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A method for solving three-body problems in mass-weighted hyperspherical coordinates in the
adiabatic approximation is presented. The adiabatic channel function is expanded in terms of
analytical functions expressed in different sets of Jacobi coordinates to describe each dissociation
limit naturally. Evaluation of matrix elements between functions in different Jacobi coordinates is
achieved through the known transformation properties of hyperspherical harmonics in these coor-
dinates. The method is applied to study the lowest channels for various Coulombic three-body sys-
temssuchas H™, e"e et,p*p*tu~,d*d*u~,e*pte ,p*d*p~,and d *t "~ using only one or
two analytical basis functions, and the results are compared with some known calculations. The be-
havior of the potential curves with respect to the variation of the masses of the three-body system is

also examined.

1. INTRODUCTION

Hyperspherical coordinates have been applied exten-
sively in recent years to study many new types of atomic,
molecular, and nuclear three-body problems. In atomic
physics, it has been shown"? that electron correlations
and the properties of doubly excited states of two-
electron atoms are conveniently analyzed in hyperspheri-
cal coordinates. A new classification scheme of doubly
excited states of atoms has emerged from such an
analysis. In molecular physics, new hyperspherical nor-
mal modes® and novel features of reactive scatterings
from collinear triatomic systems®> have been identified
using hyperspherical coordinates. In the last few years,
progress had been made in the three-dimensional reactive
scattering studies for molecular systems.®~!° In nuclear
physics, hyperspherical coordinates have also been used
in a number of applications. !!

From the quantum-mechanical three-body problem
viewpoint, a two-electron atom is a special example
where each pair of particles is governed by the Coulom-
bic interaction. Another familiar Coulombic three-body
system is H, %, i.e., the molecular hydrogenic ion. In the
traditional approach, the theoretical methods for treating
two-electron atoms and for H," are quite different: An
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independent electron approximation is used to describe
the former and a Born-Oppenheimer approximation for
the latter. A unification appears possible if these three-
body problems are described in hyperspherical coordi-
nates. From the mathematical viewpoint, the differences
between two-electron atoms and one-electron diatomic
molecular ions are only in the relative masses of the parti-
cles. How do the approximate quantum numbers used in
the description of each type of problems emerge from the
seemingly identical mathematical equations? The clues
to this question again come from the recent analysis of
electron correlations where the new quantum numbers
are referred to the body frame of the atom'? rather than
to the quantum numbers of each individual electron as in
the independent-particle approximation. Therefore, one
of the interesting questions in the study of the three-body
problem is how the quantum numbers used in the
description of H™ (and He) evolve, as the mass of the two
identical particles with respect to the mass of the third
particle varies from the H™ limit to the H,* limit. A
general theoretical approach for Coulombic three-body
problems would also allow us to study such intermediate
systems as e ete”, ptu—p*, dtu=d™*, e ptet,
ptu~d™*,and d *u~t*. The last muonic molecular ion
d*tu~t* is currently of great interest because of its im-
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portance in the study of muon-catalyzed fusion.

There is one major complication in generalizing the hy-
perspherical coordinates used for two-electron atoms to
arbitrary Coulombic three-body systems. While for the
conventional atomic systems, one often neglects the
motion of the nucleus, i.e., one assumes the mass of the
nucleus to be infinite, this is not possible for the general
three-body Coulombic systems.

In this article we address the methods of solving
Coulombic three-body problems in hyperspherical coor-
dinates. Within the hyperspherical method, there are
different ways of choosing hyperspherical angles. In the
early study, internal and external coordinates were
used.'> Such methods result in very complicated
differential equations when the Schrodinger equation is
expressed in internal coordinates. In our approach, we
start with the Jacobi coordinates of the three particles.
There is an important advantage in defining hyperspheri-
cal angles from the Jacobi coordinates since the wave
functions are conveniently separable in the limit of two-
body breakup.

A well-established procedure’!* for the study of the
three-body system in hyperspherical coordinates is the
adiabatic approximation. This is similar to the Born-
Oppenheimer approximation in diatomic molecules. The
Schrodinger equation in hyperspherical coordinates is
solved at each fixed hyperradius to obtain a family of
effective potential curves. These potential curves, similar
to the molecular potential curves, contain essential infor-
mations about the structure of the three-body system.

The rest of this article is organized as follows. We first
discuss in Sec. II A the hyperspherical coordinates in
different sets of Jacobi coordiantes. The properties of the
grand angular momentum operator and its eigenfunc-
tions, the hyperspherical harmonics, and the transforma-
tion of hyperspherical harmonics from one set to another
are discussed in Sec. II B. In Sec. II C we analyze the to-
tal Coulomb potential energy in different sets of hyper-
spherical coordinates. In Sec. IID we discuss the solu-
tion of the Schrodinger equation in the adiabatic approxi-
mation. We assume that the wave function varies slowly
with respect to the hyperradius R so that the Schrodinger
equation can be solved at each fixed R to obtain an
effective potential U(R) and a corresponding ‘“‘channel
function.” At the end of this section we comment on the
different hyperspherical angles chosen by other workers,
particularly those used by quantum chemists. In Sec. I1I
we discuss the various methods of solving the channel
function and weigh the advantage as well as the disadvan-
tages of the methods. We are interested in an efficient
numerical method which can give reliable potentials
U(R) for the whole range of R and a wide range of
masses of the three-body systems. This is achieved by
analyzing the properties of the differential equations in
the large- as well as the small-R limits. The adopted
method is a generalization of the analytical channel func-
tions!’ that was used in the study of two-electron atoms.
In Sec. III D we discuss the symmetry consideration for
cases where there are two identical particles. Some typi-
cal results for H-,e ete ", pTpTu~,andd *d tp~ are
shown in Sec. IV, where the adiabatic potential curves
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are calculated with a single basis function. We also con-
sider three distinguishable particles such as e pte™,
ptu~d*,and d tu~t ™, where the two lowest potential
curves are calculated with two basis functions. The fu-
ture directions and perspective of this general approach
are discussed in Sec. V.

II. HYPERSPHERICAL COORDINATES AND THE
COULOMBIC THREE-BODY HAMILTONIAN

A. The coordinate systems

To be specific we confine ourselves to discuss three-
body systems in the center-of-mass frame. Let r; denote
the coordinates of particle / in the laboratory frame,
which has mass m;. A possible set of Jacobi coordinates
is given in Fig. 1(a). This is denoted as the a set. The
vector from particle 1 to particle 2 is p;, with reduced
mass p,=mm,/(m;+m,). The second vector p, is
from the center of mass of particles 1 and 2 to particle 3,
with reduced mass pu,=(m;+m,)m;/(m;+m,+mj).
This choice of Jacobi coordinates is not unique. Two
other possible sets are given in Figs. 1(b) and 1(c); they
are designated as 8 and v, respectively. This procedure
can obviously be generalized to N-body systems.

Let M =3 m; be the total mass of the system and u be
the coordinates of the center of mass; there exist two im-
portant identities for the different sets of Jacobi coordi-
nates for the N-body system,

N N-1
S miai= 3 pipi+Mu?, (1
i=1 j=1
LS T A L W O ol )
Zrm 3 Sy azpj M 3%

If we further introduce a set of mass-weighted vectors,
&= /u)’p,; , (3)

where u is arbitrary, then Egs. (1) and (2) become
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where the £’s are similar to Cartesian coordinates.
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FIG. 1. Three different sets of Jacobi coordinates for three-
body systems.
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B. The grand angular momentum operator
and hyperspherical harmonics

Kinetic-energy operator for the three-body system is
2 3 2 2 2
— _ﬁ_ _1_72 2 L 9 1 Ei
i i j=1 .u'] a M o‘u
(6)

By defining a hyperspherical radius R and a hyperangle
é,

=§% +§% ’
tang=¢,/§, ,
the kinetic-energy operator is rewritten as

92 5.8  AMQ)

ﬁZ
"2 R TROR ~ R?

where () denotes the set of five angles, Q=(¢,§1,Ez), and
A?is the grand angular momentum operator

1 d

A Q)= — ————— L |in2 cos?p-L-
sin’¢ cos’¢p d¢ sin’ cos ¢ d¢
BE) 1XE)
1 21 2 22 . ©)
cos‘9  sin‘g

The eigenvalues and the normalized eigenfunctions of
A%(Q) are well known,

AN Q)Y ()= Aig )+ Y (D), (10)
where
A[K]=2m +11 +12 > (l])

and the normalized eigenfunctions are

ll ~ A
Y Q=0 (DY) 1,1u(1,65) (12)

where [K] denotes a set of quantum numbers m, [, /,, L
and M, and

(I, +1/2,1 +l/2)

0511(4)=62"5in"2¢ cos' ¢ P (13)

L, . o ~
Here 6,2 is a normalization constant and P\*? is a
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Jacobi polynomial. In (12), .V, LLM §,,§2 is the coupled

total orbital angular momentum function. The eigen-
functions Y(x;(Q2) form a complete and orthonormal set
satisfying

[ dQ Y (@)Y () =8y » (14)

where the volume element dQ=cos2$sin’dpdddE,dE,.
The above equations, (6)—(14), can be written for each of
the three sets of Jacobi coordinates.

From Egs. (4) and (5), it is clear that the grand angular
momentum operator is independent of the chosen Jacobi
coordinates,

AN Q) =AQP)=A%QY) . (15)

Therefore, it is possible to expand the eigenfunction of
one set in terms of the eigenfunctions of another set
within the given subset with Ajgj=A g},

)= 2[1('] A[llgl] aal(ﬂ)Y[K'](Qal) . (16)

Here a' denotes either the B or ¥ set and 7 is related to
the mass ratio of the particles. The expansion coefficients

AR )= [ dQY ey (@Y Q%) (a7

Yk (Q

are called the transformation brackets'® of the hyper-
spherical harmonic functions. A program for their evalu-
ations has been written and is given in Ref. 16.

C. Coulomb particles in different sets
of Jacobi coordinates

If the charges of the three particles are given by Z e,
Z,e, and Z e, respectively, the total Coulomb potential is

. Z,Z,e? N Z,Z;e? N Z,Z,e?
T12 23 F3
(18)
Z\Zye* Z,Zie' Z,Ze?
o T
where r;; is the distance between particles / and j. The

second equation above expresses that the total Coulomb
potential is most simply given in terms of combinations
of different sets of Jacobi coordinates. In practice, it is
desirable to express the potential in one set of Jacobi
coordinates only. From the simple geometric construc-
tion, the following relations can be derived:

(@) ) M3 @ VI R p |
P =—p _m2+m3 1 =‘—[ (23) ] E +m2+m #(1/_9) §]
() m3s o 2 Y 3 p Y
—_n\Y)__ Y)— Y)__ Y
P m, P! 2 52 my+my | plv 1 } (192)
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From (18) and (19), for example, we can write the Coulomb potential in terms of the 3-set coordinates,
Z,z, Z,Z,
yih=e? 172 m 172 172
M ) A N D 2 P L_| gp
pd my+ms | uf pf
Z,Z,
+ 172 m 72 (20)
B B _ 2 B £p
WP matmy |
[
An expression like (20) is used in the evaluation of matrix AX Q)
elements when the wave functions are given in 8 coordi- +U q> (R;Q)= U (R)(l) (R;Q) (24)
nates.
and the hyperradial wave function satisfies
D. Adiabatic treatment in hyperspherical coordinates )
d 15
Using the mass-weighted Jacobi coordinates, the 4R 4R’ —U,+e+ W, (R) |F,(R)
Schrédinger equation in the center-of-mass coordinate
system is + 3 W, (RF,(R)=0, (25a)
—ﬁ-—2—<v2 V)4V |V=EV 21
2 gtVe )+ = . where
. W, ,=2({®, |d/dR | ® R +(®,|d*/dR?*|®,) .
Equation (21) resembles the Schrodinger equation for the e ( uld/dR | v1d/dR +{ uld®/ |®,)
two-electron atoms except that the potential has compli- (25b)

cated mass-weighted factors. In terms of hyperspherical
coordinates, letting ¥ =9yR —3/2 (21) becomes

al
3’°R

A%(Q)
RZ

4R?

+U—¢ |[(FR3%)=0

(22)

where U =2u Ve a e=2,u/ﬁ2E, and A? is the grand an-
gular momentum operator defined in (9). Following the
success of applying the quasiseparable approximation in
hyperspherical coordinates in the study of doubly excited
states of atoms, we expand

WR,Q)= 3 F,(R)D,(R;Q), (23)
u

where the channel function P, satisfies the equation

By dropping the interchannel coupling, the hyperradial
wave function satisfies the one-dimensional equation
d2
dR*?

15
T aRr?

—U,+e+ W, (R) |F,(R)=0. (26)

The validity of (26) has been demonstrated for two-
electron atoms.! Its validity will be assumed here.

The quasiseparability approximation allows us to ex-
amine the correlation, or equivalently, the geometric
structure of the three particles if the particles are
confined to a sharp-density distribution in configuration
space. One of our goals in the study of Coulombic three-
body problems is to examine how the shape varies with
respect to the masses of the three particles.

It is appropriate to comment on the specific hyper-
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spherical angles chosen in our approach. We retain the
spherical angles £,,&, of the two Jacobi radius vectors in
each set of Jacobi coordinates. This has the advantage
that the wave function for each adiabatic channel reduces
to the independent particle wave function directly in the
limit of two-body breakup, i.e., in the limit of large hy-
perradius. This choice is in contrast with the hyper-
spherical coordinates being used by quantum chem-
ists®~10 where three of the hyperspherical angles were
chosen to be the Euler angles of the three-body system.
The latter methods reduce the six-dimensional
Schrodinger equation to a set of coupled three-
dimensional partial differential equations in the two inter-
nal angles and the hyperradius.!*> Upon applying the
quasiseparable approximation, the three-dimensional
equations are reduced to eigenvalue problems in the two
remaining hyperangles at each R which are then solved
using finite-element methods.®~® The latter approach
has the disadvantage that the structure of the differential
equation becomes more complicated for nonzero total an-
gular momentum states and that the solution of the adia-
batic potential curves appears to be more complicated.
In the present approach, we take advantage of the known
solutions of Eq. (24) in the asymptotic region (R — o)
and generalize them to the smaller-R region, to be de-
scribed in Sec. III.

III. METHODS OF THE SOLUTION
OF HYPERSPHERICAL CHANNEL FUNCTIONS

The major task in the hyperspherical approach is the
numerical solution of the channel equation (24). For
Coulombic three-body systems, the potential energy
scales like 1/R, while the kinetic-energy term in (24)
scales like 1/R% Thus the solution of (24) can be ex-
panded in terms of hyperspherical harmonics at small R.
At large R, if we only consider two-body breakup chan-
nels, then in the asymptotic limit the system reduces to a
pair of charged particles which are described by hydro-
genic wave functions (as functions of £;) and a particle at
a large distance. To find the most convenient method for
solving the channel equation (24), we need to examine the
properties of channel functions in the limit of R —0 and
of R > .

The Coulombic three-body systems consist either of
three distinguishable charged particles ABC or of two
identical charged particles and a third different particle
A AC. For bound states to exist, the sign of the charge in
two of the particles has to be different. We adopt the
convention that the two particles which have the same
sign in charge are A and B if they are distinguishable and
that they are also labeled as particles 1 and 2, respective-
ly. For A AC systems, C is always designated as the third
particle. According to this convention, the two-body
breakup combinations are 4 +(BC) or B +( AC), and
they are described most conveniently by the B-set Jacobi
coordinates and y-set Jacobi coordinates, respectively.
For A AC systems, the two-body breakup is 4 +( AC).
In this case, proper symmetrization of the wave function
is required.

The wave functions considered here include only the
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spatial part. For A AC systems, the spatial wave func-
tions have to be combined properly with the spin func-
tions to obtain correct overall symmetries for the total
wave functions. This combination depends on whether
particle A4 is a Fermi particle or a Bose particle.

This section is organized into a few subsections. In
Sec. IIIA we discuss the symmetry of hyperspherical
harmonic functions in a set coordinates. In Sec. III B we
examine the potential surface for a number of systems in
a- and in B-set coordinates. This is followed by Sec.
III C, where we describe how the channel equation (24)
can be solved by expanding in terms of a complete set of
hyperspherical harmonic functions. This method, al-
though quite straightforward, is not very useful in prac-
tice because of its slow convergence. This slow conver-
gence is attributed to the fact that the asymptotic solu-
tions are not easily expanded in terms of hyperspherical
harmonics. In Sec. III D the asymptotic behavior of the
channel equation (R — « ) is examined. Following Lin, ®
we propose a new set of analytical channel functions as
the basis functions for the solution of (24). In Sec. IIIE
we discuss the “mixed” basis functions where analytical
channel functions in different Jacobi coordinates are used
to solve Eq. (24). Practical problems in the evaluation of
matrix elements in this approach are addressed in Sec.
IITF. Some preliminary results are given in Sec. IV.

A. Symmetries in hyperspherical harmonic functions

The symmetry of the wave functions for 4 AC systems
is most conveniently examined if the wave functions are
expressed in the a-set coordinates. Since there are no
spin interactions, the spatial wave function has well-
defined quantum numbers L, M, and parity. At small R,
it is convenient to expand the channel function in hyper-
spherical harmonics,

(D#(R;Q): E[K]g[K](R)Y[K](Qa) ’ (27)

where [K]=[!,,/,,m] and where the explicit dependence
of these quantum numbers on a has been dropped for
simplicity. The interchange of particles 1 and 2 is
equivalent to changing p, to —p,, while p, remains un-
changed. From (12), the hyperspherical harmonics ac-
quires a phase (—1)' under such an operation. If the
spatial wave function is symmetric under interchange of
particles 1 and 2, then only even /, values are allowed in
the expansion. If the spatial wave function is antisym-
metric, then only odd /, is allowed. There are no other
restrictions on the values of /, and /, except that they
have to satisfy the triangular relation with L and that the
sum [/, +/, is even (odd) for even (odd) parity states.
There is no restriction on the values of m.

The symmetry conditions for wave functions expressed
in B- and y-set coordinates are more complicated. They
are discussed in Sec. ITI E below.

B. Potential surfaces in hyperspherical coordinates

The total Coulomb potential energy between three
charged particles can be written in hyperspherical coordi-
nates in the form
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FIG. 2. Potential surfaces of H™ at constant hyperradius in (a) a-set and (b) B-set Jacobi coordinates. The repulsive “wall” at
¢=90° in (a) has been “chopped” off. Potential energies are given in arbitrary units.

V(R,Q)=C(¢,0)/R , (28)
where 0 is the angle between the two Jacobi coordinates
&, and &, and the effective charge C depends on the an-
gles used. Contour plots of the effective charges C in a-
and in B-set coordinates are shown in Figs. 2, 3, and 4 for
H™,e e e* and d*d Tu™~, respectively, and in Fig. 5
for the e *p te ~ system.

We first compare the potential surfaces of H™ in
different sets of Jacobi angles. In Fig. 2(b) we note that
the potential surface in S-set coordinates is similar to the
one examined in previous studies for H™ (see Fig. 2 of
Ref. 1). This is not surprising since in this case the Jacobi

(a)e-e*e-
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I

;nnuum,!y;{yynunnm
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171 nu’ it

0.0

-10.0

v(£8)

-20.0F

-40.0

‘%,QM a5°
! o o ¢

cos 8° !

90°

coordinates p{f’ =~ —r,, p¥’~r,, where r, and r, are the
vectors from the nucleus to the two electrons. The two
potential valleys are due to the strong electron-nucleus
attraction and the spike is due to the Coulomb repulsion
between the two electrons when they are nearly on top of
each other. The same potential takes on quite a different
look when expressed in the a-set coordinates. As shown
in Fig. 2(a), the special features of this surface are the two
sharp attractive singular potential ‘“holes” and the
infinite repulsion wall (chopped off in the figure) at
$=90°. The two holes correspond to the two potential
valleys and the repulsive wall corresponds to the spike in
Fig. 2(b), respectively.

(b)e-ete-

500

250

-25.0}

g

FIG. 3. Same as Fig. 2 but fore "e *e .
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FIG. 4. Same as Fig. 2 but for d Tud*.

The location of singularities in the potential surface in
a given set of Jacobi angles can be easily found by exam-
ining the expression of the Coulomb potential expressed
in that coordinate system. In a-set coordinates, the
repulsive singularity occurs when cos¢=0 or ¢=90°".
Two attractive singularities occur at (6,¢)=(0°¢§) and
(180° ¢5), where
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FIG. 5. Potential surface for e *p *e~ in the B-set Jacobi
coordinates. The repulsive wall at ¢ =0 has been “‘chopped” off.

(a) 172

M2
e
This angle is 44.98° for H™. If the mass of the proton is
assumed to be infinite, this angle would be 45°.

We now look at the potential surfaces in a-set coordi-
nates for other systems. From Figs. 2(a), 3(a), and 4(a),
we note that the potential surfaces for all three systems
are very similar. The repulsive wall is always located at
¢=90°, and the two attractive holes are always located
symmetrically at (6,¢)=(0%¢§) and (180°¢g), with
#5=44.98°, 30°, and 9.40° for H™, e~ ete™, and
d*tu—d™, respectively. In fact, this angle is 0.945° for
H,*. The similarity of these potential surfaces, as seen in
a-set coordinates, provides a first hint of possible similar
physical behaviors of these Coulombic three-body sys-
tems. We comment that this coordinate system is the
“natural” one used in the Born-Oppenheimer treatment
of the H,™ molecular ion. However, this is also the coor-
dinate system where the potential surface is symmetric
with respect to 6=90°, or with respect to the interchange
of the two identical particles. We further stress that the
axis between the two identical particles, i.e., the symme-
try axis, has been shown recently to be an approximate
internal axis of rotation for the doubly excited states'>!”
as well as for double-escape states!® of atomic systems
such as H™ and He. The physical basis of this internal
axis of rotation may be attributed to the fact that this
axis is the symmetry axis for any three-body system with
two identical particles.

The potential surfaces in B-set coordinates also show
singularities. There are two attractive singularities, one
is a line along ¢#=90°, the other is at the point =0° and
¢ :¢g, where

m,

tangg = (29

172
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Thus there is a potential valley along gﬁ =90° and an at-
tractive potential hole at (6,4)=(0°,45). The angle ¢5 is
0.0312°, 30° 71.20° 88.11°for H™, e e et,dVtd u~,
and H,*, respectively. The repulsive singularity occurs
at 6=180° and

172

m
s , 31)

ud
P
where ¢£=44.984°, 30°, 9.4°, and 0.945° for H-,
e e et,dd*u~, and H,™", respectively. The poten-
tial surfaces do not exhibit any symmetries in B-set coor-
dinates. For 4 AC systems, the potential surface in the y
set would look like the corresponding one in the 3 set.

It may be noted that the potential hole for H™ at
(6,¢)=(0°0.0312°) does not show up as a hole in Fig.
2(b) but rather as a potential valley. The graphic resolu-
tion was unable to pick up such details in a small angular
range. We note that the potential surface in Fig. 2(b)
displays symmetry only if the mass of the proton can be
approximated as infinite, or correspondingly, when the
mass polarization effect is neglected. The singularities in
the potential surfaces are summarized for a number of
three-body Coulombic systems in Table I.

tanglf= "~
2
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C. Expansions in hyperspherical harmonics

Equation (24) can in principle be solved by expanding
the channel function in terms of hyperspherical harmon-
ics. For ABC systems, one can choose hyperspherical
harmonics among the a-, B-, or y-set coordinates. For a
converged calculation, the result would not depend on
the coordinate set chosen. For the A AC system, it is
more convenient to use the a set since the exchange sym-
metry between the two identical particles can then be
conveniently carried out (see Sec. III A). In terms of hy-
perspherical harmonics in the a set, the repulsive poten-
tial between particles 1 and 2 [to be abbreviated as the
(12) interaction] is diagonal in (/,/,). Mixture of (/,,/,)
pairs is due to the attractive interactions between 1 and 3,
and between 2 and 3. This is very different from the con-
ventional independent-particle approximation in atoms
where the interelectronic repulsion is responsible for the
breakdown of /| and /, quantum numbers. Of course, the
!, and [, used here are not the angular momenta of any
two particles; rather, they are those due to the composite
reduced particles in the a set.

The expansion in hyperspherical harmonics is known
to converge very slowly. In the limit of large hyperradii,

TABLE I. Singular points in the potential surfaces in different Jacobi coordinates for Coulombic

three-body systems.

H- e e et dtd*tu~ HY etpte~ dtttu~

a set

Repulsive line

o= 90° 90° 90° 90° 90° 90°

Attractive point

6= 0° 0° 0 0° 0° 0

o= 44.98° 30° 9.40° 0.945° 0.0312° 6.912°

Attractive point

0= 180° 180° 180° 180° 180° 180°

o= 44.98° 30° 9.40° 0.945° 44.98° 10.307°
B set

Repulsive point

0= 180° 180° 180° 180° 180° 180°

o= 44.984° 30° 9.40° 0.945° 0.0312° 6.91°

Attractive line

o= 90° 90° 90° 90° 90° 90°

Attractive point

6= 0 o o (0 (0} 0

o= 0.0312° 30° 71.20° 88.11° 44.98° 72.78°
v set

Repulsive point

6= o 0 0° 0° (0 0°

o= 44.984° 30° 9.40° 0.945° 44.98° 10.307°

Attractive line

o= 90° 90° 90° 90° 90° 90°

Attractive point

0= 180° 180° 180° 180° 180° 180°

b= 0.0312° 30° 71.20° 88.11° 44.98° 72.78°
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the channel function reduces to hydrogenic solutions
near the deep potential wells at (¢,0)=(4§,0°) and
(#§,180°) (see Table I). We expect that the physical solu-
tions to concentrate near these two singularities. Such lo-
calized solutions cannot be conveniently expanded in hy-
perspherical harmonics which are polynomial functions
in ¢ and 6. In other words, it would take a very large set
of hyperspherical harmonic functions including large
values of (I/,,/,) and m quantum numbers to obtain
reasonable accuracy for the channel functions at large R.
Although this can be done by selective prediagonalization
of a subset of hyperspherical harmonics, '*%° the need of a
large basis set makes such a method less appealing.

D. Asymptotic solutions in the large-R limit

To describe physical solutions in the large-R limit
where particles 2 and 3 form a bound state, it is con-
venient to use 3-set Jacobi coordinates. In this limit, the
angular momentum /, is the orbital angular momentum
of the two-body system (23) which is limited to small
values if only low-lying states are considered. Since /,
and /, have to form a triangular relation with L, the con-
J
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vergence in terms of the expansion in (/,,/,) pairs is quite
fast. (Note: All the quantities in this subsection refer to
the B set.) Furthermore, the approximate channel solu-
tions in the large-R limits are known—they are hydro-
genic solutions of the (23) system. By taking advantage
of these known solutions, we follow Lin'® in developing a
set of analytic channel functions for each pair of (/,,/,).
Define

®,=X,(R;Q)/(sing cosd) . (32)
Equation (24) becomes
2 BE) BE
e, e Ziz +V|X,=U,X,
R | 3% cos’p  sin’¢p
(33)

In the large-R limit, particle 1 is far away from the (23)
pair, and we have

£, =R cosp, &;=Rsing~R as ¢p—>m/2, (34)

and (33) reduces to

K l s Zye2 Z,Z,4
R v
§
Hy '
2ue? Z,Z, Z,Z,
+ ,u2 72 7z 7+ 72 172
# £ &+ ™ £ 3 £ &r— T2 £ 3
K my+ms | 1 K2 my+ms | By
+-L §2 +§~——+12 +o|-L||x,=ux (35)
R? 8251 1 €, R* u etp o
|
The first terms in the large parentheses are the hydrogen- Z,=—1, the asymptotic potential to order 1/R? can be
ic Hamiltonian with effective charge Z =(u,/u)!'?Z,Z obtained by diagonalizing the operator
and mass u. Its eigenvalue is —p,Z3Z%3/n? Ry 11
(e =#i=1), where n is the principal quantum number. U,‘(R)=—,u 7+ =5 (—2upcos6+15) . 37

This is identical to the energy of the hydrogenic system
(23) with charges Z, and Z; and reduced mass u,. By ex-
pandmg the terms in the second large parentheses to or-
der 1/p2, we obtain

Z,z, m, P1
— —cosé
P2 my+ms p,
VAV A m
+ Sk 2 ﬂc056 , (36)
P2 my+mj p,

where p, is the radius of the hydrogenic system (23). It
can be shown'* that the terms in the last large
parentheses excluding 13 in (35) are canceled by the diago-
nal nonadiabatic coupling term (X, |d*/dR*|X,). By
specializing to Z,=Z,=—1,Z;=+1lor Z,=2Z,=+1,

R 2
Note that the dipole term in the 1/R? coefficient has the
correct reduced mass. For states which lie below the
N >2 hydrogenic limit, this dipole term contributes to
the long-range coupling. In this case, the channel func-
tion in the asymptotic region is a linear combination of
hydrogenic wave functions.!®> These channel functions
are said to be in the dipole representation.

In the asymptotic limit, the function X, for each
(1,1,)1s

EiRu EVY 1 1yim
where R,,,l is the hydrogenic radial wave function. This

is the asymptotic solution for ¢ —90°. It is our intention
to generalize this hydrogenic solution to the small-R re-
gion. To do this, we examine the ¢ dependence in the
R =0 limit which is given by the hyperspherical harmon-
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ics. Following Lin'® it is clear that one should multiply a

. 1 . .
factor (sing) > * by the hydrogenic function such that
our analytical channel function in the S set is

®P=CR,, (£)&(sing) 'Y, | ;) /(cossing) ,  (38)

where C =C(R) is a normalization constant.

With this choice of basis functions, we expect that only
a few analytical channel functions are needed in the cal-
culation of channel functions for those states which disso-
ciate to 1+ (23). Notice that the states which are well
represented by the expansion (38) are those which lie in
the potential well along ¢*=90° in Figs. 2-5. Those
states which dissociate as (13) + 2 correspond to states
concentrate near the hole, i.e., in the (¢’3=¢0,0=0) re-
gion in Figs. 2—5. These latter states are better expressed
in the ¥ set where they would lie in the potential well
along ¢¥=90".

E. A mixed basis function for solving
the channel functions

We have now discussed the advantages of various sets
of hyperspherical angles for describing states in the
three-body system in each limited region of space. Un-
fortunately, a full solution requires us to deal with the
whole space. A possible basis set in the solution of the
channel function is then to express the channel function
as

q)”: Zg’,(a)Y[Ki](ﬂa)+ Egj(ﬂkp;ﬂ)(R ;Q(ﬁ))
! J
+ 3 e (R Q) (39)
k

This expansion has been expressed specifically for the
Coulombic three-body systems where there are no (1 + 2)
bound states in the asymptotic region. The hyperspheri-
cal harmonics in the a set are added in the expansion
only to account for possible slow convergence in the
small-R region. Our preliminary calculations indicated
that these functions are not necessary, but definite con-
clusion cannot be made until full calculations have been
carried out. In generalizing (39) to other three-body sys-
tems where the pair interactions among the particles are
all attractive, as in most triatomic molecules, the a-set
hyperspherical harmonics will be replaced by the channel
functions describing the bound state of the (1 + 2) pair.

The expansion (39) requires some modifications in the
presence of identical particles in the system. For 4 AC
systems, the symmetry condition is properly enforced in
the a-set hyperspherical harmonics by limiting the values
of /,. For the B set, we note that the interchange of 1 and
2 gives a set similar to that of the y set except that p,
goes from 1 to 3 instead of from 3 to 1. A symmetric
solution can be constructed from

[@P(1,2,3)+9$(2,1,3)]
B
—[®(1,2,3)+(—1)1®}(1,2,3)]
(40)
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where the last line follows from the inversion properties
of the wave function of the (23) system. To put Eq. (40)
in a more general form, if particles 1 and 2 are spin-J fer-
mions, then the proper basis functions are

B
[0£(1,2,3)+(—1)° Tei(1,2,3)], 41)
and (39) is replaced by
(I)#: zgi(a)Y[Ki](Qa)
1

(B (B S+15 ()
+2_g/3[<p, +(=1) o] 42)
J

Here i denotes the set of /1*,15*),m'® quantum numbers;
j, the set of n'®,1'P I quantum numbers; and S is the
total spin of the two identical particles.

If the two identical particles are bosons, such as the
two deuterons in the d *d tu~ system, we require that
the total wave functions be symmetric. Since each deute-
ron has spin 1, the total spin of the two deuterons can be
0, 1, and 2. The spin function for the total spin-1 state is
antisymmetric so that the spatial wave function should be
antisymmetric. The spin functions for total spin-0 and
spin-2 states are symmetric so that the spatial functions
are symmetric. Therefore, the basis expansion (42) can be
applied to d *d *u~ system as well. In the present ap-
proximation we consider only the Coulomb interactions
between the particles, thus the spin-0 and -2 states are de-
generate.

F. Practical problems in the numerical calculations

The mixed-base expansions in (39) or (42) would allow
us to use a small number of functions in the solution of
the channel wave functions. In practical calculations
there are a number of complications. Firstly, the analyti-
cal channel function at each R has to be normalized.
This poses additional problems for the basis functions in
(42) since one is required to evaluate overlap integrals of
basis functions between the B-set and y-set coordinates.
Secondly, the analytical channel functions are not or-
thogonal. Thirdly, we need to face the difficulty of calcu-
lating matrix elements of the types

(Y Qo) | V| 0P,
(Y((Q9) |V [ D)), (43)
(@P |V D) .

This is the price we have to pay for insisting on using a
small basis set. On the whole we still believe that this is a
more practical approach since we can use our physical
understanding of the two-body problems in choosing
basis functions.

The evaluation of matrix elements in (43) is carried out
with the aid of the transformation bracket!'® of hyper-
spherical harmonics. To evaluate the first matrix element
of (43), for example, we can expand the a-set hyperspher-
ical harmonics in terms of -set hyperspherical harmon-
ics and then the matrix elements are evaluated in B-set
coordinates. There are no intrinsic approximations used
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in the calculation of this matrix element. Similarly, this
can be done for the second matrix elements. For the
third matrix element of (43) we first expand ¢}’ in terms
of y-set hyperspherical harmonics,

0= Cr Y (P i - (44)

Note that the values of /; and /, are fixed in this expan-
sion. The y-set hyperspherical harmonics can be
transformed to B-set hyperspherical harmonics using the
transformation bracket. The resulting integral is then
evaluated in SB-set coordinates. The major approximation
in this approach is the truncated expansion in (44). The
truncation error is more serious in the large-R region.
However, at large R the overlap as well as the matrix ele-
ments of the type in (43) become smaller since in the dis-
sociation limit the different breakup channels do not
overlap significantly.

G. Merits and intrinsic limitations of the method

It is appropriate to comment on the merits and the in-
trinsic limitations of the method proposed here, in partic-
ular, in its comparison with other existing methods in the
literature for the solution of three-body Coulomb prob-
lems in hyperspherical coordinates. Firstly, the present
method is applicable directly to states of arbitrary total
orbital angular momentum L of the three-body system
and to a wide range of masses for the three particles. The
(anti)symmetrization of the total wave function for sys-
tems with identical particles can be easily implemented.
Secondly, the method can be generalized to molecular
and nuclear three-body problems straightforwardly. The
method takes advantage of the known analytical or semi-
analytical solutions of the two-body system in each disso-
ciation channel, thus the basis functions needed in the
calculation can be chosen intelligently in accordance with
the physical system under consideration.

There are two other methods which have been applied
to the solution of the channel equation (24) for arbitrary
L’s of which we are aware. In the work of Botero and
Greene, 1’ the solution in (24) is expanded in terms of hy-
perspherical harmonics in a-set coordinates (see Sec.
IIIC). The slow convergence of this method is well
known, and it is difficult to apply the method to systems
where m /m; (m =m | =m,) is much greater than unity,
such as d Tu~d ™, for example. In the other limit where
my/m (mis m; or m,) is very small, i.e., the “molecular
limit” such as H,™ and HD *, the channel function has
been solved in powers of m;/m to first order by Macek
and Jerjian.?! If one is limited to L =0 states, then a
method similar to the present one has been applied by
Botero and Greene*? to e “e Te ™ by using the same
analytical channel functions as ours. Their method
reduces the evaluation of matrix elements to two-
dimensional integrals since no Euler angles are presented
for L =0 states. Other forms of basis functions can be
used for expansion in the solution of (24). For example,
Botero?? introduced Hylleraas-type functions and calcu-
lated the lowest potential curves for d*tu~t* and
d*u~d* systems variationally. Generalization of these
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two methods to states with L0 becomes quite compli-
cated and has not been implemented so far.

There are a number of potential intrinsic limitations on
the present method which should be addressed. It is
known that the adiabatic basis functions converge slowly
in the asymptotic region?* (large R). How serious is this
in scattering problems has to be addressed in the future in
actual calculations, but methods for matching solutions
to the independent-particle coordinates exist.?> The basis
functions used in our present method are nonorthogonal.
In calculations where a large basis set is employed, one
may question the possibility of numerical linear depen-
dence. This possibility is reduced by the fact that the
analytical basis functions used here are intended such
that a “minimum” basis set is to be employed. The linear
dependence can be avoided also by a judicious choice of
basis functions. Since the basis set is expected to be
small, this can be easily done. In the present approach,
the rearrangement coupling is evaluated using transfor-
mation brackets of hyperspherical harmonics. Since
these integrals are of a short-range nature this has not
limited the accuracy of our calculations severely. These
rearrangement integrals can be calculated’® by a two-
dimensional numerical integration similar to those used
by Botero and Greene?? for any L’s, but similar numeri-
cal difficulty exists at large R.

IV. APPLICATIONS

To test the utility of analytical channel functions and
the method discussed in this article for the solution of the
adiabatic potential curves, in this section we present cal-
culations for a number of Coulombic three-body systems
using only one basis function for 4 AC systems and two
basis functions for ABC systems. For 4 AC systems, the
basis function is

=¢®+(—1) g,

. R (45)
¢(B):CR 1s(&1)(sing) zylllzLM(gl’gz) ’
where
Ry (&) =exp(—V pZ,Z,&;) (46)

is the hydrogenic 1s (/, =0) radial wave function, C is a
normalization constant, and all the labels refer to B-set
coordinates. The potential curve obtained corresponds to
the lowest curve for the symmetry considered. For ABC
systems, we include two basis functions, one in the 3 set
and another in the y set

D=App'P+ 4,97, @7

where ¢'7) has the same form as ¢"#’. The two resulting
potential curves correspond to the lowest curve in each of
the 4 +(BC) and B +( AC) dissociation limits. In the
evaluation of matrix elements involving functions from
different sets of Jacobi coordinates, we need to expand
the analytical channel function in terms of hyperspherical
harmonics [see Eq. (44)]. In the present work we limit
the expansion to the lowest 13 functions, i.e., with
m =0,1,2,...,12. The convergence of this expansion is
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excellent for small R and adequate for large R. We note
again that we need to do this expansion only when
evaluating integrals involving functions from two
different sets of coordinates. At large R, such integrals
are small and thus the truncation error is not significant.

In the following we present some typical results. It is
not our intention to discuss each system in detail here
since we have only performed simple calculations so far.
More complete calculations including doubly excited
states for each system are underway and the results from
those studies will be reported in due time. However, the
present simple calculations do display how the behaviors
of the physical systems evolve as the masses of the parti-
cles are varied.

A. H™

The center of mass for this system is very close to the
proton, and p{~r, and pf~ —r,. Therefore, the basis
functions presented here do not differ in any significant
way from the ones used previously!> by assuming the
mass of the proton to be infinite. The lowest potential
curves for ">S¢ and ""3P° calculated using the present
method reproduced the previous calculations. !> We just
mention that for H™ the lowest 'S¢ potential curve which
supports only one bound state—the ground state of H™
is attractive, and that the lowest curves for 3S¢, 'P°, and
3P°, are completely repulsive. The readers are referred to
Refs. 1 or 15 for details of these curves.

B.e e et

Potential curves corresponding to 'S¢, 3S¢, and 'P° for
this system are shown in Fig. 6. For 'S°, we can compare
our one-basis function result with the calculation of
Botero and Greene.?? These authors obtained the poten-
tial curve, shown by the dashed-dotted lines, by diagonal-
izing the Hamiltonian starting with [8-set analytical chan-
nel functions (similar to ours), but the integrals were eval-
uated in a-set coordinates. Notice that a single analytical
channel function in the B set already provides a very
good approximation to the calculation of Botero and
Greene. We expect that our results converge with theirs
if a few more basis functions are included. The
discrepancy is due to the lack of “angular correlation” in
the present calculation in that basis sets of p? and d?, i.e.,
(1,,1;)=(1,1) and (2,2) were not included. (A similar
study for H™ has been reported, see Ref. 27.) This work
is in progress and the results will be reported together
with the study of doubly excited states of this system.

We have also shown the lowest potential curves for >S¢
and 'P°. Both curves are repulsive and look similar to
the corresponding ones in H™. Except for the mass scal-
ing, we note that there is no drastic difference in the po-
tential curves between H™ and ¢ “e “e *. Such mass scal-
ing h;s been studied recently in a Hylleraas-type calcula-
tion.

C.d*td* u~

This system has been studied quite extensively in con-
junction with the interest in muon-catalyzed fusion. The
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FIG. 6. Adiabatic potential curves for e e *e~ calculated
with a single analytical channel function for 'S¢, 3S¢, and 'P°
symmetries. The dashed-dotted line is from the calculation of
Ref. 22.

lowest 'S° potential curve calculated with one basis func-
tion is shown in Fig. 7. The potential curve is normalized
so that it approaches —1.0 Ry in the dissociation limit
[absolute energy scale is obtained by (multiplied by) the
reduced mass of the (du) pair]. To demonstrate that di-
agonalization in the a-set hyperspherical harmonics gives
very slow convergence, we also indicate in Fig. 7 in
dashed-dotted lines the potential curve obtained by di-
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FIG. 7. Adiabatic potential curves for 'S¢ and *P° sym-
metries of the d *d "1~ system calculated with a single analyti-
cal channel function. The energy scale is normalized to — 1.0
Ry asymptotically, see text. The dashed-dotted line is obtained
by diagonalization in a set of 39 hyperspherical harmonics in
a-set coordinates (see text).
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agonalizing in a basis of 39 hyperspherical harmonics.
The hyperspherical harmonics chosen are (I,/,m)
=(0,0,m), m=0,1,...,8; (2,2,m), m
=0,1,2,...,6; (4,4,m), m =0,1,2,3; (6,6,m), m =0,1;
(1,1,0), 1 =8,10,12,14. We note that diagonalization us-
ing hyperspherical harmonics gives better results at small
R, but becomes less accurate than the result obtained
from a single analytical channel basis function at
moderate and large values of R.

In Fig. 7 we also show the 3P° curve. This curve is to
be compared with the 3P° curvein H- orine "e “e*. In
spite of the different statistics and corresponding spins,
the spatial functions for the *P° states of these systems
are antisymmetric. (Since deuterons are bosons with spin
1, the spin function correspond to this state is antisym-
metric, i.e., S =1.) We note that this curve has an attrac-
tive potential well with a repulsive barrier at large R
(varies as 2/R ?), in contrast with the complete repulsive
curves in H™ and in e e ~e ™. In other words, we wit-
nessed a drastic change in the shape of potential curves,
and thus the spectra, as the mass ratio of the system is
changed. We comment that there are two bound states
known to exist for this curve.? 32 To get accurate quan-
titative results, we would need to perform calculations in
a larger basis set. We only demonstrate that a single
basis function calculation is already capable of exhibiting
the major features of this three-body system.

D.p*p*u~

We have calculated the lowest potential curves for
both 'S¢ and !*P° symmetries. The S* potential curve,
as shown in Fig. 8, is very similar to the one shown for

-08
+ -
. \ PP ]
\\
\
\
\
__-os} \ .
b
&
(2]
[}
5
o -LO|
=]
— -
=
5
a =Ll
-2 1 1 L 1 1
4 8 12 16 20 24
R (@.u)

FIG. 8. Adiabatic potential curves for 'S¢, 'P°, and *P° sym-
metries of the p*p *u~ system calculated with a single analyti-
cal channel function. The energy scale has been normalized as
in Fig. 7.
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the d *d T~ system. In terms of the normalized energy
scale explained in Sec. IV C, we note that the minimum
value of the potential curve in this case is slightly lower
than that in d *d Tu~. One has to remember though that
the hyperspherical radius is mass-weighted so that it is
not the internuclear separation. We emphasize here that
the 'P° curve is completely repulsive and the *P° curve
shows an attractive potential well at small R, similar to
the one shown ford t*d *pu~.

We stress here that both of the L =1 curves are com-
pletely repulsive for H™ and for e "e "e *, but one of the
L =1 curves show an attractive potential well at small R
for ptp*tu~ and for d *d *u~. In the future it would be
desirable to investigate the minimum value of m,/m;
which would result in at least one bound state for L =1.
Similar questions can be raised for other L’s.

E.etpte~

We show the two lowest potential curves for L =0 and
L =1, respectively, in Fig. 9. The two L =0 curves are
almost indistinguishable from the calculation of Pelikan
and Klar®® where they used a large set of hyperspherical
harmonics (about 200) to diagonalize the Hamiltonian.
The attractive potential wells are not strong enough to
support bound states. The two L =1 curves are com-
pletely repulsive, see Fig. 9.
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FIG. 9. The two lowest potential curves for L =0 and L =1
of e*p*te ™ system calculated with one analytical channel func-
tion in B-set coordinates and one in y-set coordinates. One of
the curves for each L converges to the ground state of H and
another to the ground state of positronium.
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FIG. 10. The same as Fig. 9 but for the p*d *u~ system.
The lower pair of curves converge to the ground state of
(d *pu~) and the upper pair of curves to the ground state of
(p*p~). The energy scale has been normalized as in Fig. 7.

F.ptd*tu~

The two lowest potential curves for L =0 and L =1
are shown in Fig. 10. It is normalized such that the
asymptotic limit of the lowest curve is —1.0 Ry. The
special feature for this system is that the lowest L =1
curve exhibits a potential well at small R and a potential
barrier at large R where the potential behaves asymptoti-
cally like 2/R % This is quite different from the e *p e~
system where the L =1 curves are completely repulsive.
On the other hand, we can compare the two L =1 curves
with the two L =1 curves for p*p*u~. The lowest
L =1 curve here corresponds to the *P° curve for
ptptu~, and the repulsive L =1 curve corresponds to
the 'P° curve forp*ptu~.

G. d*ttu~

We show in Fig. 11 the two L =0 potential curves and
the lowest L =1 curve. The L =1 curve is of particular
interest in the study of muon-catalyzed fusion.** It has
been shown by other calculations that there are two
bound states for L =1 and the second state, with binding
energy at —0.61 eV, is responsible for the resonant
enhancement of the fusion cross section as muon is
slowed down in a d-t mixture. Work is in progress to ob-
tain more precise potential curves in order to obtain pre-
cise energy values.

We comment here that the present method is not very
effective in treating the familiar H,* and HD *. It turns
out that the solution for these systems is highly localized
near its singular points (see Table I) and its expansion in
terms of hyperspherical harmonics [Eq. (44)] converges
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FIG. 11. The two lowest L =0 curves and the lowest curve
for L =1 of the d *t*u~ system. The second repulsive L =1
curve is not shown. The energy scale has been normalized as in
Fig. 7.

slowly. To obtain a converged result would require a
much larger set of hyperspherical harmonics in (44) than
carried out in the present study.

V. SUMMARY AND DISCUSSION

In this article we have proposed a method of solving
Coulombic three-body problems in hyperspherical coor-
dinates. By adopting an adiabatic approximation, we ob-
tain the channel wave functions and channel potential
curves. We illustrated how to construct analytical chan-
nel functions in different sets of Jacobi coordinates. The
use of these different sets of Jacobi coordinates allows us
to treat each dissociation channel in its natural coordi-
nate system. This is crucial in applying the present ap-
proach to rearrangement scatterings.

We have performed preliminary calculations using the
present method on a number of Coulombic three-body
systems using only one or two basis functions. These re-
sults prove that the method works efficiently and we are
currently investigating each system using a larger basis
set.

The present method is not limited to Coulombic three-
body systems. The method can be easily applied to
three-body systems in molecular physics and in nuclear
physics.
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