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Abstract. The operator method is used to construct the solutions of the problem of the polaron
in the strong coupling limit and of the helium atom on the basis of the Hartree–Fock equation.
E0 = −0.108 512 8052α2 is obtained for the polaron ground-state energy. Energies for 2s and
3s states are also calculated. The other excited states are briefly discussed.

1. Introduction

The operator method (OM) of the approximate solution of the Schrödinger equation was
suggested in the works of Feranchuk and Komarov [1–3]. In agreement with the results
obtained in these and subsequent works (see, for example, [4–12]), the solution in the
zeroth approximation of the OM gives quite a simple and universal algorithm for obtaining
an approximation, which is uniformly applicable in a wide range of variation of parameters
of the Hamiltonian. Another advantage of the OM is connected with the possibility of
regularly calculating the correction to the zeroth approximation. Here, in any order the
needed calculations are reduced to a simple algebraic procedure of expressing the product
of excitation creation and annihilation operators in the normal form, and this essentially
simplified the use of computers.

As shown by the results of many works the OM is very effective for solving various
physical problems. However, the question of the application of this method in solving non-
linear equations, which are often met in atomic and solid state physics, remains unclear at
present.

In this work we investigate in two examples the possibility of using the OM for solving
non-linear equations such as that of Hartree–Fock:

(i) in an example of the problem of a polaron in the regime of strong electron–phonon
coupling (section 2);

(ii) in an example of the problem of a helium atom (section 3).

It should be noted that such calculations have been carried out on the basis of various
methods. But here, we want to obtain the exact solution by a numerical method. Comparison
of approximate solutions with the exact numerical solution enables us to estimate not only
the accuracy of the approximate solutions, but also the usefulness of their further study.
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2. The operator method in the polaron problem

The problem of a polaron in the strong coupling regime has become of interest since Emin
[13] proposed the mechanism of bipolaron Bose–Einstein condensation to explain high-Tc
superconductivity, and on the other hand, the bipolaron is known to exist in this strong
coupling regime [14]. The Hamiltonian of a non-relativistic particle (electron) interacting
with the quantized scalar field of lattice oscillations in an ionic crystal has the form (see,
for example, [6, 7, 15, 16] and reviews [17, 18]):

Ĥ = − 4
2m
+
∑
k

ωkc
+
k ck +

g√
�

∑
k

(Ak eik·rck + A∗k e−ik·rc+k ). (1)

Here,c+k andck are respectively the operators of creation and annihilation of phonons with
frequencyωk and momentumk, Ak are the Fourier components of the source density and
� is the volume of the system. In the theory of the so-called optical polaron, the frequency
of phonons is assumed to be independent of their wavevector. Usually, it is assumed that

ωk = ω0 gAk = − iω0

k

(4πα)1/2

(2mω0)1/4

whereα is a dimensionless electron–phonon coupling constant.
For the application of the OM it is conducive to cross to the four-dimensional oscillator

representation using the transformation [19]{
xλ = ξ ∗s (σλ)st ξt
χ = arg(ξ1)

whereσλ (λ = 1, 2, 3) are Pauli matrices;ξs (s = 1, 2) are regarded as spinor components.
The physical meaning of ‘extra’ variableχ has been treated in many works (see, for example,
[20, 21] and references therein).

Let us define operators

as(ω) =
√
ω

2

(
ξs + 1

ω

∂

∂ξ ∗s

)
bs(ω) =

√
ω

2

(
ξ ∗s +

1

ω

∂

∂ξs

)
a+s (ω) =

√
ω

2

(
ξ ∗s −

1

ω

∂

∂ξs

)
b+s (ω) =

√
ω

2

(
ξs − 1

ω

∂

∂ξ ∗s

)
.

(2)

Here, the positive parameterω will be defined later. Operators (2) satisfy the commutation
relations

[as(ω), a
+
t (ω)] = δst [bs(ω), b

+
t (ω)] = δst

(we have written only non-zero commutators). The possibility of using the algebraic method
is conditioned by the fact that all ‘physical’ operators can be expressed through the following
15 operators

M = asbs M+ = a+s b+s N = a+s as + b+s bs
mλ = (σλ)statbs m+λ = (σλ)sta+s b+t
naλ = (σλ)sta+s at nbλ = (σλ)stb+t bs

(3)

which form a closed algebraso(4, 2) (see [19]). Here and henceforth, we omit for brevity
the parameterω in expressions of the operators. For further use we rewrite some operators



Operator method in solving Hartree–Fock equations 11681

into this representation as follows

xλ = 1

2ω
(m+λ +mλ + naλ + nbλ)

r = ξ ∗s ξs =
1

2ω
(M+ +M +N + 2)

r4 = − ∂2

∂ξ ∗s ∂ξs
= ω

2
(2+N −M −M+)

where the operatorsN,M,M+ form the subalgebraso(2, 1) and satisfy the following
relations

[M,M+] = 2+N [M, 2+N ] = 2M [2+N,M+] = 2M+. (4)

In the four-dimensional oscillator representation (ξ -space) the equation for eigenvalue
problemĤ |9〉 = E|9〉 has the form [19]

L̂|9〉 ≡ r(Ĥ − E)|9〉 = 0 (5)

which, in terms of the operators (3), rather simplifies the algebraic calculation of the matrix
elements. It is easy to see that this representation is especially useful for the bound polaron
problem and leads to the equation without singular Coulomb term. Further, we shall limit
ourselves to case of the strong coupling regime, i.e. whenα � 1. It is a well known fact
that, in this limit, one can neglect the quantum fluctuations of the phonon field (see [17]
and a recent discussion in [22]). After introducing the canonical transformations

ck = bk + uk c+k = b+k + u∗k (6)

and neglecting the quantum components, we then have

L̂ = −1

2
r4+ 23/4

(
πα

�

)1/2∑
k

1

k
(r eik·ruk + r e−ik·ru∗k)+ r

(∑
k

u∗kuk − E
)

(7)

(here, all measurements are in the system of units wherebym = h̄ = ω0 = 1). The classical
components of the field can be defined from the condition

∂E

∂uk
= ∂E

∂u∗k
= 0. (8)

From equations (5), (7) and (8) we obtain

uk = −23/4
(πα
�

)1/2 1

〈r〉k 〈r e−ik·r〉. (9)

Here 〈. . .〉 represents the average〈9| . . . |9〉, where |9〉 is the polaron eigenfunction.
Substituting (9) into (7) and than integrating overk we have

L̂ = −1

2
r4− 21/2α

1

〈r〉
∫

d4η
rr ′|9(η)|2
|r − r′|

+r
(

α

21/2〈r〉2
∫

d4 η

∫
d4ζ

r ′r ′′

|r′ − r′′| |9(η)|
2|9(ζ)|2− E

)
(10)

where

x ′λ = η∗s (σλ)stηt x ′′λ = ζ ∗s (σλ)st ζt .
The emergence of the terms〈r〉 and 〈r〉2 is conditioned by the changes in the condition of
normalization of wavefunctions in theξ -space. Further, we shall consider only s-states of
the polaron. The general case will be treated at the end of this paper. Given the fact that



11682 L A Thu and L I Komarov

the eigenfunctions of s-states are spherically symmetric, i.e. they depend only onr, we can
write 9(ξ) ≡ 9(r). Averaging (10) over the angles and using the formula

1

2

∫ 1

−1
dx

1√
r2+ r ′2− 2xrr ′

= 1

rr ′
[r ′θ(r − r ′)+ rθ(r ′ − r)]

where the Heaviside functionθ(x) vanishes forx < 0, is 1/2 for x = 0 and unity forx > 0,
we have(
− 1

2
r4−

√
2α

1

〈r〉
∫

d4η |9(η)|2[r ′θ(r − r ′)+ rθ(r ′ − r)] + α√
2〈r〉2 r

×
∫

d4η

∫
d4ζ |9(η)|2|9(ζ)|2[r ′θ(r ′′ − r ′)+ r ′′θ(r ′ − r ′′)] − rE

)
×|9(ξ)〉 = 0. (11)

It is clear that equation (11) is an integro-differential equation of the Hartree–Fock type.
This equation can be simplified using new units of energy and length; such units are equal
to the old ones multiplied respectively byα2 and 1/α. In these units the parameterα
disappears in the last equation. Therefore, we can further putα = 1.

Let assume that the polaron eigenfunction has the form

|9〉 =
∑
n

Cn|n〉 (12)

where

|n〉 = 1√
n!(n+ 1)!

(M+)n|0〉.

It is clear that we need to calculate the matrix elements of the operators constitutingL̂, such
as

〈m1, m2|[r2θ(r1− r2)+ r1θ(r2− r1)]|n1, n2〉 ≡ Wm1m2;n1n2. (13)

To this effect we use the integral representation

r2θ(r1− r2)+ r1θ(r2− r1) =
(

1

2π

)2 ∫ +∞
−∞

dq1

∫ +∞
−∞

dq2 eiq1r1+iq2r2ϕ(q1, q2) (14)

where

ϕ(q1, q2) =
∫ ∞

0
dr1

∫ ∞
0

dr2 [r2θ(r1− r2)+ r1θ(r2− r1)] e−iq1r1−iq2r2.

The operator

exp(iqr) = exp

(
iq

2ω
(2+N +M +M+)

)
can be expressed in the normal form as follows (see, for example, [19, 23])

exp(iqr) = 1

(1− µ)2 exp

(
1

1− µM
+
)

exp(−N ln(1− µ)) exp

(
1

1− µM
)

where,µ = iq/2ω. As a result, the calculation of matrix elements of the operator exp(iqr)
using the algebra (4) does not pose much difficulties. Here, we give only the result obtained

〈m|exp(iqr)|n〉 =
√
n+ 1

m+ 1

n∑
s=0

CsnC
s+1
n

(µ)m+n−2s

(1− µ)m+n+2
(15)
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where

Cpq =
q!

p!(q − p)! .

Substituting (15) into (13) and (14), after integration over the variablesq1, q2, r1, r2 we
finally have the formula

Wm1m2;n1n2 =
1

16ω
(−1)m1+m2+n1+n2

√
(n1+ 1)(n2+ 1)

(m1+ 1)(m2+ 1)

n1∑
s1=0

Cs1n1
C
s1+1
m1+1

×
m1+n1−2s1∑

t1=0

(−1)t1Ct1m1+n1−2s1

n2∑
s2=0

Cs2n2
C
s2+1
m2+1

m2+n2−2s2∑
t2=0

(−1)t2Ct2m2+n2−2s2

×(2s1+ t1+ 2s2+ t2+ 3)(2s1+ t1+ 2s2+ t2+ 4)C2s1+t1+1
2s1+t1+2s2+t2+2

×
{ 2s1+t1+1∑

u=0

(−1)uCu2s1+t1+1

(2s2+ t2+ 3+ u)22s2+t2+u

+
2s2+t2+1∑
u=0

(−1)uCu2s2+t2+1

(2s1+ t1+ 3+ u)22s1+t1+u

}
. (16)

Other matrix elements are calculated in the same way.
Let us now consider the zeroth approximation of the OM. The free parameterω is

chosen in such a way that the condition

∂E(0)

∂ω
= 0

is satisfied [3]. Whence

ω(0)n =
Wnnnn

2
√

2(n+ 1)2
E(0)n = −

W 2
nnnn

16(n+ 1)4
.

For some first s states these equations give the following results

E
(0)
0 = −0.097 656α2 E

(0)
1 = −0.0226α2 E

(0)
2 = −0.0099α2

which are different from the exact ones approximately by 10%.
Equation (11) is a special case of the following generalized equation (see [9, 12])

(Â− EnB̂)|9n〉 = 0. (17)

Therefore, we describe here a general iteration scheme for the last equation. We shall find
the eigenfunction in the form

|9n〉 = |n〉 +
∑
k 6=n

ckn|k〉. (18)

The substitution of this expression into equation (17) gives the system of equations (s is a
number of iterations)

E(s)n =
(
Bnn +

∑
k 6=n

c
(s)
kn Bnk

)−1(
Ann +

∑
k 6=n

c
(s)
kn Ank

)
(19)

c
(s)
in = −(Aii − E(s−1)

n Bii)
−1
∑
k 6=n,i

(Aik − E(s−1)
n Bik)c

(s−1)
kn (20)
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where the eigenvalueEn and the coefficients of the eigenfunctionsckn are defined by the
relations

En = lim
s→∞E

(s)
n ckn = lim

s→∞ c
(s)
kn . (21)

Equations (18)–(21) completely define quite a simple algorithm for solving equation (17).
Apparently, the non-diagonal matrix elements of the Hamiltonian are ‘included’ in each
step of the subsequent iteration. It should be noted that there exist some other iteration
schemes, for example, an interesting variational–iterative one, proposed by Burrows and
Core (for more details, see [24]). Here we use the above scheme (18)–(21) because of its
simplicity and transparency. Moreover, this and some other similar schemes proved to be
well convergent in many applications of the OM (see [8, 9, 12] and references therein).

The results of our calculation show good convergence of the OM in quite a wide range
of variation of the parameterω. For s = 18 we obtain the following value for the polaron
ground-state energy

E0 = −0.108 512 8052α2.

This result is in good agreement with the numerical solution, obtained by Miyake [25] and
confirmed by Adamowskiet al [26]. It should be noted that good numerical results have
been obtained recently by a variational method, based on the coherent state representations
[27]. We would like to point out that the OM enables one also to find with high accuracy
the energy and eigenfunction of the excited states, which usually are obtained with much
more difficulty using other methods [28–31]. We present here the value of the energy for
2s and 3s states (fors = 18)

E1 = −0.020 531 01α2 E2 = −0.008 3506α2.

Our results are displayed in table 1 together with the known results for a polaron in the
strong coupling limit.

Table 1. Polaron energy (inα2h̄ω0 units) for s states in the strong coupling limit.

Authors 1s 2s 3s

Pekar (by Miyake [25]) −0.108 504
Miyake [25] −0.108 513
Adamowskiet al [26] −0.108 5128
Feranchuk and Komarov [2]−0.1078
Smondyrev [32] −0.109 206
Efimov and Ganbold [15] −0.108 43
Ganbold and Efimov [16] −0.107 766
Chenet al [27] −0.108 51
Hagenet al [30] −0.020 48 −0.008 04
Balabaev and Lakhno [31] −0.0206 −0.008 32
Our results −0.108 512 8052−0.020 531 01 −0.008 3506

3. The operator method in solving the Hartree–Fock equation for helium

Let us now consider the problem of helium. For the ground state, we have the following
Hartree–Fock equation (see, for example, [33])[

− 1

2
41− E1− Z

r1
+
∫

92(r′)
|r1− r′| dr

′
]
9(r1) = 0 (22)
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(for the second electron, the corresponding equation is written in analogy with the first).
The energy of the atom is

E = 2E1−
∫ ∫

92(r1)9
2(r2)

|r1− r2| dr1 dr2.

The substitution of the last expression into equation (22) gives[
− 1

2
4− Z

r
+
∫

92(r′)
|r − r′| dr

′ − 1

2

∫ ∫
92(r1)9

2(r2)

|r1− r2| dr1 dr2− E
2

]
9(r) = 0. (23)

In ξ -space equation (23) has the form{
− 1

2
r4− Z + 1

〈r〉
∫

d4η92(η)[r ′θ(r − r ′)+ rθ(r ′ − r)]

− r
2

(
1

〈r〉2
∫

d4η

∫
d4ζ 92(η)92(ζ )[r ′θ(r ′′ − r ′)

+r ′′θ(r ′ − r ′′)] + E
)}
9(ξ) = 0. (24)

The last equation has the same form as equation (11), for which we have already calculated
the matrix elements. The key difference is that now we have a negative ‘coupling constant’
α. In order to have the needed solutions, we need only to change the formulae of the
iteration scheme. Consequently, fors = 18 we have (in atomic units)

EHF = −2.861 679 995

which should be compared with the known result [33]EHF = −2.863 and with a recent
calculation [34]EHF = −2.861 680. It follows that the OM gives the solutions with very
high accuracy independently of the repulsive or attractive nature of the interaction.

4. Conclusions

In this paper we have applied an algebraic approach, namely, the OM to solve the non-
linear equations, which appear in the problem of polaron in the strong coupling limit and
the helium atom in the Hartree–Fock approximation. The results are as good as the best
ones in the literature. Furthermore, we would like to point out that the present approach
should be successfully applied to the other polaron problems, such as bound polarons and
polarons in external fields in 3D space as well as in the other dimensions.

Finally, we note the following two circumstances:

(i) As shown in [35], the equation which describes the motion of an individual particle
in a system of large number of gravitational bosons in fact coincides with equation (11).
Therefore, the solutions obtained here for the polaron are simultaneously solutions for the
above-mentioned problem.

(ii) We need not here only consider s states. To this effect it is conducive to use in
equation (10) the following integral representation

1

|r − r′| =
1

2π

∫ 2π

0
dχ

1

(ξ ∗s − η∗s )(ξs − ηs)
.

Further calculation of matrix elements using this formula and the algebraso(4, 2) of
operators (3) does not pose much difficulty and is affected in analogy with the calculations
carried out above.
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