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We present a diabatization technique in combination with the recently developed hyperspherical close
coupling(HSCC) method. In contrast to the strict diabatization, our simple diabatization procedure transforms
only sharp avoided crossings in the adiabatic hyperspherical potential curves into real crossings. With this
approach, the weak collision channels can be removed from the close-coupling calculations. This method is
used to study the antiproton-hydrogen collision at low energies. In the case of a scaled down(anti)proton mass,
we show that a 10-channel calculation is enough to obtain converged cross sections at low energies. The results
also indicate that protonium formation occurs mostly to the lowest states of the different excited protonium
manifolds.
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I. INTRODUCTION

Recently the production and detection of cold antihydro-
gen atoms has been reported by the ATHENA[1] and the
ATRAP [2,3] Collaborations. These experiments represent a
very important milestone for the antiproton decelerator(AD)
at CERN. As a massive negatively charged particle, the an-
tiproton can form exotic systems by replacing an electron in
an atom[4–7]. As an antiparticle, it is a basic ingredient to
produce antiatoms. The simplest one, the antihydrogen, can
be produced and studied in laboratories[8]. The antihydro-
gen is important in order to compare matter and antimatter
properties and interactions[9,10]. The antiproton can also
combine with a proton to form protonium, which is the sim-
plest hadronic form of neutral matter. In particular, it is also
of interest to determine the rate of annihilation of the anti-
proton with the proton[11].

We are here interested in the collision of an antiproton
with atomic hydrogen, which can produce protonium in ex-
cited states. It has been shown by previous studies[11–14]
that protonium formation is important only at low energies,
i.e., below the ionization threshold. In particular, we are in-
terested in very low energy collisions where the antiprotons
come from cold traps at a temperature of about 4.2 K or less.
For such collisions, a full quantum mechanical calculation is
desired. However, a full quantum mechanical coupled-
channel calculation for this collision system is difficult since
the protonium is produced in highly excited states. If we
assume the kinetic energy of the antiproton is nearly zero,
the protonium will be formed mainly in states with a princi-
pal quantum number given byn=Împp̄<30, wherempp̄ is
the reduced mass of protonium. That means that a full quan-
tum mechanical calculation would include about 500 chan-
nels (from the ground state ton=30 excited states of proto-
nium and the entrance channel). For this reason, most of
previous approaches[11,12,14] have focused on the total
protonium formation cross section, or the formation to dif-

ferent manifolds, but not the formation to specific individual
protonium states which are needed if the properties of pro-
tonium are to be studied. Recently, Esry and Sadeghpour
[15] calculated the formation cross sections to the different
protonium states, in cases where the proton mass was scaled
down to below 20 a.u. The protonium formation then occurs
mostly to then=2 or n=3 manifold. In this case, they used
about 30 channels to perform the calculation.

A full coupled-channel calculation forp̄-H collision is
complicated from a practical point of view even if calcula-
tions including a few hundred channels are possible. For low
energy collisions, it is expected in general that only a few
channels are important if proper basis set can be identified.
Experience drawn from ion-atom collisions with highly
charged ions and the model calculation of Esry and Sadegh-
pour [15] indicated that only a few dominant channels are
populated in such collisions. Clearly it is desirable to use
only these dominant channels in the coupled channel calcu-
lation. However, the adiabatic potential curves used in the
coupled channel calculation usually have numerous avoided
crossings which make channel elimination difficult.

Recently we have developed a hyperspherical close-
coupling method for studying collisions involving three par-
ticles. The method has been applied to a number of ion-atom
collision systems[16–19]. For collisions involving multiply
charged ions where electron is captured to the excited states,
we have tested the channel elimination method. To eliminate
channels, we first have to find a simple method to obtain
diabatic potential curves. We do not define diabatic potentials
in the strict sense such that there are no nonadiabatic cou-
plings after diabatization. Rather we chose to diabatize chan-
nels among them where the avoided crossings are very nar-
row. The weak channels that do not couple strongly with the
entrance channel are then eliminated in the coupled channel
calculation. The method has been tested by comparing the
results from the full calculation and from the truncated cal-
culation to justify the procedure.

In this paper, we will use the hyperspherical close cou-
pling method to thep̄-H collision. In order to be able to test
the channel truncation method adequately and to study the
nature of the channel functions, we will first assume that the
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proton mass is equal to 100 a.u. such that the protonium will
be formed mostly atn=7 excited states at low energies. For
a full coupled channel calculation, this would require only
about 50 channels which can be easily carried out. Our goal
here is to illustrate the diabatization and the channel trunca-
tion methods, to identify the nature of those channels that
should be kept in the truncated calculation and to confirm
that indeed the truncated calculation is adequate for the
dominant channels. This test would allow us to select the
dominant channels which should be included when the real
p̄-H collision is calculated and where full calculation with all
the channels included is difficult to employ.

This paper is organized as follows. In Sec. II we describe
the diabatization technique used in this paper in combination
with the hyperspherical close-coupling method. The results
for the p̄-H collision at low energies with proton mass of
100 a.u. are presented in Sec. III. The last section contains a
summary and conclusions.

Atomic units are used throughout the paper unless other-
wise indicated.

II. THE DIABATIC HYPERSPHERICAL
CLOSE-COUPLING METHOD

The hyperspherical close-coupling method(HSCC) has
been used previously to study charge transfer in ion-atom
collisions[16–19]. We refer the reader to[16] for details on
the method. In this paper we combine HSCC method with a
diabatization technique, which transforms the sharp avoided
crossings in the adiabatic potential curves into real crossings.
The idea is to remove, after the diabatization, weak collision
channels from the close-coupling calculations.

Adiabatic and diabatic representations are related by a
unitary transformation

FD = CFA, s1d

whereFA and FD are adiabatic and diabatic channel func-
tions, respectively, andC is the unitary transformation ma-
trix. It is well known f20,21g that if the transformation ma-
trix is chosen as the solution of the linear equation

CP+
dC

dR
= 0, s2d

where the matrixP is given by

Pij = −KFi
AU d

dR
UF j

AL , s3d

then in the diabatic representation all the nonadiabatic cou-
pling terms will vanish. This full diabatic procedure has two
drawbacks. First the matrix elementsPij have to be calcu-
lated accurately over the whole range ofR which is difficult
to do especially in the avoided crossing region. Second, the
resulting diabatic curves often deviate too much from the
adiabatic potential curves such that the simplicity of the adia-
batic picture can get lost. Over the years there have been
many attempts to find quasi-diabatic representations or to
find diabatic Hamiltonianf22–26g such that the resulting po-
tential curves can have real crossings instead of the sharp

avoided crossings. Most of these methods require the
P-matrix as input which can be calculated accurately in the
avoided crossing region only if adiabatic states are calculated
over a very densely distributed mesh of points. The alterna-
tive method of defining diabatic Hamiltonian is not easy to
implement either, and the method would depend critically on
the nature of the problem. In the HSCC method as presented
in f16g, we adopted the smooth/slow-variable discretization
sSVDd technique of Tolstikhinet al. [27]. In this approach
the nonadiabatic coupling matrixP is not calculated as these
couplings are implicitly included in the overlap matrix be-
tween the channel functions. Within the same spirit, our goal
is to perform diabatization using only the overlap matrix
elements.

In order to solve this problem and avoid the calculation of
nonadiabatic couplings, we choose to approximate the de-
rivative with respect to the hyperradius in Eq.(2) by simple
difference. ThePij matrix elements are then given by

Pij <
1

DR
skFi

AsRduF j
AsRdl − kFi

AsRduF j
AsR+ DRdld s4d

and become proportional to the difference of two overlaps of
adiabatic functions at two neighboring points. Similarly, the
derivative of theC matrix with respect to hyperradius is
replaced by

dCij

dR
<

CijsR+ DRd − CijsRd
DR

. s5d

By substituting these approximations into Eq.s2d, we get a
simple equation for theC matrix

CijsR+ DRd < o
k

CiksRdkFk
AsRduF j

AsR+ DRdl. s6d

TheC matrix atR+DR is then given by the product of theC
matrix atR with the overlaps of adiabatic functions at points
R andR+DR.

Note that the summation in Eq.(6) runs over all channels.
This is required to diabatize all the adiabatic potential curves
over the whole space of the adiabatic basis set. However, our
goal is to diabatize only the sharp avoided crossings, where
usually a small number of channels contributes. Thus we
want to limit the summation to these channels. To choose the
channels that are really involved in the avoided crossing we
notice that the characteristic feature near the sharp avoided
crossing is the drastic change of the adiabatic channel func-
tions. Since a measure of the change of the functions is the
overlaps, a natural criterion should be based on their magni-
tude. More specifically, we choose to include in the summa-
tion in Eq. (6) only those channelsk whose overlaps at two
neighboring points satisfy

ukFk
AsRn+1duF j

AsRndlu . a. s7d

The smaller the parametera, the more diabatic the final po-
tential curves. The diabatization procedure starts at large dis-
tances, where we choose the initial condition forC to be
equal to the identity matrix. This means that at large dis-
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tances, adiabatic and diabatic representations are identical.
We then rewrite Eq.s6d as

CijsRnd < o
k

CiksRn+1dkFk
AsRn+1duF j

AsRndl, s8d

where the summation overk is limited by Eq.s7d. This equa-
tion is used to propagate theC matrix down toR=0. Once
the diabatic basis is obtained, further implementation of di-
abatic HSCC is straightforward with the adiabatic channel
functions being replaced by the diabatic ones. In practice, we
vary a and the step sizeDRn to make sure that the final cross
sections are stable. Typically, we useda equal to 0.2.This
diabatization technique has the advantage of providing po-
tential curves not too different from the adiabatic ones
sonly sharp avoided crossings are transformedd. Therefore,
our intuitive adiabatic picture of the collision dynamics,
based on the important broad avoided crossings, is still
valid. Moreover, it is clear that we do not need to calcu-
late the nonadiabatic couplings within this approach.

III. p̄-H COLLISION AT LOW ENERGIES

To represent the three-body system formed by the antipro-
ton, the proton and the electron, we choose the Jacobi coor-
dinates defined as follows: the first Jacobi vectorr1 goes
from the antiproton to the electron, and the second vectorr2
goes from the center of mass of the antiproton-electron pair
to the proton. The hyperradius is then given by

R=Îm1

m
r1

2 +
m2

m
r2

2, s9d

wherem1 is the reduced mass between the antiproton and the
electron,m2 is the reduced mass between the proton and the
antiproton-electron pair, andm is an arbitrary mass factor
chosen here equal tom1.

Figures 1 and 2 represent the adiabatic and diabatic po-
tential curves, respectively, in the case of a proton mass of
100 a.u. and total angular momentumJ=0. The potential

curves are plotted with respect to the hyperradiusR at rela-
tively small distances in order to illustrate the region where
they interact mostly. Only the protonium states correspond-
ing to then=5,6,7 and 8manifolds are shown, as they are
the closest ones to the Hs1sd entrance channel. The adiabatic
potential curves were obtained by solving adiabatic equation
in the su ,fd angular plane, whereu is the angle between the
two Jacobi vectors andf is the hyperangle with tanf
=Îm2/m1r2/r1 (see[16]). The diabatic curves were obtained
from the adiabatic ones, using the procedure described in the
previous section. We denote the protonium states asun, jl,
wheren represents the manifold, andj gives the position in
the manifolds j ønd in the asymptotic region, counting from
the lowest one.

From the comparison of these two figures, it is clear that
it is easier to identify the different potential curves down to
small distances in the diabatic picture. In particular the Hs1sd
entrance channel becomes a smooth curve as the sharp
avoided crossings occurring between 20 a.u. and 60 a.u.
have been transformed into real crossings. One particular
avoided crossing between the Hs1sd channel and theu7,1l
protonium channel nearR=18 a.u. has not been diabatized,
because it corresponds to a broad avoided crossing. We ex-
pect this avoided crossing to play an important role in the
protonium formation, leading to the formation of the proto-
nium u7,1l state.

Figure 3 displays the different protonium channel func-
tions at a fixed hyperradius of 100 a.u. At this large distance,
diabatic and adiabatic channel functions are identical. The
figure shows density contour plots in thesu ,fd angular
space. In these plots the range off is limited to 0.3 radians
as the protonium channel functions are localized around the
protonium singularity of the Coulomb potential. This singu-
larity occurs atu=p andf<0.07. Nodal lines appear in the
protonium functions as they correspond to excited states. Be-
longing to then=7 manifold, these channel functions have
the same number of nodal lines. The repartition of nodal
curves between the two orientations changes progressively
from the lowest stateu7,1l to the highest stateu7,7l.

FIG. 1. (Color online) Hypersphericaladiabaticpotential curves
sJ=0d for p̄-H collisions. Only protonium manifoldsn=5,6,7 and
8 are shown together with the entrance channel which dissociates to
Hs1sd and p̄.

FIG. 2. (Color online) Hypersphericaldiabatic potential curves
sJ=0d for p̄-H collisions. Only protonium manifoldsn=5,6,7 and
8 are shown together with the entrance channel which dissociates to
Hs1sd and p̄.
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Figure 4 illustrates the evolution of channel functions
with respect to the hyperradius. The two states shown are the
Hs1sd entrance channel and theu7,1l protonium channel. As
the results of the diabatization, the diabatic channel functions
vary smoothly with the hyperradius. At the hyperradius of
60 a.u., the channel functions are well localized around the
singularities of the Coulomb potential. This distance is in-
deed far from the interaction region which occurs forR
smaller than about 20 a.u. The Hs1sd channel function pre-
sents only one peak, as expected from the ground state. As
the hyperradius is decreased to 20 a.u., the channel functions
still have similar structures, compared to that ofR=60 a.u.,
but extend over a larger region of the angular space. The
Hs1sd state remains relatively localized close tof=p /2, but
the protonium state moved from small values off to about
p /4. At R=15 a.u., we have entered the interaction region as
can be seen from the two channel functions which occupy
similar angular space and thus a larger overlap between
neighboring points is expected. The overlap between the
Hs1sd and Pnsu7,1ld states was indeed found to be rather
large. However, by looking at the other protonium states(not
shown here), the overlap of the Hs1sd entrance channel with
the higher channels of then=7 protonium manifold was
found to decrease rapidly, to become practically zero with
the highest channel Pnsu7,7ld. This is the consequence of the
large difference in the nodal structures of the channel func-
tions. From this analysis we expect protonium formation to
occur mostly to the Pnsu7,1ld state. Similarly, we found that
the lowest state from each manifold for the lower manifolds
is the most important one for the protonium formation.

In order to reduce the number of channels included in the
calculations, we need a way to identify the dominant chan-
nels for the collision process. This can be done by comparing
the couplings between different channels. In Fig. 5 we show

the largest radial couplings as functions of hyperradius from
0 up to 700 a.u. The radial couplings have been evaluated
approximately by using Eq.(4). From the figure we see that
the largest couplings occur for protonium states of different
manifolds that have the same position in the manifolds. For
example, the protonium channelu7,1l is strongly coupled to
channelsu8,1l andu6,1l. Similarly the channelu7,2l couples
mostly with channelsu8,2l and u6,2l. However the coupling
between channelsu7,1l and u7,2l is very small. These dif-
ferent couplings can be explained by the differences in the
nodal structure of these states. These results, together with
Fig. 4, suggest that the collision will populate preferably the
lowest states of manifolds close to the entrance channel.

Figure 5 also indicates that the radial couplings between
similar channels from different manifolds decrease quite
slowly with the hyperadius. This means that the distribution
of the population in the different protonium states can
change up to large distances. In practical calculations we did
the matching atR=600 a.u., and checked the stability of the
results against matchings at 500 a.u. and 700 a.u. The slower
convergence of the calculation for the present system in
comparison to the typical ion-atom collisions is in part due to
the mass scaled hyperspherical coordinates used. Forr2
greater thanr1, the hyperradius is roughly the square root of
the reduced mass ofm2 multiplied byr2. Thus a matching at
about 700 a.u. would amounts to a matching atr2 at about
100 a.u. which is not large considering that we are dealing
with low-energy collisions. The larger matching radius does
not cause any numerical difficulty since the matrix elements
are very smooth in the largeR region and large step size can
be used for the integration.

Table I illustrates our numerical results for thep̄-H cross
sections at low energies. These cross sections correspond to a
total orbital angular momentumJ=0 (spin is not considered).
We have observed that theJ=1 contribution becomes negli-

FIG. 3. (Color online) Diabatic
channel functions of selective pro-
tonium states represented in the
su ,fd angular plane. The proto-
nium states are theu7,1l, u7,3l,
u7,5l and u7,7l states of then=7
manifold. The hyperradius is fixed
at 100 a.u.
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gible for antiproton kinetic energies lower than 0.1 a.u. The
full HSCC calculation includes 46 channels, i.e., all the pro-
tonium states fromn=1 up to n=9. The cross sections are
given at five antiproton kinetic energies from about 0.2 a.u.
down to 2310−5 a.u. These energies are also indicated in
degrees kelvin in order to relate them to the typical energies

FIG. 4. (Color online) Evolu-
tion of the Hs1sd and Pnsu7,1ld di-
abatic channel functions with re-
spect to hyperradius.

FIG. 5. (Color online) Radial couplings between some proto-
nium channels as functions of hyperradius.

TABLE I. Protonium formation and elastic cross sections(in
atomic units), at five antiproton kinetic energies, for a total angular
momentumJ=0. The cross sections correspond to a HSCC calcu-
lation including 46 adiabatic channels. The energies are also given
in degrees kelvin. The number in square brackets denotes the power
of 10.

Ep̄ sa.u.d 1.9 f−1g 3.0 f−2g 2.0 f−3g 3.0 f−4g 2.0 f−5g

Ep̄sKd 59700 9460 660 94 6.3

n=1 8f−8g 6f−7g 1f−5g 1f−4g 1f−3g
n=2 3f−6g 1f−5g 7f−4g 4f−3g 0.04

n=3 5f−5g 2f−4g 3f−3g 0.02 0.21

n=4 5f−4g 2f−3g 0.04 0.29 2.88

n=5 0.01 0.03 0.53 3.93 39.9

n=6 0.04 0.29 4.11 33.8 354

u6,1l 0.036 0.27 3.79 31.8 333

u6,2l 0.004 0.02 0.31 2.0 20.7

n=7 0.11 1.14 16.7 121 1237

u7,1l 0.11 1.12 16.4 118 1212

u7,2l 0.00 0.01 0.27 2.15 22.2

Total 0.16 1.46 21.4 159 1634

Elastic 0.47 0.53 7.04 464 1703
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in a trap(a few degrees kelvin). The table contains the total
protonium formation cross sections to the manifoldsn=1 to
n=7, and to the lowest states of then=6 and 7 manifolds.
The tabulated results show two trends. First, the protonium
formation cross sections increase rapidly with decreasing en-
ergy. Indeed, the total protonium formation cross section
goes from about 0.2 a.u. at the energy of 0.2 a.u. up to about
1600 a.u. at the energy of 2310−5 a.u. Secondly, the proto-
nium formation cross sections drop drastically as the channel
index decreases fromn=7 (dominant) down to then=1.
Also, the formation occurs mostly to the lowest states of
each manifold. This is in agreement with the analysis of
diabatic potential curves and radial couplings.

From the results of Table I, we can now consider the
elimination of weak channels in order to reduce the size of
the calculations. As explained before the choice of the chan-
nels included in the calculations is based on the analysis of
couplings. In Table II we present a comparison of cross sec-
tions obtained by the full calculation, i.e., including 46 chan-
nels, and a truncated calculation including only 10 channels.
According to the previous results, the 10 channels are chosen
as the lowest states of the different manifolds. More pre-
cisely, we choose the lowest state of manifoldn=3 to n=8,
and the second lowest state of manifoldsn=6,7 and 8. The
tenth channel is the Hs1sd entrance channel. The most im-
portant diabatic potential curves for this calculation are illus-
trated in Fig. 6. They correspond to the two lowest proto-
nium states of manifoldsn=6,7 and 8, and to the Hs1sd
entrance channel. Figure 6 shows clearly the broad avoided
crossing between the Hs1sd entrance channel and the
Pnsu7,1ld protonium state.

Table II compares the cross sections of the two calcula-
tions at two kinetic energies of the antiproton. The results of
the truncated calculation are in very good agreement with the
full calculation. The error due to the elimination of channels
is indeed less than a few percents for the dominant channels.
The formation cross sections to the lowest states, such as

u4,1l and u5,1l channels, are not as good. In any event, this
is not important as the cross sections for these states are very
small in comparison with the dominant states ofn=6 and
n=7. Even the elastic cross section is well reproduced with
only 10 channels. These results show clearly that weak chan-
nels can be removed from the calculation without significant
loss of accuracy of the cross sections at low energies.

In Fig. 7 we show the main protonium formation cross
sections times the velocity(a measure of the rate constant),
obtained by the 10-channel calculation, with respect to the
antiproton kinetic energy down to very low energies. The
total protonium formation and elastic cross sections are also
plotted. Note that a rate constant of 1 a.u. corresponds to
6.13310−9 cm3/s. This figure illustrates the fast increase of
the protonium formation rate with decreasing energy. The
total protonium formation cross section is about 10000 a.u.
at an energy of 10−6 a.u. At very low energies these cross
sections display the expected behavior according to the

TABLE II. Comparison ofJ=0 cross sections for thep̄-H col-
lision obtained by the 46 adiabatic channels calculation(see Table
I) and the truncated one including only 10 diabatic channels. The
number in square brackets denotes the power of 10.

46
channels

10
channels

46
channels

10
channels

Ep̄ sa.u.d 3.0 f−2g 3.0 f−2g 3.0 f−4g 3.0 f−4g
Ep̄ sKd 9460 9460 94 94

u4,1l 2f−3g 8f−4g 0.29 0.08

u5,1l 0.03 0.02 3.93 2.04

n=6 0.29 0.33 33.8 32.7

u6,1l 0.27 0.30 31.8 29.9

u6,2l 0.02 0.03 2.0 2.78

n=7 1.14 1.12 121 123

u7,1l 1.12 1.12 118 120

u7,2l 0.01 0.02 2.15 2.68

Total 1.46 1.47 159 158

Elastic 0.53 0.55 464 467

FIG. 6. (Color online) Main hyperspherical diabatic potential
curves forp̄-H included in the 10-channel calculation. The 6 chan-
nels which dissociate to the two lowest protonium states of mani-
folds n=6,7 and 8 areshown together with the Hs1sd entrance
channel.

FIG. 7. (Color online) Protonium formation cross sections time
the velocity obtained by a 10-channel calculation, as functions of
the antiproton kinetic energy. The total protonium formation and
elastic cross sections are also shown.
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Wigner threshold law[28]. The elastic cross section tends to
a constant value, and the total protonium formation cross
section behaves like 1/v, i.e., the formation rate tends to a
constant value.

IV. SUMMARY AND CONCLUSIONS

In this paper we have combined the hyperspherical close-
coupling method with a diabatization technique which trans-
forms sharp avoided crossings in potential curves into real
crossings. With this approach, we have investigated the
elimination of weak collision channels from the close-
coupling calculations.

We have applied this method to the study of thep̄-H
collision at low energies. In order to simplify the problem,
we have considered a model system where the(anti)proton
mass is chosen to be 100 a.u. instead of the real value of
1837 a.u. Our results are consistent with the previous study
of Esry and Sadeghpour[15] where the mass of the proton
and antiproton were taken to be less than 20 a.u. In our

model study with(anti)proton mass equal to 100 a.u., the
dominant protonium formation is to then=7 manifold. We
have shown that protonium formation occurs mostly to the
lowest states of the different manifolds. With the elimination
procedure, we show that only 10 channels are needed to get
the cross sections with a few percent error over a broad range
at low energies.

These results are encouraging for the treatment of the re-
alistic antiproton-hydrogen collision, with(anti)proton mass
of 1837 a.u. The muonic system, which corresponds to an
intermediate case with a “proton” mass of 200 a.u., could
also be calculated. In that last case, the formation would
occur mainly to then=10 manifold. The method introduced
in this paper can also be used to study charge transfer reac-
tions in atomic collisions with highly charged ions.
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