π2

∑
lm

(nlm|NLM)αn+l
∫

dk

k2
eik·R

∫
drP e−ik·rP 8b

nlm(α, rP )

= (2π)3/2

2π2

∑
lm

(nlm|NLM)αn+l(−i)lCbnl(α)
∫

dk eik·R8a
n−1,lm

( 1

4α
,k
)

= 2π

α
RNLM (B10)

where we have used the identity(1/|r − C|) = (1/2π2)
∫
(dk/k2)e−ik·(r−C), and

equations (1)–(6) as well as (14)–(17). It should be noted that the summation overl in
(B10) is subject to 2n+ l = N +L+M = `. HereR = C −P andRNLM represents the
rest of the integral

RNLM =
∑
m

(0`m|NLM)α`F`(αR2)Y`m(R)+
`−2∑
lm

(nlm|NLM)α
n+l

2n
8b
n−1,lm(α,R)

= α`F`(αR2)2`
NLM(R)+ e−αR

2
`−2∑
l

αn+l

2n
L
l+1/2
n−1 (αR2)2l

NLM(R) (B11)

where2l
NLM(R) stands for the angular part,2l

NLM(R) =
∑

m(nlm|NLM)Ylm(R). The
remarkable feature of equation (B11) for the auxiliary functionRNLM is that it contains only
oneF`(T ) function and the remainder consists of just Laguerre polynomials. In contrast,
both the closed form formula and recurrence relation forRNLM derived by McMurchie and
Davidson (1978) depend on a sequence ofFm(T ) functions. Careful coding of the present
formula should speed up the evaluation ofRNLM , which is of critical importance in the MD
algorithm.

For molecular integrals over CGTOs modified with plane-wave phase factors, Erreaet
al (1979) derived the closed-form formulae for all the integrals using exactly the same
technique as Taketaet al (1966). Therefore, there is room for improvement, as can be
seen from our preceding sections, see equations (B7) and (B8). As an illustration, we shall
evaluate theIijk integral (Erreaet al 1979, p 73), resulting from the three-centre nuclear
attraction integral,

Iijk =
∫

dK

K2
eiK·RHi

(
Kx − ux√

4γ

)
Hj

(
Ky − ux√

4γ

)
Hk

(
Kz − ux√

4γ

)
e−(K−u)

2/(4γ ) (B12)

whereR = P −C, following their notation. To reduce the integral into the standard form,
equation (B7), we have to use the addition theorem for Hermite polynomials (Gradshteyn
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and Ryzhik 1980, p 1035): 2n/2Hn(x+y) =
∑n

k=0

(
n

k

)
Hk(x
√

2)Hn−k(y
√

2). Then we obtain

Iijk = 2−(i+j+k)/2e−u
2/(4γ )

∑
i ′j ′k′

Hi ′′
( −ux√

2γ

)
Hj ′′

( −ux√
2γ

)
Hk′′

( −ux√
2γ

)
I ′ijk

I ′ijk =
∫

dK

K2
eiK·R†Hi ′

( Kx√
2γ

)
Hj ′
( Ky√

2γ

)
Hk′
( Kz√

2γ

)
e−K

2/(4γ )

(B13)

whereR† = R − iu/2γ andn′ + n′′ = n for n = i, j, k. Notice the difference between
equations (B7) andI ′ijk, i.e. the scaling factor for Hermite polynomials. Using equation (B5),
we obtain

I ′ijk = (2π)3/2
∑
lm

( i√
2γ

)l
(nlm|i ′j ′k′)N ′nlm(γ,R†)

N ′nlm(γ,R†) =
(−i
√

2γ )l

(2π)3/2

∫
dK

K2
eiK·R†Lnlm

( K√
2γ

)
e−K

2/(4γ )

=
(
n+ l + 1

2

n

)
Ca−1,l

( 1

4γ

)
Fl(γR

† ·R†)Ylm(R†)

+
n∑
k=1

(−1)k

k!(2γ )k

(
n+ l + 1

2

n− k
)
Cak−1,l

( 1

4γ

)
8b
k−1,lm(γ,R

†) .

(B14)

Compared with the corresponding formula forIijk, equation (25) (Erreaet al 1979, p 74), the
present formulae, equations (B13) and (B14), contain only six sums in total and are therefore
much more concise (their equations contain 12 sums). Although the present formulae need to
evaluate Hermite and Laguerre polynomials, their computational advantage is obvious since
the required polynomials can be computed efficiently with the known recurrence relations.
Similarly, we can apply the above technique to derive compact expressions for four-centre
electron repulsion integrals. Alternatively, one can also use the complex centre (Obara and
Saika 1988) to find more concise closed-form formulae for molecular integrals over CGTOs
modified with plane-wave phase factors. In particular, we can develop the MD algorithm
for the molecular integrals over Cartesian Gaussian orbitals with complex centres.
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