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Abstract. The Dirac Coulomb Green function in the representation of the annihilation and 
creation operators is established and on the basis of the application of this new operator 
representation an algebraic method of calculation OF atomic characteristics is briefly discussed. 
The relativistic polarizability of hydrogen-like atoms is calculated and its simple analytical 
Formula is obbined. 

1. Introduction 

The coordinate representation of the Coulomb Green function for the Duac equation was 
first established by Martin and Glauber (1958) and has been used in the calculation of 
various problems in atomic and nuclear physics (see, for example, Zapryagaev et al 1985 
and references therein). In concrete calculations some other different representations of 
this function are often used: the impulse representation (Gorshkov 1964, Manakov et 
a1 1973). the coordinate representation in the expansion in power series of the Laguerre 
polynomial (Zon el al 1972, Zapryagaev and Manakov 1981). . . . However, the use of all 
the above-mentioned representations always leads to an enormous number of calculations 
of multi-dimensional integrals of special functions. This circumstance strongly decreases 
the efficiency of the application of analytical methods in perturbation theory with the use 
of the Dirac Coulomb Green function (in many papers this function is called the relativistic 
Coulomb Green function, see Swainson and Drake (1991)). 

Currently the tendency to use the connection between the four-dimensional harmonic 
oscillator problem and the problem of a hydrogen atom in electromagnetic fields is 
intensively developing (see, for example, Komarov and Romanova 1982, Kibler and Negadi 
1983, Le Van Hoang et al 1989). For relativistic Coulomb problems, a similar treatment 
was proposed in Komarov and Romanova (1985) and Le Van Hoang et al (1992) where, 
instead of the Dirac equation, an application was demonstrated of the equation in two- 
dimensional complex space (c-space), the set of solutions of which contains the solutions 
of the Dirac equation. The structure of the equation in c-space is simple in the sense that 
the equation term describing the interaction can be presented in the polynomial form of the 
coordinates and, therefore, is convenient for use in concrete algebraic calculations. In the 
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present paper, on the basis of the equation suggested in Komarov and Romanova (1985). we 
establish the relativistic Coulomb Green function in the representation of the annihilation 
and creation operators; moreover this representation is established in such a way that all 
operators can be transformed into the normal form thereby allowing the use of the algebraic 
method of calculation. The use of an algebraic treatment does not need the explicit form of 
the wavefunctions, which enables us to reduce rather complicated calculations of the matrix 
elements with the Coulomb wavefunctions to a purely algebraic procedure of transforming 
the products of the creation and annihilation operators to a normal form (see Le Van Hoang 
et al 1989). 

As a specific example of the application of the operator representation of the relativistic 
Coulomb Green function, we consider the problem of calculation of the static relativistic 
polarizability of hydrogen-like atoms, which has been the subject of many papers (Bartlett 
and Power 1969, Zon et  nl 1972, Labzowsky 1973, Barut and Nagel 1976, McDowell and 
Porter 1977,. . . ) and, in our view, is still of great interest for M e r  research. We give in 
detail an analysis of and obtain a simple analytical formula for the relativistic polarizability 
in the ground state of hydrogen-like atoms with nuclear charge ranging from 1 to 137. 

2. Equation in two-dimensional complex space 

Let us consider the following equation: 

Le Anh Thu et a1 

A*(() = ze2w(t) (1) 

fi=-+A(n),, (t,?+t;-- ats at; 7 + ( ~ s - & ) E A ;  (2) 

where the four-component spinor Q(c) is a function of the complex coordinates c1 (s = 
1,2); ai (A = I ,  2,3) and ,3 are Dirac matrices. Henceforth, we use the usual representation 

where and ** are two-component spinors; UA (A = 1,2.3) are Pauli matrices. In the 
Hamiltonian (2) q (A = 1,2,3) are Pauli matrices operating in the space of coordinates c,  
which are regarded as spinor components. 

As shown in Komarov and Romanova (1985), after transformation into the usual three- 
dimensional space with the use of the correlations 

21 = t;(TA)si& x = arg(f1) (3) 
equations (1) and (2) (for the class of wavefunctions, independent of the variable x )  lead to 
the Dirac equation for a charged particle with mass m and energy E ,  moving in the Coulomb 
field -Ze2 f r .  The existence of the above-mentioned connection allows us to use (1) and 
(2) in considering the relativistic Coulomb problems. For the problem of the motion of a 
Dirac particle in the Coulomb field plus an electromagnetic field (A, rp) we can use the 
following more generalized equation in 5-space: 

(see Le Van Hoang eta1 1992). The condition of independence of the wavefunctions from 
the variable x 
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can be rewritten as follows as an equation in (-space: 

where 

In concrete calculations, one usually needs equations for two-component spinors \U,, 9 2  
(quadratic Dirac equations). Therefore, we now establish the corresponding equations in 
:-space. By making the substitutions 

9 1  = &%(F+ E) q z  = E )  (6) 

we transform (1) and (2). respectively, into the forms 

where w = 
momentum operator, which in 5-space has the form 

(henceforth, we consider the electron mass m = 1); ?A is the orbital 

The fact that the operator i = 1 + U,,?* commutes ~ t h  all_operators occurring in (7) and 
(8) permits us to exclude one of the wavefunctions F and G from the equations, and as a 
result, obtain the following equations for each wavefunction: 

Equations (IO) and (11) can be considered as having the quadratic form in :-space for the 
Dirac Coulomb particle. The scalar product of wavefunctions in (-space is defined by the 
following correlation: 

where (; = Re 
From (1) and (2) and (10) and (11) it is easy to see that the term which describes 

interaction in these equations is presented in a polynomial coordinate form. This 
circumstance allows us (in the next section) to establish algebraic solutions for the Coulomb 
problem, which serve as a convenient basis of wavefunctions for effective use in different 
calculations, in particular. for establishing a new operator representation of the relativistic 
Coulomb Green function. 

(: = Im&. 
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3. Algebraic solutions of the Dirac equation for the Coulomb problem 

The algebraic method for solving the Dirac equation for a charged particle in the Coulomb 
field was proposed by Komarov and Romanova (1985) on the basis of the application of 
(1) and (2). In this section, for further use, we develop this method and give the angular 
part of wavefunctions in general f o m  

Le Anh Thu et a1 

Let us define operators 

where the parameter w was defined in section 2. Operators (13) satisfy the commutation 
correlations 

[a$, a:] = &, Ib,, b:l = a,, (14) 
(we have written only non-zero commutators). The possibility of using the algebraic method 
is conditioned by the fact that, all 'physical' operators can be expessed through the following 
15 operators: 

M = a,b, 

ni  = (riIsra:at 

M+ = a,'b,' N = a:a, + b:b, 

mi = (rdStarbs m: = (ri)s,a:b: (15) 
ni = (rd&bS 

which form a closed algebra SO(4.2) simply isomophic to the algebra of the group of 
dynamical symmetry of the system described by (1) and (2) (see Komarov and Romanova 
1985). For example, in the representation (13)-(15) the operators occurring in (7), (8) and 
(IO). (1  1) have the form 

Let us now establish a basis of wavefunction vectors, which belong to a given value 
of the square of the orbital momentum 1 and a given value of its third projection m. 
Naturally, the basis wavefunction vectors have to belong to the zero eigenvalue of the 
operator & = .$as - b:b,, i.e. they should be established through the vectors 

(a:)"1 (az)"'(b:)mL (b:lm2 lO(w)) (17) 
where positive integers n l ,  nz, m l ,  m2 satisfy the correlation 

n t f n z = m l f m z .  (18 )  

a,IO(w)) = bslO(w)) = 0 .  (1% 

lO(w)) is a vacuum state, defined by the equations 

The operator of the third projection of orbital momentum f3 in the representation of operators 
(13)-(15) has the form 

therefore, it is obvious to obtain the correlation 
& = ;(.:a1 - 4 a 2  - brb, + b$b2) 
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where m is a magnetic quantum number (m = 0, hl, 3 2 ,  . . .). Finally, taking into account 
the correlations (18) and (ZO), we find the wavefunction vector, which belongs to the given 
values of 1 and m in the form 

N 

Ilm) = (a:b:)”’ C k ( a : b : ) k ( ~ b ~ ) N - X I O ( w ) )  (21) 
k=O 

for m > 0 (for the case m < 0 the term a:b: should be replaced by azb:). Substituting 
(21) into the equation 

i211m) = 1 ( 1 +  1)llm) 

with the operator of the square of the orbital momentum has the form 

i 2  = @ ( N  + 2)  - M+M 

and by using correlations (14) and (19), we obtain 

Ilm) = (M+)’DL(m+)IO(o)) 

where 

x ( ~ + ) W m I - k  1.w)) (23) 

and Nt, is a normalization constant. The existence of the operator ( M + ) j  in (22) is 
conditioned by the correlation 

[iZ, M+] = 0 

and is needed for conshmcting the radiation part of wavefunctions. The eigenvectors of 
operator 2 can be established in the usual way from eigenvectors xt(L) of operator as and 
from vectors Dk(m+)lO(w)). For further use. we establish some solutions ZI,, 

In section 4 we will use the basis vectors 

(M+)“zdm+)lo) 

for establishing wavefunctions and, therefore, it is neccessary to take note now of some 
correlations with respect to these basis vectors 

(25) 
M(M+)”z , , (m+) lo)  = n(n + 21 + I ) ( M + ) ” - ’ z ~ ~ ( ~ + ) ~ o )  
N(M+)”Zt,(m+)lo) = 2(n + !)(M+)”z,(m+)lO) 

which are obtained by using (14) and (23). 
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4. Operator representation of the Dirac Coulomb Green function 

The use of the method of perturbation theory to solve the Dirac equation for a charged 
particle moving in the Coulomb field plus an electromagnetic field, which is considered 
as a perturbation with respect to the first field, always leads to equations like (10) and 
(1 1). where a perturhative term exists in the right-hand side of the equations. In order to 
solve these equations there is a need to establish the corresponding Green functions. In 
the traditional coordinate treatment, these Green functions are called the Dirac Coulomb 
Green functions (see Martin and Glauber 1958, Zapryagaev et a1 1985, Gorshkov 1964, 
Zon et al 1972,. . .). In OUT description, (10) and ( 1  1) have a shcture which is convenient 
for establishing the Green operator through the annihilation and creation operators and for 
transforming this operator into a normal form. 

Let us consider, for example, (10) and (11) with an inhomogeneous term on the right- 
hand side. In order to solve the above-mentioned equations we, first of all, have to 
exclude the existence of singularities appearing in places where -P 0 and expand 
the inhomogeneous term in power series of eigenvectors of the operators i2 and 2 .  In this 
regard we represent wavefunctions in the form 

Le Anh Thu et a1 

!.U 

where y = -I- l + d m .  Thus, the above-mentioned equations lead to the following 
equations for the wavefunctions 6iK: 

The operator in (26) can be rewritten in the form 

e* = i ( M  - M+ - 21 - 2)2+ ( y  + 1 +  l ) ( M  - M+ -2i  - 2) 

- i ( M  + M++ N + 2 ) ' + a * ( M +  M + +  N + 2 )  (27) 

where a+ = ZeZ&/m & f. Henceforth, for simplicity we leave out the signs 3~ in the 
description. By using the Green function operator G i x  which satisfies the equation 

(28) GIE fi 51fl(t) = 51m 
we establish the solution of (26) as follows: - 

%(t) = G l K q : ) ( t ) .  
In order to establish GfK we turn to (28) and rewrite it in the overt form 

G l < ( i ( M  - M+ - 2 i - 2 ) ' +  ( y  + 1 +  1)(M - M+ -21 - 2 )  - i ( M  + M +  + N +2)' 
+ a i ( M  + M+ + N + 2)}(M+)"Zi,(m+)lO) = (M+)"Zi,(m+)lO}.  (29) 

By using correlations (25), equation (29) can be transformed into 

G I K ( ~  + M+ + N + 2) -(n + y + I  + -a*)(~+)" - (2y  + I)(-l)"n! I 
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which suggests that the operator G t K  should be found in the form 

where d , ( N / 2 )  ace functions with argument N / 2 .  Further, we substitute (31) into (30). use 
comelations (25) in the action of operators and consider all the coefficients with the same 
vectors to be equal to zero. Consequently, we obtain the following system of algebraic 
equations for d,&V/2): 

-(n + y + I + - a+)d,(n + I )  = 1 

( - l ) " ( n + y + I + f  - a + ) ( n + 2 1 + I ) ! d s ( n - m + 1 )  

+(2y + lyx(-l)r(t + n  - s  +21 + I)!d,(n - s  + 1 )  = O  s = 1 ,2 ,  
t=O 

By solving the system of equations (32) with respect to unknown functions d,(n + 1 )  we 
obtain 

1 
Q(n) = - 

n + y + -a* 

As a result, the Green function operator is finally established in a normal form 

.. m ($N + I + l)! 
BIM = [-1+ ( 2 y  + l)C(-l)S 5=1 ( + N + s + I + I ) !  

I N  2 + y + ; - a* 

The operator representation of the Green function (34) allows us in concrete calculations to 
reduce rather complicated calculations of matrix elements into purely algebraic operations 
like (25). In the next section we will demonstrate such algebraic calculations through the 
exemplary problem of relativistic hydrogen-like atoms in a homogeneous electric field. 

5. Relativistic polarizability of hydrogen-like atoms 

Let us now consider the Dirac equation for an electron with energy E ~ ,  moving in the 
Coulomb field of the nucleus with charge Ze and in the extemal homogeneous electric field 
E .  After transformation into 6-space and after the substitution of (6) the Dirac equation 
leads to the following equations: 

- ( 2')- eE - -  
F -  i + -  G = - - ~ x ~ ( E ~ F + C )  

(35) 
0, 

Ze2&, ,.. e E  - - ) G = ~ , r x , ( F  + E ~ G )  
a - $) F"+ (xAz + 1 -mer + - 

me 
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where we = m. Here and henceforth, all operators in (35) will be interpreted as 
operators in <-space corresponding to the formal changes 

Le Anh Thu et a1 

r + h6,: XI  + (n)d:& 

a )  
a a 

ax, ( agJ a.$: xi- -+ - &-+.$:- 

Equations (35) will be solved using the method of perturbation theory with respect to the 
external electric field. Considering the dimensionless value-of the-strength of the electric 
field E as a small parameter we expand the wavefunctions F and G in power series of this 
parameter 

By the expansion (37), E, and we for the ground state can be expressed as follows: 

(38) a& 2 
2w 

w , = o + - E  +... E = = E - - ~ E  1 2  +. . .  
where a is defined as the polarizability of the hydrogen-like atom. Here in (38), we take 
into account the well known fact that the linear Stark effect is absent for the ground state. 
By substituting (37) and (38) into (39,  and considering to be zero all the coefficients with 
the same order of thz parameter E ,  we obtain for every order of approximation the equations 
for wavefunctions F"), G". 

The formula for the ground state polarizability can thus be obtained 

The wavefunctions in the zero-order approximation F"(') and 8') which, in fact, are 
solutions of equations like (10) and (1 I), can be established by using the algebraic method 
(see Komarov and Romanova 1985). We obtain 

where w = ZeZ, E = m. Then, in equations for wavefunctions in the first-order 
approximation, the perturbation has the form 

where 

~ d Z ~ ( 2 4 - 3  
U, = 

3" ' 

It can easily be seen from (41) that 8') and can be represented as follows: 

- - 
(42) F(1) = ? ( I )  + G(f )  = + E!) + + 



Operator representation of the Dirac Coulomb Green function 409 1 

where Fir) and G"2' are defined by the equations 

and 

In a simple way the solutions of (43) can be obtained in a form 

The system of equations (44) is more complicated in comparison with (43) and, therefore, 
for its solution the Green function should be used. As a result, we obtain - F:' = (M* + f~ + 1 - E ) @ )  - -huErEZ1,Z - (46) CY) = f i ( 2  - E ) U , ~ Y G : I ~ ~ - Y + ~ Z , . ~ .  

Substituting ? ( I )  and G"(') into (39) and by using (25) as well as the correlation 

we finally obtain the formula for the polarizability 

a=ao+6 (48) 
with 

a0 = 
e2(E + 1) (k  + 1)(4E2 + 136 + 12) 

36w4 
eZ(E - 2 ) ' r ( E  + y +4)  r(3 + E  - v) 

216(y - E f 3) r(2&)EW4 
- 

q-l r(s - E - y )  r(s - E + y + 3) 
S ! r ( S - E - y + 3 )  

S=O 

where y = -2 + m. 
for Z ranging from 1 to 137 are given in table 1. 

The corresponding graph describing the dependence of the polarizability on nuclear charge 
Z is also given (see figure 1). Taking into account the fact that Ze2 < 1 for Z < 137 we 
expand a in a power series of Ze2 

The numerical values of a and 

( ~ ~ 2 1 4  + . . .] 9e2 28 2n2+31  
o=-[ l - - (Ze2)2+ 2(ze2)4 21 432 (49) 
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Table 1. Relativistic polarizability in lhe ground stale of hydrogen-like atoms; a. omon are 
the relativistic Md non-relativistic polarizabilities respectively; amn = 9e'j2(Ze2)-'; oq is an 
analytical estimation term of D .  

5 
6 
7 
8 
9 

10 
I I  
12 
13 
14 
15 
16 
17 
18 
19 
20 
25 
30 
35 

0.999 945 

0.999 503 
0.999 117 
0.998620 
0.998 012 
0.997 295 
0.996467 
0.995 529 
0.994481 
0.993 323 
0.992 055 
0.990677 
0.989 189 
0.987 592 
0.985 885 
0.984 068 
0.982 143 
0.980 108 
0.977 964 
0.965616 
0.950569 
0.932853 

0.999 779 
0.999945 
0.999778 
0.999501 
0.999 113 
0.998 613 
0.998004 
0.997 283 
0.996451 
0.995 509 
0.994456 
0.993292 
0.992019 
0.990 635 
0.989 141 
0.987536 
0.985 821 
0.983997 
0.982062 
0.980018 
0.977 865 
0.965461 
0.950345 
0.932547 

40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 
95 

100 
105 
110 
115 
120 
125 
130 
135 
136 
137 

0.912499 
0.889547 
0.864 040 
0.836 027 
0.805 562 
0,772707 
0.737526 
0.700091 
0.660478 
0.618769 
0.575 049 
0.529 404 
0.481 922 
0,432680 
0.381 741 
0.329 122 
0.274 744 
0.218279 
0.158625 
0.090429 
0.073004 
0.045002 

0.912099 
0.889039 
0863412 
0.835265 
0,804655 
0.771 642 
0.736294 
0.698 683 
0.658 887 
0.616993 
0.573088 
0.527267 
0.479623 
0.430250 
0.379222 
0.326582 
0.272283 
0.216049 
0.156872 
0.089 657 
0.072582 
0.045 236 

The numerical data of a (see table 1) and the expansion (49) coincide with results given 
in Zon et al (1972). But in our results, it should be noted that the series appearing in 6 
are quickly convergent and the value 8/ao for all values of 2 is very small. The biggest 
value, whereby 2 = 130, is 8/a, - 0.01. This result allows us to use as a simple 
analytical formula for the polarizability of the ground state of hydrogen-like atoms. In fact, 
it is useful for analysis of different effects connected with the problem of interaction of two 
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hydrogen-like atoms having high values of nuclear charge (see Baras 1988). Furthermore, 
we consider it interesting and useful to scale the polarizability with various size parameters. 
The size of hydrogen-like atom could be defined as follows: 

For the ground state of hydrogen-like atoms, we have 

- (F"@)lr'IF") z J i T Z Z +  I 
(F@) II. I F")) 2Ze2 

r =  ) =  

from which it follows that 
1 

i4=5.06(1 - 4 ( Z e 2 ) 2 + $ ( Z e z ) 4 + + . . ) -  
( ~ ~ 2 ) ~  

The comparison of (49) with (50) leads to the conclusion that the relativistic polarizability 
scales like i4 for low values of nuclear charge. 

It should be noted that the high convergency of the power series appearing in the 
expression for 6 as well as the high accuracy of the analytical estimation a, are directly 
related to the expansion (34) of the Dirac Coulomb Green function. This expansion in 
the coordinate representation leads to power series of the oscillator wavefunctions. The 
results obtained serve as a good example for demonstrating the advantage of the latter in 
comparison with the use of the usual representations which lead to power series of the 
Coulomb wavefunctions. In our next work, we will show the above-mentioned efficiency in 
calculations of the dynamical relativistic polarizability of hydrogen-like atoms, a problem 
which is rarely investigated because of its complexity. 
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