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The results of diabatic hyperspherical close-coupling calculations are presented for the charge exchange of
a negative muon from muonic hydrogen to oxygen and nitrogen for collision energies from 10−3 to 103 eV. It
is shown that converged results can be obtained using a much smaller number of channels than in the
traditional adiabatic approach. For the energy range below 10 eV our results for nitrogen are in good agree-
ments with the available experimental data and the recent calculations within hyperspherical elliptic coordi-
nates. However, discrepancies were found in the case of oxygen, where ap-wave shape resonance is shown to
contribute significantly to the cross sections. We show that for oxygen thep-wave resonance extends to a large
volume and is sensitive to the many-body effect. Calculations including outer screening of the oxygen atom
have been performed to illustrate the importance of this effect.
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I. INTRODUCTION

Muon transfer between muonic hydrogen and other atoms
has been investigated for over 40 years, both experimentally
and theoretically ssee, for example,f1g and references
thereind, in the framework of muon-catalyzed fusion, where
even a small amount of high-Z atom contamination can sig-
nificantly affect the fusion reaction by preventing the muon
from continuing the chain reaction. It is therefore not surpris-
ing that a good number of experiments have been carried out
to study muon transfer to high-Z atomsf2–5g. Whereas early
interest in this problem was related to the muon-catalyzed
fusion program, recent interest is more related to metrology
and tests for quantum electrodynamic theoriesssee, for ex-
amples, Refs.f6–8gd.

On the theoretical side, these three-body reactions involv-
ing heavy-particle transfer continue to be challenging prob-
lems. The large charge of the nuclei leads to a strong polar-
ization of the muonic hydrogen in the initial channel and
strong Coulomb repulsion in the final channels. Furthermore,
the number of open channels even at zero collision energy
increases quickly withZ. Therefore it is not surprising that
until recently there had been no quantum dynamical calcula-
tions for these systems.

The first theoretical work for muon capture was done in
1963 by Gershteinf9g, who gave a systematic investigation
within the Landau-Zener model. The first quantum dynami-
cal calculations involving high-charge atoms were done only
recently by Sultanov and Adhikarif10g, who solved two-
state integro-differential equations within the Faddeev equa-
tion formalism for carbon and oxygen. In a series of papers,
Dupayset al. f11,12g and Dupaysf13g quite recently per-
formed calculations using hyperspherical elliptic coordi-
nates. They included a large number of channels and found
reasonably good agreement with experiments for nitrogen,
oxygen, and neon colliding with muonic protium and deute-
rium atoms.

Since the muon-transfer reaction in collisions between
muonic hydrogen and atoms occurs at very small internu-
clear distancesf9g, until now most of the theoretical models
consider the atom as a bare nucleus. Helium is an exception
f14g. The importance of resonant effects at epithermal ener-
gies was first noticed by Kravtsovet al. in the elastic cross
sectionsf15g. In a semiclassical two-state model calculation
Savichev and Blümelf16g showed that inpm-O8+ collisions,
the charge-transfer rate would have a dominant peak at epi-
thermal energies due to the resonance effect. Quite recently,
Romanovf17g showed the effect of screening on the reso-
nances in pm-Ne collisions, using a Jacobi coordinate
coupled-channel method.

In this paper we investigate the muon transfer inpms1sd
colliding with atomic oxygen and nitrogen for collision en-
ergies from 10−3 to 103 eV using the recently developed di-
abatic hyperspherical close-couplingsHSCCd method and
the truncation of channels techniquef18–20g. The idea of
channel truncation is very simple. Once the molecular basis
set is diabatized, the channels that couple weakly with the
entrance channel can be removed from the close-coupling
calculations without significant loss of accuracy. In this pa-
per, we show that for collision energies below 10 eV, only
five channels are needed to get converged results. This
should be compared to the use of 88 channels in the calcu-
lations by Dupayset al. f11,12g and Dupaysf13g for the
same systems. We also show that using this approach, the
calculations for higher partial waves do not pose any diffi-
culties so one can easily perform calculations for collision
energies up to 1 keV or higher, still with a relatively small
number of channels.

The paper is organized as follows. In Sec. II we briefly
describe the HSCC method and the diabatization technique.
The results are presented in Sec. III. The last section contains
a summary and conclusion.

All the energies are given in the center-of-mass frame and
atomic units are used unless otherwise indicated.

II. THEORETICAL METHOD

The HSCC method has been used previously to study
charge transfer in ion-atom collisionsf21g. We refer the*Electronic address: atle@phys.ksu.edu
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reader to Liuet al. f21g for details on the method and Leet
al. f19g and references therein for more recent results on
ion-atom collisions. The method has also been applied to
other three-body collisions involving different combinations
of masses such as antiproton-Hf18g and positron–alkali-
metal collisionsf22g. The diabatization and elimination of
weak channels were introduced by Hesseet al. f18g and have
been applied by Leet al. to He2+-H f19g and by Leeet al. to
O8+-H and Ar8+-H f20g. Here we summarize only the essen-
tials of the method.

The three-body problem, say for muon transfer in
pm-O8+, is solved in mass-weighted hyperspherical coordi-
nates. In the “molecular” frame, the first Jacobi vectorr1 is
chosen to be the vector from O8+ to the proton, with reduced
massm1; and the second Jacobi vectorr2 goes from the
center of mass of O8+ and the proton to the muon, with
reduced massm2. The hyperradiusR and hyperanglef are
defined as

R=Îm1

m
r1

2 +
m2

m
r2

2, s1d

tanf =Îm2

m1

r2

r1
, s2d

wherem is arbitrary. In this paper we chosem=Îm1m2. We
further define an angleu as the angle between the two Jacobi
vectors. The two angleshf ,uj, to be denoted asV, describe
the internal motion of the particles. For describing the rota-
tion of the whole system we use three Euler anglesv̂
=hv1,v2,v3j of the body-fixed frame axes with respect to
the space-fixed frame.

The HSCC treats the hyperradiusR as a slow variable,
similarly to the way the Born-OppenheimersBOd approxi-
mation treats the internuclear distance. Thus we first solve
the adiabatic equation with hyperradiusR fixed to obtain
adiabatic channel functionsFnI

A sR;Vd and adiabatic potential
energiesUnI

A sRd. Here n is the channel index, andI is the
absolute value of the projection of total angular momentumJ
along the body-fixedz8 axis, taken to be the axis between
O8+ and the proton. The superscript “A” designates the chan-
nel functions as adiabatic. We solve this equation by using
B-spline basis functions. Typically about 160 and 80 grid
points are used forf and u, respectively. Special care was
taken so that more grid points were distributed near the sin-
gularities of the Coulomb interactions among the three par-
ticles.

In the next step of the adiabatic HSCC, similarly to the
standard BO approach, we solve the Schrödinger equation by
expanding the wave function in the adiabatic basis,

CsR,V,v̂d = o
n

o
I

FnIsRdFnI
A sR;VdD̃IMJ

J sv̂d. s3d

In this equation,D̃ is the normalized and symmetrized rota-
tion function, andMJ is the projection of angular momentum
J along the space-fixedz axis.

To be able to eliminate the weak channels from the sub-
sequent close-coupling calculations, we first transform from
the adiabatic basis set to a diabatic one. Formally, adiabatic
and diabatic representations are related by a unitary transfor-
mation, written in matrix form as follows:

FD = CFA, s4d

where FA and FD are the adiabatic and diabatic channel
functions, respectively, andC is a unitary matrix. Note that
the diabatic representation is not defined uniquely and de-
pends on how the transformation matrixC is determined. For
our purpose, we defineC in such a way thatFD is as least
sensitive as possible to the variation of hyperradiusR within
the subspace spanned byFA. In other words, we require

DFDsRd ; FDsR+ DRd − FDsRd = 0, s5d

or more explicitlysfor simplicity, we omit theI index in the
following equationsd,

o
n

fCmnsR+ DRdFn
AsR+ DRd − CmnsRdFn

AsRdg = 0. s6d

Multiplying both sides of the above equation byFl
AsR

+DRd and integrating over the angles, we get

CmlsR+ DRd = o
n

CmnsRdkFn
AsRduFl

AsR+ DRdl. s7d

In practice, in order to diabatize the sharp avoided crossings
we limit the summation in the above equation to a few chan-
nels which have the largest overlaps. More precisely, we
choose to include in the summation in Eq.s7d only those
channelsn whose overlaps at two neighboring points satisfy

ukFn
AsR+ DRduFl

AsRdlu . a, s8d

wherea is typically chosen equal to 0.2. The diabatization
should be started from a large enough distance where one
can choose the initial condition forC to be the identity ma-
trix. Using Eqs.s7d and s8d, the transformation matrixC is
then propagated down toR=0. Once the diabatic basis is
obtained, further implementation of the diabatic HSCC ap-
proach is straightforward with the adiabatic channel func-
tions in the expansions3d replaced by the diabatic ones. The
main advantage of this procedure is that it allows us to con-
veniently discard channels that are weakly coupled to the
main channels. The main channels are defined to be those
that couple strongly with the entrance channel and among
themselves. Moreover, since only the sharp avoided cross-
ings are diabatized, our intuitive adiabatic picture of the col-
lision dynamics, based on the important broad avoided cross-
ings, is still valid.

In the last step we solve the coupled hyperradial equations
using a combination of theR-matrix propagationf23g and
slow or smooth variable disretizationsSVDd f24g techniques.
The hyperradius range is divided into sectors and the SVD is
used in each sector. TheR matrix is then propagated from
one sector to the next up to a large hyperradius where the
solutions are matched to the known asymptotic solutions to
extract the scattering matrixSij

J . The calculations are carried
out for each partial wave until a converged cross section is
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reached. The total cross section for transition from initial
statei to final statej is given as the sum over all the partial-
wave cross sections by

si jsEd = o
J

si j
J sEd =

p

ki
2o

J

s2J + 1dPij
J sEd, s9d

where the transition probabilityPij
J sEd is given asuSij

J u2 andki

is the initial momentum.
For relative collision velocityv, the muon-transfer rate is

defined as

lsEd = NvssEd. s10d

This value is traditionally reducedsor normalizedd to the
atomic density of liquid hydrogen withN=NH=4.25
31022 cm−3. To relate to experimental data, we need to cal-
culate the temperature-dependent rate, defined as the average
value of the energy-dependent muon-transfer rate, convo-
luted with a Maxwellian kinetic energy distribution at a
given temperatureT at which the experiments have been
carried out,

lsTd =E
0

`

lsEdÎ 4E

pskTd3 exps− E/kTddE, s11d

wherek is the Boltzmann constant.
In general, the dynamics of the electron shell during the

collision is a complicated problem. The simplest approxima-
tion is to assume that the electron shell remains in the ground
state. The role of the electron cloud is then reduced to the
screening of the electrostatic interaction between the nucleus
and the muonic hydrogen. In order to investigate the effect of
electron screening, we use a simple Thomas-FermisTFd po-
tential f25g. The effective charges for oxygen and nitrogen
are shown in Fig. 1. For computational convenience, the ef-
fective charges were fitted to an analytical function in the
form

Zef f = Znuc exps− a0rd + a1r exps− a2rd s12d

with a0, a1, anda2 equal to 1.3628,210.5135, 3.469 71, and
1.318 44,28.78476, 3.389 27 for oxygen and nitrogen, re-
spectively. The fittings were done up tor =1.2 a.u., which
corresponds to hyperradiusR<2 a.u., where the matching to
the asymptotic solutions is performed. The fittings for oxy-
gen and nitrogen are also shown in Fig. 1.

III. RESULTS AND DISCUSSION

The J=0 diabatic potential curves for thepm-O8+ system
are presented in Fig. 2, up to thesOmd7+sn=8d threshold. The
curves are labeled in accordance with their asymptotic limits.
We note, in particular, the broad avoided crossings between
the entrance channelsblack thick curved and the lowest chan-
nels from thesOmd7+sn=5d manifold sblue thick curved and
the sOmd7+sn=6d manifold sred thick curved just below and
aboveR=0.1 a.u., respectively. As we will see, these avoided
crossings are the most important in determining the charge-
transfer dynamics.

First we compare in Fig. 3 our results for the muon-
capture probability for thes wave with the recent results by
Dupays et al. f11g, who used 88 channels in their close-
coupling calculations. Our three-channel basis includes only
the lowest channels fromsOmd7+sn=5d andsOmd7+sn=6d to-
gether with the entrance channel, whereas the 31-channel
basis includes all the channels fromsOmd7+sn=4d up to
sOmd7+sn=8d. The agreements are very good for the whole
range of energy up to 1 keV with our results lying somewhat
lower than those of Dupayset al. for energies above about
100 eV. Note the dominant contribution from the transition to
n=5, especially below about 10 eV. It should be emphasized
that our three-channel calculations agree very well with the
31-channel calculations, clearly indicating the dominant im-
portance of these three channels in the collision dynamics.

Next we examine in more detail the energy region below
10 eV. It has been noticed by Savichev and Blümelf16g,

FIG. 1. sColor onlined Thomas-Fermi effective charge for oxy-
gen and nitrogen as function of the distance from the nucleus. The
fittings to Eq.s12d are also shown asn soxygend and1 snitrogend.

FIG. 2. sColor onlined J=0 diabatic potential curves for
pms1sd-O8+ up to thesOmd7+sn=8d threshold.
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Romanovf17g, and Dupayset al. f12g that higher partial
waves up toJ=4 can contribute significantly to the capture
cross sections. Our results of five-channel calculations for
the muon transfer rate are shown in Fig. 4, together with the
data from 88-channel calculations by Dupayset al. Besides
the three channels that are included in the three-channel cal-
culations, we add the two lowestI =1 channels from the
sOmd7+sn=5d andsOmd7+sn=6d manifolds. The most promi-
nent feature is that ourp-wave resonance is much narrower
and higher. The peak near 0.04 eV is about a factor of 8
higher than the corresponding value from Dupayset al.
However, aboveE=0.3 eV the two calculations agree quite
well. For the other partial waves the two calculations are in
generally good agreement. The figure also shows that at low
energies thes-wave transfer rate is almost energy indepen-
dent and tends to a constant value in theE→0 limit, in
accordance with the Wigner threshold lawssee, for example,
the review paper by Sadeghpouret al. f26gd. For other partial

waves, the barrier in the potential curve prevents the colli-
sion system from penetrating into the reaction region, and as
a result, the corresponding transition rates drop quickly.

To check the convergence, we performed calculations in-
cluding up to 56 channels from thesOmd7+sn=4d up to
sOmd7+sn=8d threshold, with 31 channels fromI =0, and 25
channels fromI =1. The results are presented in Fig. 5 to-
gether with the results from five-channel calculations. The
comparison clearly shows that the five-channel approxima-
tion is quite adequate for the range of energy below 10 eV.
Further increase in the number of channels, including chan-
nels with higherI, does not change the results significantly.
Furthermore, we performed calculations forp waves with 56
adiabaticchannel functions. The results agree very well with
the 56-channel diabatic calculations and are indistinguish-
able on the scale shown in Fig. 5. We also changed the
matching radius to ensure that stable results were reached.

In order to understand the origin of the discrepancy be-
tween our results and that of Dupayset al. we used different
angular grid distributions in solving the adiabatic equation to
get the adiabatic potential curves with different levels of ac-
curacy. In general, our method achieves about 7–8 digits of
accuracy for the entrance channel. Nevertheless, we found
that small variations in the accuracy of the potential energies
did not lead to any significant changes in the transfer rate.
Furthermore, we have estimated the centrifugal barrier in the
entrance channel for thep wave. The result is 0.100 eV as
compared to 0.09 eV of Dupayset al. ssee Table I fromf12gd.
Note that our estimate is based on the HSCC potential energy
plus the diagonal term of the nonadiabatic couplings. This
somewhat overestimates the barrier heightssee, for example,
f27gd. One can also use a simple estimate based on the
asymptotic behavior for ion-dipole interaction:

Ueffsrd = −
aZ2

2r4 +
JsJ + 1d
2Mr2 . s13d

Herea is the dipole polarizability ofpms1sd, equal to 4.5r0
3,

with r0 being the radius ofpms1sd, M is the reduced mass of

FIG. 3. sColor onlined Partial and total muon-capture probabil-
ity, as function of collision energy, inpms1sd-O8+ for J=0.

FIG. 4. sColor onlined Partial-wave muon-transfer rate in
pms1sd-O8+ as function of collision energy below 10 eV.

FIG. 5. sColor onlined Comparison between 56-channel and
five-channel calculations forpms1sd-O8+ at low energies.
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the nucleus with respect to the muonic hydrogen, andr is the
nucleus-pm distance. This gives the barrier height of 0.084
eV. The position of the maximum is at hyperradiusR
=0.499 a.u., as compared to the asymptotic estimate ofR
=0.520 a.u. As we will see below for the case of the screen-
ing potential, a small change in the barrier height and posi-
tion would lead to a change in the muon-transfer rate, but the
general shape of the resonance would not change. At present
the origin of the discrepancy between the HSCC and hyper-
spherical elliptic coordinates method forp-wave resonance is
not understood.

To compare with experimental data, we need to calculate
the temperature-dependent rate, as defined in Eq.s11d, for
room temperatureT=300 K, at which the experiments have
been carried outf5g. Our result for the thermal muon-transfer
rate is 2.3231011 s−1, which is about three times higher than
the experimental value of 8.5s±0.2d31010 s−1 f5g. It should
be noted that Dupayset al. obtained a thermal rate of 7.77
31010 s−1, in much better agreement with the experiment.
The result by Sultanov and Adhikari of 7.7s±0.5d
31010 s−1 f10g should not be considered too seriously since
they included only theJ=0 partial wave whereas the results
of our calculations and of Dupayset al.both indicate that the
dominant contribution comes from theJ=1 partial wave.

To understand the origin of the discrepancy with the ex-
periment we first notice that the maximum of thep-wave
centrifugal barrier occurs at quite a large hyperradius of
aboutR=0.5 a.u., which corresponds to the internuclear dis-
tance of about 0.28 a.u. At that distance, the screening effect
by the electrons in oxygen should generally be taken into
account, as evident from the Thomas-Fermi effective charge,
shown in Fig. 1. To have an estimate of the effect of screen-
ing we performed the calculation with a simple Thomas-
Fermi potential, as given in Eq.s12d. A simple estimate can
be made based on Eq.s13d. Generally, the smaller value of
the effective charge due to the screening makes the dipole-
ion interaction weaker, so the potential barrier is higher.
Therefore, it is expected that the general effect of screening
is to weaken the interaction between oxygen and muonic
hydrogen and to shift the position of the resonance to higher
energy. In fact, the peak of the barrier is higher by about 10%
and the position of the peak is shifted to smaller hyperradius
by about 5%. Comparison of the partial-wave muon-transfer
rates for the screened and unscreened models is presented in
Fig. 6.

The most profound effect, as one can see from the figure,
is for the p wave. Consistent with what was mentioned
above, the peak of the resonance is shifted toE=0.11 eV,
instead of 0.04 eV as in the unscreened case. The resonance
is also less sharp. The transfer rates for other partial waves
are not changed significantly. With the screening effect taken
into account, our result for the thermal muon-transfer rate is
4.4231010 s−1. This is about a factor of 2 smaller than the
experimental value, and a factor of 5 smaller than in the
unscreened case. Note that similar sensitivity of the transfer
rate due to electron screening was also found recently by
Romanov ford-wave resonance inpm-Ne collisionsf17g.

It is interesting to note that our results for thed wave are
consistent with those of Dupayset al. f12g, who also found a
relatively weakd-wave resonance peak at about 2 eV. This is

in disagreement with the earlier calculations within a semi-
classical two-state model by Savichev and Blümelf16g who
found an intensed-wave resonance at much lower energy of
about 0.2 eV. Furthermore, they argued that the existence of
this intense resonance could explain the double-exponential
behavior in the x-ray decay time spectra, observed in the
measurements for the oxygen casef5g. Indeed, based on the
two-component model of Schneuwlyf28g, a Monte Carlo
simulation was performed to fit the double-exponential be-
havior and a large epithermal rate of 3.931011 s−1 was
found f5g. Our result for the “bare” interaction instead has a
large contribution fromp-wave resonance, peaked nearE
=0.04 eV. Since thep-wave resonance is sensitive to the
details of the interaction potential, it is possible that a more
realistic account of the interaction between oxygen and
muonic hydrogen could reproduce the experimental data at
thermal energies and the results of the Monte Carlo simula-
tion for epithermal energies.

Similar to the oxygen case, we also performed the calcu-
lations for nitrogen. The results for the muon-transfer rate
below 10 eV are shown in Fig. 7 together with the results
from Dupaysf13g. The general agreement between the two
calculations is very good, with our results lying somewhat
lower. Note that at and below thermal energies, mainly thes
wave contributes. Thed-wave resonance is quite intense with
the peak shifted to a bit higher energy of about 0.9 eV, as
compared to the results by Dupays. The structure nearE
=2 eV reported by Dupaysf13g is not reproduced in our
calculations. The thermal muon-transfer rate obtained with
the Maxwellian distribution at room temperature is
3.231010 s−1. This value is in excellent agreement with the
experimental value of 3.4s±0.7d31010 s−1 f2g. With the
screening effect taken into account the thermal muon-
transfer rate is 3.031010 s−1. The weak effect of the screen-
ing on the muon-transfer rate, as compared to the oxygen
case, can be understood, as thep-wave shape resonance is
less profound and occurs at higher energies so its contribu-
tion is relatively small at thermal energies. For completeness,
we show the partial-wave and total muon-transfer rates with

FIG. 6. sColor onlined Comparison of transfer rates for the cases
with and without Thomas-Fermi screening in oxygen.
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screening effect taken into account in Fig. 8. The values of
the thermal muon-transfer rate for oxygen and nitrogen are
summarized in Table I.

We next consider the higher-energy region. The simplicity
of the present method allows us to calculate higher partial
waves without much difficulty. In this work we extend the
calculations up to a collision energy of 1 keV for both oxy-
gen and nitrogen. To get converged results, partial waves up
to J=30 were calculated. For the nitrogen case, mainlyJ
ø25 contribute. The convergence test with respect to the
number of channels for the oxygen case is shown in Fig. 9
for a few partial wavesJ=5, 10, 15, 20, and 25. In the upper
panel we compare the results from five- and seven-channel
calculations. Compared to the five-channel basis, the seven-
channel basis has two additionalI =2 lowest channels from
the sOmd+7sn=5d and sOmd+7sn=6d manifolds. There are no
visual differences between the results from the two calcula-
tions on the scale shown in the figure. This implies very
weak coupling between theI =2 channels and the main chan-

nels. A similar situation has been observed in ion-atom col-
lisions at low energies, where mainly theI =0, 1 channels
contribute. The lower panel compares 11-channel with 56-
channel calculations. The 11-channel basis includes fiveI
=0 and fiveI =1 lowest channels from thesOmd+7sn=5d to
sOmd+7sn=9d manifolds together with the entrance channel.
Clearly, nearly converged results can be obtained with about
11 channels even for energies up to 1 keV. In fact, inclusion
of two additional channels from then=4 manifold would
lead to much better agreement with the 56-channel results.
Further increase in the number of channels does not change
the results significantly. This figure also shows a relatively
small contribution fromJ=25, but it would apparently be
important for energies above 1 keV. We show in Fig. 10 the
total muon-transfer rates for oxygen and nitrogen. Note the
different behaviors for the two cases, with the rate for nitro-
gen increasing much faster compared to that of oxygen at
collision energies below about 300 eV. The small structures
in the oxygen case are due to the resonances associated with
J=5, 6, and 7ssee also Fig. 9 for the caseJ=5d.

FIG. 7. sColor onlined Similar to Fig. 4, but for nitrogen. Total
transfer rate is also shownflighter sbrownd curvesg.

FIG. 8. sColor onlined Similar to Fig. 6, but for nitrogen.

TABLE I. Total average muon-transfer rates, obtained with the
Maxwellian distribution at room temperature. The bottom lines cor-
respond to the results with screened interaction. The experimental
data are taken fromf2,5g; theoretical results of the hyperspherical
elliptic coordinates calculations are taken from Dupaysf13g. The
rates are given in units of 1010 s−1.

Atom Present Dupaysf13g Expt.

Oxygen 23.2 7.77

4.42 8.5±0.2

Nitrogen 3.2 5.2

3.0 3.4±0.7

FIG. 9. sColor onlined High-energy convergence test for
pms1sd-O8+.
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IV. SUMMARY AND CONCLUSIONS

We have presented the results of diabatic hyperspherical
close-coupling calculations for muon transfer in muonic hy-
drogen colliding with atomic oxygen and nitrogen for the
energy range from 1 meV up to 1 keV. The calculated muon-
transfer rate for nitrogen was in very good agreement with
experiments. However, discrepancies with experiments as
well as with earlier calculations were found for oxygen with
the “bare” nuclear charge O8+, where our muon-transfer rate
is about a factor of 3 higher than the other results. The large

p-wave resonance was found to be responsible for that dra-
matic increase in the rate at thermal energies. However, with
the screening effect taken into account by a simple Thomas-
Fermi potential, the calculated value for the rate decreased
by a factor of 5, implying the importance of the screening
due to the atomic electrons at thermal energies. It is possible
that a more elaborate account of the realistic interaction be-
tween oxygen and muonic hydrogen can reproduce the ther-
mal rate extracted from the experimental data and perhaps
even the large epithermal rate found by Monte Carlo simu-
lations. The origin of the discrepancy between our results
and those of Dupayset al. f12g and Dupaysf13g for the
unscreened interaction is not known.

The results of this paper clearly show that by using the
diabatic basis set combined with the elimination of weak
channels, one can obtain converged cross sections with a
much smaller number of channels in the close-coupling cal-
culations, compared to the traditional adiabatic approach.
This is of importance especially for the cases where large
numbers of channels are involved. The highly excited Ryd-
berg states especially near the three-body breakup threshold
can serve as an example of these systems.
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