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Abstract. The operator method is used to construct the solutions of the problem of the polaron
in the strong coupling limit and of the helium atom on the basis of the Hartree—Fock equation.
Eoq = —0.108 51280522 is obtained for the polaron ground-state energy. Energies for 2s and
3s states are also calculated. The other excited states are briefly discussed.

1. Introduction

The operator method (OM) of the approximate solution of the &tihger equation was
suggested in the works of Feranchuk and Komarov [1-3]. In agreement with the results
obtained in these and subsequent works (see, for example, [4-12]), the solution in the
zeroth approximation of the OM gives quite a simple and universal algorithm for obtaining
an approximation, which is uniformly applicable in a wide range of variation of parameters
of the Hamiltonian. Another advantage of the OM is connected with the possibility of
regularly calculating the correction to the zeroth approximation. Here, in any order the
needed calculations are reduced to a simple algebraic procedure of expressing the product
of excitation creation and annihilation operators in the normal form, and this essentially
simplified the use of computers.

As shown by the results of many works the OM is very effective for solving various
physical problems. However, the question of the application of this method in solving non-
linear equations, which are often met in atomic and solid state physics, remains unclear at
present.

In this work we investigate in two examples the possibility of using the OM for solving
non-linear equations such as that of Hartree—Fock:

(i) in an example of the problem of a polaron in the regime of strong electron—phonon
coupling (section 2);
(ii) in an example of the problem of a helium atom (section 3).

It should be noted that such calculations have been carried out on the basis of various
methods. But here, we want to obtain the exact solution by a numerical method. Comparison
of approximate solutions with the exact numerical solution enables us to estimate not only
the accuracy of the approximate solutions, but also the usefulness of their further study.
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2. The operator method in the polaron problem

The problem of a polaron in the strong coupling regime has become of interest since Emin
[13] proposed the mechanism of bipolaron Bose—Einstein condensation to explaif, high-
superconductivity, and on the other hand, the bipolaron is known to exist in this strong
coupling regime [14]. The Hamiltonian of a non-relativistic particle (electron) interacting
with the quantized scalar field of lattice oscillations in an ionic crystal has the form (see,
for example, [6, 7,15, 16] and reviews [17, 18]):

. A g _ _
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Here,c; andcy, are respectively the operators of creation and annihilation of phonons with
frequencyw, and momentunk, A, are the Fourier components of the source density and
Q is the volume of the system. In the theory of the so-called optical polaron, the frequency
of phonons is assumed to be independent of their wavevector. Usually, it is assumed that

ia)o (47'[0{)1/2
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wherex is a dimensionless electron—phonon coupling constant.
For the application of the OM it is conducive to cross to the four-dimensional oscillator
representation using the transformation [19]

Xy = %f(ox)nét
x = argé1)

whereo; (A = 1, 2, 3) are Pauli matrices; (s = 1, 2) are regarded as spinor components.

The physical meaning of ‘extra’ variabjehas been treated in many works (see, for example,

[20, 21] and references therein).
Let us define operators

[w 190 o (., 10
toy= O fex_ 12 + _/2( _13)
a; (w) = > (ES w%) bl (w) = 5 & woE )

Here, the positive parameterwill be defined later. Operators (2) satisfy the commutation
relations

o = o gAL =

)

[as (@), a (@)] = 8 [bs (@), b ()] = 8

(we have written only non-zero commutators). The possibility of using the algebraic method
is conditioned by the fact that all ‘physical’ operators can be expressed through the following
15 operators

M = asbs M+ = aj—bj_ N = a:—a‘y + b;'_bS
m;, = (03)s:1a; s m} = (o)sa bt ©)
ng = (Uk)sza:—at n’; = (U)L)stbj_bs

which form a closed algebrav(4, 2) (see [19]). Here and henceforth, we omit for brevity
the parametew in expressions of the operators. For further use we rewrite some operators
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into this representation as follows
1
X = Z(m;r + my 4 né +nb)
r=E§ Es——w(M++M+N+2)
32
9850

where the operator&/, M, M+ form the subalgebrao(2, 1) and satisfy the following
relations

rA =—

=%Q+N—M—Mﬂ

[M,M*]=2+N [M,2+ N]=2M 2+N,M]=2M". (4)

In the four-dimensional oscillator representatidirspace) the equation for eigenvalue
problemH|V¥) = E|W¥) has the form [19]

LIW)=r(H-E)|¥)=0 (5)

which, in terms of the operators (3), rather simplifies the algebraic calculation of the matrix
elements. It is easy to see that this representation is especially useful for the bound polaron
problem and leads to the equation without singular Coulomb term. Further, we shall limit
ourselves to case of the strong coupling regime, i.e. when 1. It is a well known fact

that, in this limit, one can neglect the quantum fluctuations of the phonon field (see [17]
and a recent discussion in [22]). After introducing the canonical transformations

cr = by + ug c;:b;—i—uz (6)
and neglecting the quantum components, we then have
[:=—1-rA+23/4 o Z (ré’”uk—i—re_"” Bt Z”k"‘k_ @)
2

(here, all measurements are in the system of units whenei&yh = wp = 1). The classical
components of the field can be defined from the condition

oFE oFE
F =_— = (8)
Uy duy,
From equations (5), (7) and (8) we obtain
_ogya (T2 L ik
Uy = —2 (Q) Spire . Q)
Here (...) represents the averagd@|...|¥), where |¥) is the polaron eigenfunction.
Substituting (9) into (7) and than integrating oveme have
’ 2
iZ_LA_g@%3/34ﬂiﬂﬂL
2 (r) |r — 7|
(21/2 / / et I‘If(n)l W ()? - ) (10)
where

x}i = 77?(0,\)3,77; x)/\/ = gs*(ak)st{t-

The emergence of the terngs) and (r)? is conditioned by the changes in the condition of
normalization of wavefunctions in thiespace. Further, we shall consider only s-states of
the polaron. The general case will be treated at the end of this paper. Given the fact that
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the eigenfunctions of s-states are spherically symmetric, i.e. they depend onlyvencan
write U (§) = \I/(r). Averaging (10) over the angles and using the formula

= i[}’/Q(r - +ro@ —71)]
r2+r’2 2crr rr!

where the HeaV|S|de functiah(x) vanishes for < 0, is 1/2 for x = 0 and unity forx > 0,
we have

1 1 4 Py , , o
(—EVA—«/_Zam/d n V) P[ror —r') + ror —r)]—}-mr
x / o / &I )PV OG" — 1) + 0 — )] — rE
W) = 0. (11)

It is clear that equation (11) is an integro-differential equation of the Hartree—Fock type.
This equation can be simplified using new units of energy and length; such units are equal
to the old ones multiplied respectively y? and J«. In these units the parameter
disappears in the last equation. Therefore, we can furthew putl.

Let assume that the polaron eigenfunction has the form

W) =" Culn) (12)
where
|n) = ;(MJ’) "10).
INICE 0]

It is clear that we need to calculate the matrix elements of the operators constftut’sugh
as

(ma, mo|[r20(ry — r2) + r10(r2 — r)llna, n2) = Wmpinan, - (13)

To this effect we use the integral representation

1\? [ too
ro0(r1 —r2) +rb(ra —r1) = (E) /_oo dg1 /_OO dgo 77149272 (g1  g0) (14)
where
v(q1, q2) = /O N dry /O N dry [ro(r1 — r2) + r10(rp — ry)] @911z,
The operator
expligr) = eXp(%(Z +N+M+ M*))

can be expressed in the normal form as follows (see, for example, [19, 23])

. 1 1 n 1
expligr) = d= )2 eXp(1 — MM ) exp(—N In(1 — w)) exp(mM>

where,u = ig/2w. As a result, the calculation of matrix elements of the operatotigxp
using the algebra (4) does not pose much difficulties. Here, we give only the result obtained

(mlexpignin) = ./ +1Z o "2 (15)
_|_1 ” ” (1 M)m+11+2
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where
q!
plg —p)

Substituting (15) into (13) and (14), after integration over the variableg,, r1, r» we
finally have the formula

cr =

i(_:I-)mhLmthlenz\/ (nl + 1)(112 + 1) nzl Cch C51+1

Winimainin, =
1Mm2;n1ng 16w (ml 4 1)(m2 4 1) “= ny ~mi+1
my+n,—2sq ny mo+np—2s,
1\t 52 S2+1 K N -Yal)
X E =D Cm1+n172s1 ancm2+l : : (=1) Cm2+n2*252
=0 s2=0 1,=0

X(251+ 11+ 252+ 12+ 3) (251 + 11+ 252+ 2 + HCIT

2514+11+1 _\uu
X{ ~ ( 1) C2s1+t1+1

(255 4 to + 3+ u)2%etiztu

u=0

252+1+1

* (251 + 11 + 3 + u)2%1tntu

2s0+1+1 —1D*CH
(-1) } a5)

u=0

Other matrix elements are calculated in the same way.
Let us now consider the zeroth approximation of the OM. The free parametsr
chosen in such a way that the condition

IEO@
do
is satisfied [3]. Whence
0@ — Wiannn 0 _ _ W112nnn _
" 2V2(+1)? ! 16(n + 1)*

For some first s states these equations give the following results
EL = —0.097 65622 EQ = —0.022642 E® = —0.009942

which are different from the exact ones approximately by 10%.
Equation (11) is a special case of the following generalized equation (see [9, 12])

(A-E,B)¥,) =0. (17)
Therefore, we describe here a general iteration scheme for the last equation. We shall find
the eigenfunction in the form
W) = [n) + ) Cunlk). (18)
k#n

The substitution of this expression into equation (17) gives the system of equatimna (
number of iterations)

-1
E® = <B,m + Zc,g:gs,,k) (A,m + Zc,ﬁjjA,,k> (19)

k#n k#n

i = (i = EfVB)T ) (A — EF VB, (20)
k#n,i
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where the eigenvalu&, and the coefficients of the eigenfunctiong are defined by the

relations
n (s) L (s)
E, = lim E; Cen = lim ¢/ (21)
§—> 00

Equations (18)—(21) completely define quite a simple algorithm for solving equation (17).
Apparently, the non-diagonal matrix elements of the Hamiltonian are ‘included’ in each
step of the subsequent iteration. It should be noted that there exist some other iteration
schemes, for example, an interesting variational—iterative one, proposed by Burrows and
Core (for more details, see [24]). Here we use the above scheme (18)—(21) because of its
simplicity and transparency. Moreover, this and some other similar schemes proved to be
well convergent in many applications of the OM (see [8, 9, 12] and references therein).

The results of our calculation show good convergence of the OM in quite a wide range
of variation of the parametes. Fors = 18 we obtain the following value for the polaron
ground-state energy

Eo = —0.108 512 80522.

This result is in good agreement with the numerical solution, obtained by Miyake [25] and
confirmed by Adamowsket al [26]. It should be noted that good numerical results have
been obtained recently by a variational method, based on the coherent state representations
[27]. We would like to point out that the OM enables one also to find with high accuracy
the energy and eigenfunction of the excited states, which usually are obtained with much
more difficulty using other methods [28—-31]. We present here the value of the energy for
2s and 3s states (far= 18)

E; = —0.020531 012 E, = —0.008 3506x°.

Our results are displayed in table 1 together with the known results for a polaron in the
strong coupling limit.

Table 1. Polaron energy (im:2hwo units) for s states in the strong coupling limit.

Authors 1s 2s 3s
Pekar (by Miyake [25]) —0.108 504

Miyake [25] —0.108513

Adamowskiet al [26] —0.1085128

Feranchuk and Komarov [2}-0.1078

Smondyrev [32] —0.109 206

Efimov and Ganbold [15] —0.10843
Ganbold and Efimov [16] —0.107 766

Chenet al [27] —0.10851

Hagenet al [30] —0.02048 —0.00804
Balabaev and Lakhno [31] —0.0206 —0.008 32
Our results —0.108512 8052 —0.020531 01 —0.008 3506

3. The operator method in solving the Hartree—Fock equation for helium

Let us now consider the problem of helium. For the ground state, we have the following
Hartree—Fock equation (see, for example, [33])
[ 1 z W2(r)

— M -E -S4 [ — dfr’}y(rl) =0 (22)
2 ri |T1— ’I’/|
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(for the second electron, the corresponding equation is written in analogy with the first).
The energy of the atom is

2 2
p=25 - [ [ 2 gy

[Py — 72
The substitution of the last expression into equation (22) gives

200/ 2 2
[__A__+/|\U(r) __//qz(m)wrz)dldrz_g}w):o_ (23)

r—7| |r1 — 72|

In £-space equation (23) has the form

{ — 1-rA —Z+ i / d W2[r' oG —r') + ro G’ —r)]
2 (r)
1
_%(W f d*n / d*c W)W —r')

+"00 — "] + E) }\If(é) =0. (24)

The last equation has the same form as equation (11), for which we have already calculated
the matrix elements. The key difference is that now we have a negative ‘coupling constant’

a. In order to have the needed solutions, we need only to change the formulae of the

iteration scheme. Consequently, fo= 18 we have (in atomic units)

EHF = 2861679995

which should be compared with the known result [33]7 = —2.863 and with a recent
calculation [34]EfT = —2.861680. It follows that the OM gives the solutions with very
high accuracy independently of the repulsive or attractive nature of the interaction.

4. Conclusions

In this paper we have applied an algebraic approach, namely, the OM to solve the non-
linear equations, which appear in the problem of polaron in the strong coupling limit and
the helium atom in the Hartree—Fock approximation. The results are as good as the best
ones in the literature. Furthermore, we would like to point out that the present approach
should be successfully applied to the other polaron problems, such as bound polarons and
polarons in external fields in 3D space as well as in the other dimensions.

Finally, we note the following two circumstances:

(i) As shown in [35], the equation which describes the motion of an individual patrticle
in a system of large number of gravitational bosons in fact coincides with equation (11).
Therefore, the solutions obtained here for the polaron are simultaneously solutions for the
above-mentioned problem.

(i) We need not here only consider s states. To this effect it is conducive to use in
equation (10) the following integral representation

1
= — dx .
lr—7r| 27 Jo (&S —nH(Es —ny)
Further calculation of matrix elements using this formula and the algeb¢4 2) of

operators (3) does not pose much difficulty and is affected in analogy with the calculations
carried out above.
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