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Abstract. Using the operator representation of the Dirac Coulomb Green function the analytical
method in perturbation theory is employed in obtaining solutions of the Dirac equation for a
hydrogen-like atom in a time-dependent electric field. The relativistic dynamical polarizability
of hydrogen-like atoms is calculated and analysed.

1. Introduction

In stationary perturbation theory as well as in the time-dependent one, the method of using
the Coulomb Green function has found wide application in obtaining analytical solutions of
the Schr̈odinger or Dirac equations. The main advantage of this method is the possibility of
obtaining the final results in closed analytical form or reducing results to the summation of
rapidly convergent series. Therefore, by using the above-mentioned method one can avoid
a lot of complex numerical integrations (see, for example, Makhanek and Korol’kov 1982,
Zapryagaevet al 1985 and references cited therein). On the basis of the application of the
connection between the problem of the four-dimensional isotropic harmonic oscillator and
that of a hydrogen-like atom in electromagnetic fields (see Kustaanheimo and Stiefel 1965),
it has been proposed to establish a new representation of the Coulomb Green function in
the form of a product of annihilation and creation operators (this is called by us an operator
representation). Operator representation of the Coulomb Green functions is very efficient
in applications for the non-relativistic case (Le Van Hoanget al 1989) as well as for the
relativistic one (Le Anh Thuet al 1994). The main elements of the algebraic method
used (with the aid of the operator representation of the Coulomb Green functions) in Le
Van Hoanget al (1989) and in Le Anh Thuet al (1994) are as follows. By using the
above-mentioned connection, all operators of the algebra of the dynamical symmetry group
SO(4, 2) can be found in the quadratic form of the annihilation and creation operators (see,
for example, Kleinert 1968, Komarov and Romanova 1982). Therefore, the calculation
method, based on the use of the algebra ofSO(4, 2), leads only to the use of the simple
commutation relations between the latter operators. The use of this method together with
the operator representation of the Coulomb Green function, therefore essentially reduces
the calculation process and provides for reducing rather complicated calculations of matrix
elements with Coulomb wavefunctions to a purely algebraic procedure of transforming the
product of the annihilation and creation operators to the normal form. The advantages of the
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proposed algebraic method are found not only in the simplicity of the calculation process but
also in the possibility of obtaining the final results in the summation of rapidly convergent
series. In fact, some clever results are obtained in Le Anh Thuet al (1994) for the problem
of calculation of the relativistic polarizability of hydrogen-like atoms. In this present paper,
we consider the problem of calculating the relativistic polarizability of the ground state of
hydrogen-like atoms on the basis of application of the operator representation of the Dirac
Coulomb Green function established in Le Anh Thuet al (1994). These calculations, besides
their purely theoretical significance, are of great practical interest connected with recent
developments in experimental investigations of multiply charged ions (see, for example,
Zapryagaevet al 1985, Paratzacos and Mork 1979). However, the majority of accurate
calculations has been done only for the static polarizability of relativistic hydrogen-like
atoms (see also Drake and Goldman 1981, 1988, Johnsonet al 1988). In our calculations
the radiation corrections are neglected, taking into account the fact that this effect is small
compared with the external field effects. Our results are directly generalized from the non-
relativistic calculations (Zapryagaevet al 1985) and coincide with the results in the static
limit (Le Anh Thu et al 1994).

2. Equation in two-dimensional complex space

The Dirac equation for a hydrogen-like atom in the field of linearly polarized light can be
written as follows(h̄ = m = c = 1):(

−iαλr
∂

∂xλ

+ βr − Ze2 + θ

2
erx3(e

iνt + e−iνt )

)
9(r, t) = ir

∂9(r, t)

∂t
(1)

whereαλ (λ = 1, 2, 3) andβ are the Dirac matrices;θ andν are the amplitude and frequency
of the external electric field respectively. Further on, we use the usual representation

9 =
(

91

92

)
αλ =

(
0 σλ

σλ 0

)
β =

(
1 0
0 −1

)
where91 and92 are two-component spinors andσλ (λ = 1, 2, 3) are the Pauli matrices.

The formal changes (see Le Anh Thuet al 1994)

xλ → (σλ)st ξ
∗
s ξt r → ξ ∗

s ξs rp̂λ → − i

2
(σλ)st

(
ξt

∂

∂ξs

+ ξ ∗
s

∂

∂ξ ∗
t

)
(2)

reduce equation (1) to an equation describing the interaction between a ‘particle’ with
complex coordinatesξs (s = 1, 2) and the external variable electric field. Here, in (2)
summation is indicated by means of repeated indices. The scalar product of wavefunctions
in ξ -space is defined by the correlation

〈9̃ | ϕ̃〉 =
∫ +∞

−∞
dξ ′

1

∫ +∞

−∞
dξ ′′

1

∫ +∞

−∞
dξ ′

2

∫ +∞

−∞
dξ ′′

2 9̃∗(ξ ′
1, ξ

′′
1 , ξ ′

2, ξ
′′
2 )ϕ̃(ξ ′

1, ξ
′′
1 , ξ ′

2, ξ
′′
2 ) (3)

whereξ ′
s ≡ Reξs , ξ ′′

s ≡ Imξs . All operators appearing in (1) are henceforth considered to
conform with the formal changes (2). Thus, the operator on the left-hand side of equation
(1) is self-adjoint with respect to the scalar product of wavefunctions defined by (3).

We will solve equation (1) by using the method of perturbation theory assuming the
external electric field to be small. Its solution can be found in the form

9(r, t) = 9(0)(r, t) + θ9(−)(r, t)

≡ 9(0)(r) e−iε0t + θu(r) e−it (ε0−ν) + θv(r) e−it (ε0+ν) (4)
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where9(0)(r) is a wavefunction in the zero-order approximation, i.e. a solution of the Dirac
equation (

−iαλr
∂

∂xλ

+ βr − ε0r

)
9(0)(r) = Ze29(0)(r) (5)

andε0 is the energy in the zero-order approximation. By substituting (4) into (1) and taking
into account (5), we obtain the equations(

−iαλr
∂

∂xλ

+ βr − Ze2

)
u(r) − r(ε0 − ν)u(r) = − 1

2erx39
(0)(r) (6)(

−iαλr
∂

∂xλ

+ βr − Ze2

)
v(r) − r(ε0 + ν)v(r) = − 1

2erx39
(0)(r). (7)

Noting that equations (6) and (7) have the same structure, we consider only equation (6)
for the functionu(r); then by replacing−ν by ν in u(r) we find the functionv(r).

Let us now presentu(r) and9(0) in the form

u =
(

ϕ
(1)

1

(σλxλ/r)ϕ
(1)

2

)
9(0) =

(
ϕ

(0)

1

(σλxλ/r)ϕ
(0)

2

)
. (8)

The substitution of (8) into (6) leads to the following set of equations forϕ
(1)

1 andϕ
(1)

2 :

−i

(
xλ

∂

∂xλ

+ 1

)
ϕ

(1)

2 − iκ̂ϕ
(1)

2 + r(1 − ε0 + ν)ϕ
(1)

1 − Ze2ϕ
(1)

1 = − 1
2erx3ϕ

(0)

1 (9)

−i

(
xλ

∂

∂xλ

+ 1

)
ϕ

(1)

1 + iκ̂ϕ
(1)

1 − r(1 + ε0 − ν)ϕ
(1)

2 − Ze2ϕ
(1)

2 = − 1
2erx3ϕ

(0)

2 (10)

whereκ̂ = 1 + σλl̂λ; l̂ is the orbital momentum operator.
By using the transformations

ϕ
(0)

1 = − 1
2i

√
1 + ε0(F (0) − G(0)) ϕ

(0)

2 = 1
2

√
1 − ε0(F (0) + G(0)) (11.1)

and

ϕ
(1)

1 = − 1
2i

√
1 + ε0 − ν(F (1) − G(1)) ϕ

(1)

2 = 1
2

√
1 − ε0 + ν(F (1) + G(1)) (11.2)

we find[
xλ

∂

∂xλ

+ 1 + ωr − Ze2

ω
(ε0 − ν)

]
F (1) +

(
κ̂ + Ze2

ω

)
G(1) = rx3(Ã−F (0) + Ã+G(0)) (12)[

xλ

∂

∂xλ

+1 − ωr+ Ze2

ω
(ε0 − ν)

]
G(1)+

(
κ̂ − Ze2

ω

)
F (1) = −rx3(Ã+F (0) + Ã−G(0)) (13)

where

ω =
√

1 − (ε0 − ν)2

Ã± = e

4ω
[
√

(1 − ε0)(1 − ε0 + ν) ±
√

(1 + ε0)(1 + ε0 − ν)]. (14)

After expanding the functionsF andG in power series of the eigenfunctions of operators
L̂2 and κ̂, the operator̂κ appearing in (12) and (13) becomes ac-number and, therefore, in
order to solve equations (12) and (13) we can employ the Green function method established
in Le Anh Thu et al (1994). In the next section we will show an example by calculating
the dynamical polarizability of hydrogen-like atoms in the ground state.



2900 Le Anh Thu et al

3. Relativistic dynamical polarizability in the ground state of hydrogen-like atoms

The solution of equation (5) can be easily obtained by purely algebraic calculations. In
particular, we can find for the ground state the solution (see Komarov and Romanova
1985):

F (0) = (2ω0)
ε0−1

√
0(2ε0)

rε0−1|0(ω0)〉χ↑ G(0) = 0 (15)

whereω0 = Ze2; ε0 =
√

1 − (Ze2)2; χ↑(↓) are eigenvectors of operatorσ3 and |0(ω0)〉 is
the vacuum state defined by the equations

as(ω0)|0(ω0)〉 = bs(ω0)|0(ω0)〉 = 0 s = 1, 2.

Here the operatorsas(ω), bs(ω) are defined as follows

as(ω) =
√

ω

2

(
ξs + 1

ω

∂

∂ξ ∗
s

)
bs(ω) =

√
ω

2

(
ξ ∗
s + 1

ω

∂

∂ξs

)
a+

s (ω) =
√

ω

2

(
ξ ∗
s − 1

ω

∂

∂ξs

)
b+

s (ω) =
√

ω

2

(
ξs − 1

ω

∂

∂ξ ∗
s

)
whereω is a positive parameter (see Le Anh Thuet al 1994). The perturbation term in
equations (12) and (13) thus has the form

±Ã∓rx3F (0) = ±A∓rε0(Z1,−1 +
√

2Z1,2)|0(ω0)〉. (16)

Here, we use the notation

A± =
√

6(2ω0)
ε0−2

√
0(2ε0)

Ã±

andZl,κ are eigenvectors of (i) the square orbital momentum operator and (ii) the operator
κ̂. The structure of the perturbation term (16) prompts us to find the solution in the form

F (1) =
∑

κ=−1,2

F (1)
κ G(1) =

∑
κ=−1,2

G(1)
κ (17)

whereF (1)
κ andG(1)

κ satisfy the equations[
xλ

∂

∂xλ

+ 1 + ωr − Ze2

ω
(ε0 − ν)

]
F (1)

κ +
(

κ + Ze2

ω

)
G(1)

κ = A−
√

|κ|rε0Z1κ |0(ω0)〉, (18)[
xλ

∂

∂xλ

+ 1 − ωr + Ze2

ω
(ε0 − ν)

]
G(1)

κ +
(

κ − Ze2

ω

)
F (1)

κ = −A+
√

|κ|rε0Z1κ |0(ω0)〉. (19)

From (19) it follows that

F (1)
κ = − A+

√|κ|
κ − Ze2/ω

rεZ1κ |0(ω0)〉 − 1

κ − Ze2/ω

[
xλ

∂

∂xλ

+ 1 − ωr + Ze2

ω
(ε0 − ν)

]
G(1)

κ .

(20)

By substituting (20) into (18) we obtain:{
−

[
xλ

∂

∂xλ

+ 1 + ωr − Ze2

ω
(ε0 − ν)

] [
xλ

∂

∂xλ

+ 1 − ωr + Ze2

ω
(ε0 − ν)

]
+κ2 −

(
Ze2

ω

)2 }
G(1)

κ
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= A−
√

|κ|
(

κ − Ze2

ω

)
rε0Z1κ |0(ω0)〉 + A+

√
|κ|

×
[
xλ

∂

∂xλ

+ 1 + ωr − Ze2

ω
(ε0 − ν)

]
rε0Z1κ |0(ω0)〉. (21)

As mentioned above (see (2)), all operators in (20), (21) (though formally written for
brevity via the usual coordinatesxλ (λ = 1, 2, 3)) are understood in the sense of the formal
changes (2). These changes are equivalent to the transformation fromr-space toξ -space
(Kustaanheimo-Stiefel transformation, see Kustaanheimo and Stiefel (1965)):{

xλ = ξ ∗
s (σλ)st ξt (s, t = 1, 2)

χ = arg(ξ1)
.

So we can rewrite the operators used in (20), (21) via the annihilation and creation operators
as follows:

xλ

∂

∂xλ

= M(ω)

2
− M+(ω)

2
− 1 r = 1

2ω
[M(ω) + M+(ω) + N(ω) + 2]

where the notations

N = a+
s as + b+

s bs M = asbs M+ = a+
s b+

s .

Therefore, equation (21) has a more convenient form{[
M + 1

2N + 1 − Ze2

ω
(ε0 − ν)

][
M+ + 1

2N + 1 − Ze2

ω
(ε0 − ν)

]
+ κ2 −

(
Ze2

ω

)2}
|G(1)

κ 〉

= A−
√

|κ|
(

κ − Ze2

ω

)
rε0Z1κ |0(ω0)〉

+A+
√

|κ|
[
M + 1

2N + 1 − Ze2

ω
(ε0 − ν)

]
rε0Z1κ |0(ω0)〉. (22)

Here and henceforth, we omit for brevity the parameterω in the expressions of the operators.
Equation (22) has the same structure as the equations appearing in the case of calculation
of the static polarizability of hydrogen-like atoms (see Le Anh Thuet al 1994). The only
difference is in the perturbation term on the left-hand side of these equations. Therefore,
we can by analogy find the solutions of equation (22), using the Green function operator
which, according to Le Anh Thuet al (1994), can be established as follows:

Ĝlκ = B̂lκ

1

2 + N + M + M+ B̂lκ =
∞∑

s=0

ds(N/2)Ms (23)

where

d0(n) = − 1

n + γ + 2 − Ze2ε/2
(24)

ds(n) = (−1)s(2γ + 1)
(n + l + 1)!

(n + s + l + 1)!

0(n + s + 1 − γ − Ze2ε/2)

0(n + 2 − γ − Ze2ε/ω)

× 0(n + 2 + γ − Ze2ε/2)

0(n + s + 3 + γ − Ze2ε/2)
s = 1, 2, 3 . . .

γ = −l − 1 +
√

κ2 − Z2e4 ε = ε0 − ν.

Here, we note that the Green function operator (23) acts on the basis of states with frequency
ω. However, the wavefunctions in the zero-order approximation (15) have the frequency
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ω0 = Ze2. Therefore, in order to use the algebraic calculation we have to transform
the wavefunctions (15) from the frequencyω0 to ω using the unitary transformation (see
Komarov and Romanova 1982):

|8(ω0)〉 = Û (ω0, ω)|8(ω)〉,
where

Û (ω0, ω) = exp

{
1

2
ln

ω0

ω
[M(ω) − M+(ω)]

}
.

This transformation can be reduced to the normal form

Û (ω0, ω) = 4ω0ω

(ω0 + ω)2
exp

(
ω − ω0

ω + ω0
M+(ω)

)
exp

(
N(ω) ln

2
√

ωω0

ω + ω0

)
× exp

(
−ω − ω0

ω + ω0
M(ω)

)
. (25)

Finally, by analogy with what was done in Le Anh Thuet al (1994) for the same equation,
we find the solution

|G(1)
κ 〉 = A−

√
|κ|

(
κ − Ze2

ω

)
rγ Ĝ1κr

ε0−γ Û (ω0, ω)Z1κ |0(ω0)〉 + A+
√

|κ|rγ Ĝ1κr
−γ

×
[
M + N

2
+ 1 − Ze2

ω
(ε0 − ν)

]
rε0Û (ω0, ω)Z1κ |0(ω0)〉. (26)

The wavefunction|F (1)
κ 〉 can be obtained by substituting (26) into (20).

Let us now calculate the dynamical polarizability of the ground state of hydrogen-like
atoms, the formula of which inξ -space has the form

a(ν) = 2
〈9(0)|erx3|9(1)〉

〈9(0)|r|9(0)〉 .

This formula, after considering (8), (11), (15) and (17), can be written as follows

a(ν) =
∑

κ=−1,2

aκ(ν)

where

aκ(ν) = 4ω0ω
√|κ|

ε0
〈0(ω0)|Z1κr

ε0|A+F (1)
κ + A−G(1)

κ 〉. (27)

By substituting the found solutions (20), (26) into (27) we find the expression for the positive
frequency term of polarizability

aκ(+ν) = 4ω0ω|κ|
ε0

{
A2

+
B

〈0|r2ε0|0〉 +
[
A2

−B + 2A+A−δ + A2
+δ2

B

]
Hκ

00

+ 4ω(ω − ω0)

(ω + ω0)2

[
A+A− + A2

+δ

B

]
Hκ

01 + 4ω2(ω − ω0)
2

(ω + ω0)4

A2
+

B
Hκ

11

}
. (28)

Here, we use the notations

B = κ − Ze2

ω
δ = 4(ω − ω0)

ω + ω0
− Ze2

ω
(ε0 − ν) + ε0 + 2 (29)

Hκ
nm = 〈0(ω)|Z1κ Û

+(ω0, ω)Mnrε0+γ Ĝκr
ε0−γ (M+)mÛ(ω0, ω)Z1κ |0(ω)〉.

A similar expression for the negative frequency term can be obtained by replacingν by −ν

in formulae (14), (18), (19).
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Figure 1. (a) The dependence of the dynamical polarizability of the hydrogen-like atom
(Z = 50) on the frequencyν of the external field (one line (A) is shown in figure 1(b) with
large scale). (b) The line (A) of figure 1(a) on a larger scale.

By using the algebra of operatorsM+, M, N :

[M, M+] = N + 2 [M, N + 2] = 2M [N + 2, M+] = 2M+

and the correlations

N(M+)nZlκ |0〉 = 2(n + l)(M+)nZlκ |0〉
M(M+)nZlκ |0〉 = n(n + 2l + 1)(M+)n−1Zlκ |0〉
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Figure 2. The dependence of the dynamical polarizability of the hydrogen-like atom (Z = 100)
on the frequencyν of the external field.

rρZlκ |0〉 = 0(ρ + 2l + 2)

(2ω)ρ0(−ρ)

∞∑
s=0

(−1)s

s!

0(s − ρ)

(s + 2l + 1)!
(M+)sZlκ |0〉

we algebraically obtained the explicit form of the termHκ
nm as follows:

Hκ
nm = 1

12ω

(
2
√

ω0ω

ω0 + ω

)8

(ω0 + ω)1−2ε0

∞∑
p=0

(p + 3)!

×
p∑

q=0

(−1)q
(

p

q

)
0(q + ε0 − γ )0(q + 3 + ε0 − γ )

0(q + ε0 − γ − m)(q + 3)!

×
p∑

s=0

(−1)s
ds(p − s + 1)

(p − s)!

×
p−s∑
t=0

(−1)t
(

p − s

t

) (
2ω

ω + ω0

)t+q−n−m

×0(t + 1 + ε0 + γ )0(t + 4 + ε0 + γ )

0(t + 1 + ε0 + γ − n)(t + 3)!
. (30)

Direct calculations show that all power series appearing in the termHκ
nm are rapidly

convergent. The high convergency of these power series is directly related to the expansion
(23) of the Dirac Coulomb Green function which, in fact, is established on the basis of
harmonic oscillator wavefunctions. Moreover, the expression (28) for the polarizability
contains onlyHκ

nm with n, m = 0, 1, the calculation of which needs only some of the first
terms in the summation overp. For example, for frequencyν less than the fourth resonance
frequency (relative to the transition from the ground state to the 3P3/2 state) the contribution
of the terms withp = 0, 1 in Hκ

nm (n, m = 0, 1) is about 98–99% for allZ 6 137.
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In figures 1(a) and (b) the dependence of relativistic polarizability on the external field
frequency is given for hydrogen-like atoms withZ = 50. The dotted lines correspond to
the non relativistic limit case. Figure 2 gives the same forZ = 100.

Let us now consider the non-relativistic limit, i.e. take into account only the first term in
the expansion in the power series ofZe2. For this case, we can effect summation over the
variablest, q, s in the expression ofHκ

nm and then haveHκ
nm in the form of hypergeometric

functions. Consequently, we have

anon(±ν) = 211µ3e2

(Ze2)4(µ + 1)10

{
1

(2 − 1/µ)(3 − 1/µ)
2F1

(
5, 2 − 1

µ
, 4 − 1

µ
,

(
µ − 1

µ + 1

)2)
+ 5µ2

(µ + 1)2(3 − 1/µ)
2F1

(
6, 3 − 1

µ
, 4 − 1

µ
,

(
µ − 1

µ + 1

)2)}
(31)

whereµ =
√

1 ± 2ν/(Ze2)2. This expression coincides with the well known result obtained
by Vetchinkin and Khristenko (1968).

By putting ν = 0 into (28), (30) and (31) we thus find the formula for the relativistic
polarizability. It is easy to see that forω = ω0 the formula (28) contains only the termHκ

00.
Taking into account the formula (Prudnikovet al 1981)

n∑
k=0

(−1)k
(

n

k

) (
a + k

m

)
= (−1)n

(
a

m − n

)
we can leadHκ

00 to the form

Hκ
00 = 1

6(2ω0)2ε0
0(ε0 − γ )0(ε0 − γ + 3)0(ε0 + γ + 1)0(ε0 + γ + 4)

∞∑
p=0

1

0(ε0 − γ − p)

×
p∑

s=0

ds(p − s + 1)

(p − s)!(p − s + 3)!0(ε0 + γ + 1 − p + s)
. (32)

The substitution of (32) into (28) gives forν = 0 the relativistic static polarizability

a = e2(ε0 + 1)(2ε0 + 1)(4ε2
0 + 13ε0 + 12)

36ω4
0

− e2(ε0 − 2)20(ε0 + γ + 4)0(ε0 − γ + 3)

36ω4
00(2ε0)0(−ε0 − γ )0(1 − ε0 + γ )

×
[ ∞∑

k=0

0(k − ε0 − γ )0(k − ε0 + γ + 1)

k!(k + 3)!(k − ε0 + γ + 3)
− (2γ + 1)

×
∞∑

q=1

0(q − ε0 + γ + 1)

(q + 3)!

0(q − ε0 − γ + 2)

0(q − ε0 + γ + 4)

×
q−1∑
s=0

0(s − ε0 − γ )0(s − ε0 + γ + 3)

s!0(s − ε0 − γ + 3)

]
whereγ = −2 +

√
4 − (Ze2)2. This result absolutely coincides with the result obtained in

Le Anh Thuet al (1994) (see also Barut and Nagel 1976).

4. Conclusion

In conclusion we would like to note that the magnetic field effects, as a rule, should be taken
into account for a detailed investigation of the behaviour of a relativistic atom in the field
of linearly polarized light. These effects can be neglected only in the non-relativistic limit.
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The above method proposed with the use of the operator representation of the Coulomb
Green function can also be employed, for example, in calculating magnetic polarizability.
Consideration of magnetic field effects leads only to an enormous number of calculations,
which are more complicated in comparison with the above calculations but could be done
analogously by analytical methods. Moreover, we hope that our algebraic method would
be helpful when considering the problem of an atom in a quantum field, in particular in
calculating the Lamb shift of multiply charged ions, which is of great interest and has been
widely investigated recently (see, for example, Snyderman 1991).
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