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We present detailed comparisons between the two quantal approaches—hyperspherical close-coupling and
common-reaction-coordinate close-coupling methods—on an exemplary case*'ofH{#s) collisions at
center-of-mass energy from 20 eV up to 1.6 keV. It is shown that the partial-wave charge-transfer cross
sections from the two approaches agree very well at low energy below 200 eV down to 30 eV. This good
agreement is a strong indication of the validity of both methods. The small difference at very low energies and
the convergence with respect to the number of channels in both approaches at higher energies are also
discussed.
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I. INTRODUCTION liding systems have been calculated in response to the need

Inelastic and charge-transfer reactions between atoms (')? applications.
9 For high-energy collisions where the motion of the nuclei

lons at low energies govern the behavior of gaseous medigay he treated classically, the remedy is centered on the

This concerns a wide range of questions of practical imporinclusion of “electron translation factor¢ETF's) in the ex-

tance from laboratory to terrestrial and astrophysical enviy, <00 of the electronic wave functi¢8]. The ETF, non-

ronments. Over the past few decades, d|ﬁerent theoretic ontroversial in separated-atom bases, has, however, contin-
methods have been used to evaluate the reaction cross S(E@

. . - . d to trouble treatment with molecular orbitals. The
tions that are required for a quantitative understanding o

h di For s lisi he el . -9 “difficulties arise from the conceptual incompatibility of the
these medigl]. For slow collisions the electron is moving in .- \q|ational factors, which associate each electron with a

the field of two slowly ”.‘0"‘”9 nuclei such that the collision specific fragment, and the BO molecular basis in which each
complex can be approximated as a transient molecule. Therg

! ! . Jectron moves in a fixed-nuclei complex. Nevertheless, the
fore, mol_ec_ular orbltalsMOs) are the natural representation j.oquction of ETF’s removes the major defects of the stan-
for describing slow ion-atom or atom-atom collisions. This y..4 pgg approximation and excellent agreement with ex-
forms the basis of the well-known perturbed-stationary-stat

> . ‘f)eriments have been obtained from such calculafibs5.
(PSS approximation, introduced by Massey and. Snf_|2|]1 Although the form of the ETF is well established for atomic
more than half a century ago. In the PSS approximation, th

A : NBases, there are several choices for molecular bases. The
total wave function is expanded in terms of molecular orbit-

I imilar to the adiabatic Born-O heim&o generally accepted solution, for collision energies where ion-
as, _sm;_ar fo el a '? a ICh ortnh- _ppt)en ellrr( ) ap- i ization processes are not significant, is the use of a common
proximation for molecules where the internuciear separatiolyangjation factof6], where all the molecular functions are

is an ahdiabgtéc paramether. h ical calculati ¢ multiplied by the same ETF, which is expressed in terms of a
In the P "approacd, the numerlcg hca culation Oh CrOS3witching function that allows one to fulfill the initial condi-
sections usually proceeds In two steps: the quantum chemicg n; this switching function usually contains adjustable pa-

treatment of the transient molecule and the subsequent treqts eters. which is sometimes taken as a drawback of the
ment of the heavy particles dynamics. However, ever SiNCGyethod, but an optimized ETF improves the convergence

::s introduhction, this (ijntfuitivelg attracti\r/]e PSIS rToder!s eed of the expansiofi7]. There is another different
nown to have many defects because the molecular or 'ta%gproach—the advanced adiabatic approximajinwhich

in the BO approximation do not satisfy correct asymptot'cexpands the electronic wave function onto dynamically

d. including i di i tion threshold Ycaled molecular states and employs the theory of hidden
mented, including incorrect dissociation thresholds, nonvang,«qinggHC's) [9] to describe the inelastic transitions. In

ishing asymptotic couplings, and the calculated cross S€Ghis approach a generalizegommon ETF is also intro-
tions not Galilean invariant. Although the defects are We”Puced to fulfill the correct boundary conditions.

k_nown, the remedies are less obvious. Despite thgse difficul-" £, low-energy collisions where the motion of the nuclei
ties, cross sections and rate constants for many different cofé treated quantum mechanically, the concept of electron

translational factors loses its meaning. Despite this fact,
similar ETF-modified molecular orbitals have been used in
*Electronic address: atle@phys.ksu.edu the quantum approacfil0,11. In the meanwhile, the so-
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called common reaction coordinatéSRC’s) have been in- were performed by each one of our groups separately such
troduced since late 1960%2—-14 and implemented since the that we can compare the cross sections at the partial-wave
late 1980s and 1990s to obtain cross sections for a few colevels, as well as the coupling matrix elements. This would
lision systems at low energi¢$5-17. Criteria for choosing help to establish that the two approaches indeed agree even
the reaction coordinates have been proposed and used in thethe differential level.

calculations[18,19, but similar to the ETF’s, their choices  Thjs paper is organized as follows. In Sec. Il we first

are not unique. Although the CRC method has been tested by;ymarize the HSCC and CRC methods briefly. The ap-
experimental data at high energies, the results obtained fropyoyimations used in each method will be stressed. It will be
this method have not been adequately tested at low energieg, o\ that the hyperspherical radius which is the adiabatic
especially since high-quality experimental data are hard ;5 meter in the HSCC method is very similar to the reaction
come by for low-energy ion-atom collisions. While the ex'rﬁoordinat% used in the CRC method. This allows us to even

perimental situations have been improved to some exte compare the potential curves and the coupling terms directly.

from merged beam experiments in simple ion-atom COIIiSionIn Sec. lll, we present detailed comparisons of the results
ms in th hm remen n still o .
systems in the past decafl9], such measurements can st om the HSCC and CRC methods, on the level of nonadia-

only give total electron capture cross sections and thus the™ ; ) :
reliability of the CRC method has not yet been critically batic couplings and partial-wave capture cross sections. The

tested, especially for the weak channels. Iqst sectio_n giv_es a summary and conclusions. A_II the_ ener-
Within the last year, a new implementation to low-energy9ies are given in the center-of-mass frame. Atomic units are

ion-atom collisions based on the hyperspherical closel'sed unless otherwise indicated.

coupling (HSCO method has been developed. The hyper-

spherical method has been widely used in a variety of three- Il. THEORY
body systems[21], from reactive atom-diaton{22,23, ) )
electron-atom[24,25, and positron-atoni26,27 collisions A. Hyperspherical close-coupling method

to three-body recombination28]. The HSCC method has The details of the HSCC theory are given in Lét al.
been employed to obtain charge-transfer and excitation cro§gj. |n this subsection we describe the basic ingredients of
sections for a number of simple ion-atom collision systemshe method. We also give here a description of a modification
so far[29-33 with results in general agreement with experi- of the method—namely, the diabatization procedure used to
ments when available. In two cases, one in protont8@  adequately compare with the results from CRC. In the
and the other in BE+H and St*+H [31], the total charge center-of-mass frame we solve the time-independent
transfer cross sections from the HSCC method have bee@chrﬁdinger equation for the three-body Héldystem in the
shown to agree rather well with the previously publishedmass-weighted hyperspherical coordinates.dsdie the first
CRC results, except for small differences at very low ener-jacobi vector from H& to H*, with reduced masg, andp,
gies(of the order of a few eV or legsSuch a comparison is the second Jacobi vector from the center of mass &t Hied

interesting since the good agreement establishes the validiy* to the electron, with reduced mags. The hyperradiu®
of both the HSCC and CRC methods. Furthermore, it congnd hyperangles are defined as

firms that the CRC method can be used to obtain reliable
inelastic or charge-transfer cross sections at low energies de-

spite the parameters introduced in the choice of reaction co- R= ’u—lpf + &pz, (1
ordinates. This is of practical importance since the HSCC M

method can be employed only for a one-electron ion-atom

collision systems while the CRC method has been applied to o Po

few-electron ion-atom collisiong34,35. tan ¢ = 1p1! (2

The goal of the present paper is to further test the agree-

ment between the HSCC and CRC methods, at the pa.rt.ia{ﬂlhereu is arbitrary. In this paper we choogeequal to the
wave cross section levels and over a broad range of collisiop,y,ceq masg, between the two nuclei. The hyperradius is
energies. For this purpose we used the HSCC and CRE’]en very close to the internuclear distance. We further define

mlitriOds tl? galcu][ate charge—t][ansfzrocr\o/ss sectllogi?l?/ Hean angled as the angle between the two Jacobi vectors. By
+H(1s) collisions for energies from 20 eV up t0 1.6 keV.  inyogucing  the  rescaled  wave  function W

This system has been. anallyzed for different ranges of en- YR3%sin ¢ cos ¢, we solve the Schrodinger equation in the
ergy by many authors using different versions of PSS as wel, .,
as HC theory[36—43. It should be noted, however, that
there exist few quantal approaches for’HeH collisions at 19 9 15
low energies. The first quantal close-coupling calculations(— ——R>—+ — +H,(RQ,0) - ,uRzE)\If(R,Q,&)) =0,
were reported by van Hemest al. [10], who used semiclas- 20R IR 8
sical ETF’s but solved the motion of the heavy particles (3
quantum mechanically. An alternative approach is the work
by Fukuda and Ishihara who used the distorted atomic orbitavhereQ)={¢, 6}, andw denotes the three Euler angles of the
(DAO) approach[43]. Quite recently, Liuet al. [29] per-  body-fixed frame axes with respect to the space-fixed frame.
formed HSCC calculations for this system using four adia-The H,q is the adiabatic Hamiltonian with the hyperradius
batic channels. In this paper HSCC and CRC calculation§ixed:
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o A? 5 the HSCC method, the adiabatic Hamiltonian is not sepa-
HadR. Q) ==+ uRCR.Q), (4)  rable; thus, the adiabatic potential curves do not cross.
Therefore, even if the same number of adiabatic channels are
whereA? is the square of the grand-angular momentum opused in the calculation, the two approaches do not include
erator andC(R,(}) is the total Coulomb interaction energy the same channels in general. To be able to include exactly
among the three particlé29]. The HSCC method treats the the same channels in the calculations, in practice we perform
hyperradiusR as a slow variable in the same way the BO a “partial” diabatization procedure; that is, we diabatize only
approximation treats the internuclear distance. Thus we firdhe needed sharp avoided crossings.
solve the adiabatic equation to obtain adiabatic channel func- The adiabatic and diabatic representations are related by
tions 4 (R; Q). Here v is the channel index, antis the  the unitary transformation

vl
absolute value of the projection of total angular momendum @0 = CoA ®)
along the body-fixed’ axis, taken to be the axis between the B '

two heavy particles. The superscriptiesignates the channel Here diabatic channel functions are denoted with a super-
functions as adiabatic. We solve this equation by usingcriptD, andC is a unitary matrix. The transformation ma-
B-spline basis functions. In the next step, similar to the stantrix C is chosen as the solution of the linear equafié6]

dard BO approach, we solve E@) by expanding the re-
scaled wave function on the adiabatic basis: dC )

V(RO,0) =X X F (RPHRD (@).  (5) _ _ R _
vl J whereP is the radial couplingfor simplicity, we omit thel

index in the following equations

In this equationJS is the normalized and symmetrized rota-
tion function, and\M; is the projection of angular momentum p. =( A d A (10)
J along the space-fixed axis. The hyperradial wave func- A Mdr| Y/

tions satisfy the coupled equations ) ,
As mentioned above, in the HSCC method we adopt the

19 R2 d 15 5 SVD technique of Tolstikhiret al. [45] where nonadiabatic
T24R IR + ) + Uy - wREF(R) couplings(7) or radial couplingsP, in particular, are implic-
2 itly included in the overlaps between the channel functions.
K _ Within the same spirit, we perform diabatization using only
2 ?’ Wt O+ Vi P (RI=0,(6) overlap matrix elements. Specifically, we choose to ap-
proximate the derivative with respect to hyperradiRisn
where U is the adiabatic potential and is the rotational Eqgs.(9) and(10) by the simple difference
coupling. The nonadiabatic couplinyg are given by

1 A A A A
d d o? Pru(R) = —[(P\(R)|P,(R+ AR)) = (D) (R)[®’(R))].
Wy (R =2{ @ | 1), )——+{ & | -5 | D}, ), AR
’ dr| "/ dR dre|
(11)
7
@ Similarly, we have
where the angular brackets imply integration over the angu-
lar coordinates). Note Fhat the first term in thi_s equatic_)n dc,, ~ i[CM(RﬁLAR) -C,,(R)]. (12)
corresponds to the radial coupling. These radial couplings dR AR

can be computed accurately in the avoided crossing region _

only if adiabatic functions are calculated over very densely=auation(9) then becomes

distributed meshed points. In the HSCC method as presented A A

in [29], we solved the coupled hyperradial equations using C\(R+AR) = X C,(R(PL(R|P)(R+AR)). (13)

R-matrix propagatiori44] combined with the slow-smooth .

variable discretizationSVD) technique[45]. This method Thus the transformation matri€ can be obtained through

bypasses the tedious calculations of nonadiabatic couplingbe overlap matrix elements and the init@l In practice, in

explicitly and the radial couplings are implicitly included in order to diabatize the sharp avoided crossings we limit the

the overlaps between the channel functions at different hysummation in Eq(13) to a few channels which have the

perradii. In order to compare with the CRC method in detaillargest overlaps. The diabatization should be started from a

for the present paper, approximate radial couplings havéarge enough distance where one can choose the initial con-

been extracted from the overlap matrix elemegstse next dition for C to be the identity matrix. Once the diabatic basis

section. is obtained, further implementation of the diabatic HSCC
To compare the results from the HSCC method with theapproach is straightforward with the adiabatic channel func-

CRC method, there is, however, another complication. In théions in the expansiofb) replaced by the diabatic ones.

CRC approach, the adiabatic BO Hamiltonian for the present A more detailed account of this diabatization procedure

system is separable in spheroidal coordinates. This leads teithin the HSCC approach is given in Hesst al. [47],

real crossings of some of the adiabatic potential curves. Imvhere it is also used to eliminate channels that couple
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weakly with the dominant channels, such that the number of In this work we have employed a CRC defined in terms of
basis functions in the coupled-channel calculations can bghe switching functiorf of Harel and Jouirj48]:
reduced.

1
f(p1,p2) = E[ga(ﬂ) +1-2p], (19
B. Common-reaction-coordinate method
The CRC method is based on the use of the close?/t
coupling expansion 7
0= —" (20
Vip2§) = WOVpzi8), (14) (@=1+7)

and »=p;(ra—rg). The parametex was chosen to be 1.25
wherep,, as in Eq(1), denotes the electronic position vector in the present calculation, but a test has been made to con-
with respect to the center of mass of the two nuclei,&he firm that the results are insensitive to the valuesxafised
are adiabatic BO wave functions, and the vecfois the (see[50] and references thergin
common reaction coordinate. The CRC itself is a function of As shown in[17], using the eikonal approximation and
electronic and nuclear coordinates; it was introduced to enassuming constant and state-independent nuclear velocity,
sure that the expansiail4) fulfills the scattering boundary one obtains the common translation factGTF) method as
conditions. In the application of the method, the molecularthe high-energy limit of the CRC method, with the same
orbitals®,(p,; p;) are obtained by solving the BO electronic switching function used to define the CRC and CTF; this
equation[48], and these orbitals are then evaluated at a poin€ETF method describes asymptotically both the electronic ra-
wherep; (the internuclear separatipis numerically equal to  dial motion and the rotation of the electronic cloud. In par-
¢ Itis easily noted that expansi@h4) is identical to Eq(5)  ticular, the semiclassical limits of the present calculations are
when the reaction coordinate is defined by Ed3.and(2).  those reported ifi51].

In our implementation, which is explained in detail in Ref.  In practice, a transformation to diabatic basis is carried
[17], the reaction coordinate is written as out, by using Eq(9) with P equal to the radial component of
the matrixM, and the calculation of cross sections is evalu-

1 1 1 ;
E=p1t ;S(Plypz) =pt ; f(p1,p2)p2 = Efz(Pval)Pl ) ated by taking

(15 X&) = éfi.f)wa)), (21)

wheref(py, p,) is a switching function that fulfills where we have employed the same notation as in(&Qg.

lim  f(ppo) =-p, The ensuing set of radial equations is solved numerically and
p1—irpfinite the elements of the scattering mat® are obtained from
the numerical solution employing standard collision theory.
lim  f(py,p0)=q, (16)  The total cross section for transition from state statej is
p1—,Igfinite given by
wherer, andrg are the distances from the electron to nuclei - -
A andB, respectivelypp; andgp, are the distances from the 0= 52 0 =52 (21+ 1)|S]2 (22)
nuclear center of mass to nuckiandB, respectively. With k™3 k™3

this definition, ¥ is a solution of the Schridinger equation
to O(u™1), in the limit of large internuclear separations. Sub-
stitution of Eq.(14) into the Schrédinger equation yields the C. Comparing HSCC and CRC formulations

system of differential equations The brief summary in the two previous subsections

-1\ p2 IR I Y 192 clearly demonstrated the similarity and difference in the
2w IVir B-e)lg % (217 M- Ve + ()| VE| DY) HSCC and CRC methods. Formally the two methods appear
to be equivalent if the hyperradilR is identified with the
=0, (17) reaction coordinat&. Both methods are correct asymptoti-
where, as in all applications of the method, terms proporcally to orderO(u™), a major improvement over the PSS
tional tov? have been neglected, wharek;/ u andk; is the ~ approach. Comparing E@L5) with Eq. (1) whereu,=u and
initial momentum. The modified dynamical coupliMy isa  #2=1.0, both the hyperradiug and the reaction coordinate

vector whose componenthas the form yield corrections to the internuclear separatigriby amounts
5 proportional top,/ . In the HSCC method the radial and
a_{a | 9 _ _ 2 rotational couplings have the simple mathematical forms as
Mjic= <(DJ’ Jé&, q)"> D]V (s -V + V()| P, in the PSS approach, but the BO wave functions in the PSS
(18) theory are replaced by the adiabatic hyperspherical channel
functions. In practice, in the CRC method the wave functions
whereV denotes the gradient with respect to the electroniand potential energies are the same as in the PSS approach,
coordinatep,. but the modified coupling matrix elements, as shown in Eq.
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(18), have a few additional terms. Both the HSCC and CRC
methods remove the spurious asymptotic radial couplings
and the use of a vector to define the CRC removes the spu
rious, slowly decreasing rotational couplin@gee[18]). An-

other difference is the asymptotic potential energies in the~
HSCC method takes into account of the masses of the heavi
particles, but not in the usual implementations of the CRC 3
method, where these corrections are negledwekt Ref.
[17]). Thus the HSCC method can be easily applied to study(i;
charge transfer in collisions such a§+H at low energies
[52], but this would be more difficult using the CRC method.
On the other hand, the CRC method has been extended t
many-electron collision systems, while generalization of the
HSCC method to many-electron systems would be much
more difficult. Formally, within a given number of adiabatic

channel functions, no additional approximations are made in 10 15 20 25 30
the HSCC method. For the CRC method, there is still free- Hyperradius (a.u.)

dom in the choice of switching functions even when the

number of channels is fixed, but in calculations it has been FIG. 1. (Color onling Potential curves included in the minimum
shown that the results are insensitive to variations in thdour-channel HSCC calculations. The inset shows the close-up for
switching functions in general. In the next section numericakhe region near the two sharp avoided crossingB=at.7 a.u. and

results from the two methods are used to illustrate the tw®.6 a.u. We have added the next upper channel in the inset to clearly
methods. illustrate the avoided crossing near 1.7 a.u.

ner

Potent

from the reaction coordinates. They differ somewhat only for
R much less than 1 a.u.
IIl. RESULTS AND DISCUSSIONS Figure 4 compares partial-wave charge-transfer cross sec-
tions at 200 eV. The agreement is very good for the whole
o ) ) range of partial waved. We show on the inset fad from
For collision energies below 200 eV, the dominant reac- 50 up to 950 where the partial-wave cross sections are
tion channels are charge transfer to'the=2) excited states. small. Here we also include the result from the DAO calcu-
Thus, for both the HSCC and CRC methods, in the preseriation of Fukuda and Ishiharp43]. The overall agreement
calculation we include only four channels, one is the incidentamong the three calculations are indeed quite impressive. We
channel Hls)+He?*, and the other three are the main note that earlier calculations by Fukuda and Ishitj48 and
charge-transfer channels He=2)+H®*. These four adia- by Liu et al.[29] showed that, for the range dfindicated in
batic potential curves included in the HSCC calculation arehe inset, the quantal results at this energy are very close to
plotted in Fig. 1. The potential curves are labeled in terms ofn€ semiclassical results by Winter and Hatton using MO’s
the molecular orbitals. As mentioned in the previous sectionWith plane-wave ETH38]. _
we have diabatized the adiabatic hyperspherical potential 1h€ agreement between HSCC and CRC partial-wave
curves which transform the two sharp avoided crossings df0SS Sections is even better at 100 eV and 50 eV, shown in

aboutR=1.7 a.u. and 3.6 a.u. into real crossings. The inset 0.3

A. Low-energy comparison

shows the close-up of these curves that have been diabatize -~ HSCC
These potential curves are essentially identical to the four —— CRC
adiabatic curves from the CRC meth@tbt shown. We con- 0.2 i

clude that we use the same four channels in both calculation
for the whole range of hyperradiusr internuclear separa- 3
tion).

In Figs. 2 and 3 we compare, respectively, the radial and.
rotational coupling matrix elements from the two methods.
As mentioned in the previous section, in the HSCC approact
the radial couplings are calculated approximately using Eq.
(112). The rotational couplings are calculated explicitly in the
HSCC method(see[29,30). We can see good agreement -0.1
from the two methods foR larger than about 6.0 a.u. At
smaller distances, the agreement becomes less satisfacto
for all the radial couplings. The rotational couplings 0.2 5 10 15
2po-2pr also differ somewhat foR<6 a.u., whereas the Internuclear distance (a.u.)
other two rotational couplings from the two methods are in
good agreement. Note that in both figures we do not distin- FIG. 2. (Color online Comparison of radial couplings from the
guish the hyperradius from the internuclear separation oHSCC (dashed linesand CRC(solid lineg methods.

(a.u.
I
=

ings

oupl

o

ial
o

adl

o
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1.2 T T T T T 0.003 T T T
—---- HSCC 5 5 T T
—— CRC ] x10 ---- CRC
\\ 4
- i
3 - i
«© ! 3
o e e 0.002 | 1
o | \N \ pf———--"" 1
£ - i !
s " 2
3 1
8 !
g 7 | 1
5 i 0.001F] ! 0 . . ‘ 1
[an )
| 100 200 300 400 500
)
1)
_02 1 1 1 1 1 k
0 5 10 15 20 25 30 0 PN . .
Internuclear distance (a.u.) 0 100 200 300 400 500
Partical wave J
FIG. 3. (Color onling Comparison of rotational couplings from

the HSCC(dashed linesand CRC(solid lineg methods. FIG. 5. (Color onling Comparison of partial-wave charge-

transfer cross sections from the HSCC and CRC methods at a col-
Figs. 5 and 6, respectively. The general behaviors of thdsion energy of 100 eV. The inset shows the good agreement for

cross sections at 200 eV and these two energies are velye higherJ where the cross sections are very small.

similar, with large contributions to the total cross section o ) ) )
coming from relatively small partial waved below about two approaches indicates that differences in the radial and
J=180, 100, and 50, respectively. In fact, this general behaotational couplings, as shown on Figs. 3 and 2, have only
ior remains the same for the whole range of energy fromfMinor effects on the accuracy of the cross sections in this
about 200 eV down to about 40 eV. In semiclassical lan-N€rYY region. . o

guage, the dominant transition occurs at impact parameters_TNe J-dependent behavior of the cross section is totally
smaller than about 1.6 a.u. We noted that the prominer@ifferent at 30 eV, where the prominent peak at snialis-
peaks at small for this range of energy result mainly from aPPears; see Fig. 7. Still, the gce_neral behaviors remain simi-
rotational coupling, while the small peaks at largecome lar in both approaches. The positions of the peaI_<s are als_o in
mainly from radial couplings. This is in agreement with the 900d agreement. However, the CRC cross section is notice-
results reported by Grozdanov and Solov[di] and Janev ~ably smaller than that of the HSCC approach. It is interesting
et al. [42]. The good agreement of cross sections from thd® Note that at this energy the four-channel adiabatic HSCC

calculation by Liuet al. [29] is very different from the

. " T " T present diabatic one for partial wavésmaller than about
. . . 50. For larger] the two results are identical. This indicates
0.008 ---- CRC -
—— HSCC 1 .
............ DAO T T T
---- CRC
E,.=200eV 6l — HSCC
0.006 .
E,, =50 eV
- 5F E
3
«
0.004 - 8 Al |
c
¥ ! o
400 600 800 8 3t -
0.002} 4 o
8
5 2t i
0 /\/\ 7 i 1H N
400 600 800 1000
Partial wave J 0 1 1 1
0 100 200 300 400
FIG. 4. (Color onlineg Comparison of partial-wave charge-

Partial wave J
transfer cross sections from the HSQG®lid line) and CRC(dashed

line) methods at a collision energy of 200 eV. The inset shows the FIG. 6. (Color onling Comparison of the partial-wave charge-

close-up forJ from 150 up to 950. The results from the DAO transfer cross sections from the HSCC and CRC methods at a col-
method of Fukuda and Ishihafd3] are also showridotted lines. lision energy of 50 eV.
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method is still similar to that of 30 eV, whereas the peaks

---- CRC from the CRC approach show some irregular oscillatory
— HSCC structure. As the cross section becomes very small, of the
E, =30 eV order of 10%%a.u., the “spurious” structure might be an in-

dication of the numerical instabilities in the CRC method or
| could be due to real differences between the two approaches
at low energies. Note that similar differences have been ob-
served in B&+H collisions[31] andp+Na(3s) collisions at
very low energieg30] previously.

At 20 and 30 eV, we have found that radial coupling is
the main mechanism for charge transfer, while above
50-200 eV, rotational coupling also plays an important part.
For a higher range of energy, this was noticed previously by
Grozdanov and Solov'epd1] and Janeet al. [42]. We have
also checked the convergence of the charge-transfer cross
sections from both calculations to confirm that adding more
Partial wave J channels does not alter the results for energies below

200 eV.
FIG. 7. (Color online Comparison of the partial-wave charge-

transfer cross section from the HSCC and CRC methods at a colli-
sion energy of 30 eV.

Capture cross section (10‘8 a.u.)

B. Convergence of the HSCC and CRC calculations
at higher energies

the importance of treating the avoided crossing nBar It is interesting to compare the results from the qugntal
=1.7 a.u. diabatically. In order to confirm this conjecture, we@PProaches such as the HSCC and CRC methods in the
increased the number of channels included in both adiabati®igher-energy region, where one can compare them with the
and diabatic HSCC calculations. The results of diabatidnore widely available results from semiclassical calculations
HSCC calculations are stable with respect to the number ond experiments. _ B
channels, whereas the adiabatic result converges to the di- AS the collision energy increases, the transition becomes
abatic one as more channels are included. This implies thdgSS State selective and the minimum four-channel basis set
the four-channel diabatic basis is better for describing théhown in Fig. 1 would become less adequate. In this subsec-
collision process at this energy. This is not surprising sincdiOn We test the convergence of the two quantal methods at
this avoided crossing ne®=1.7 a.u. is very sharp and nar- 600 €V and 1.6 keV and compare them with the semiclassi-
row. In fact, in order to get converged results within the@l close-coupling approaches based on atomic orbitals
adiabatic HSCC approach, only the next upper channel nee(ﬁéo's) and on molecular prblta!s including common transla-
to be included in the calculatiofsee the inset of Fig.)1 tion factors. The two semiclassical me'gh_ods h_ave been exten-
At an even lower energy of 20 eléee Fig. §, the general sively test_ed and employed for collisions in the higher-
behavior of the partial-wave cross section from the HSCCENErgy region. _
In this higher-energy region we performed 20-channel and
5 , . . 10-channel HSCC calculations. We used diabatic basis func-
tions and for the 20-channel calculations all 10 andl
---- CRC =1 channels that dissociate up to ‘te=4) are included,
—— HSCC | while for the 10-channel calculations they include all the
h E.m=20eV channels up to Hén=3).

a.u.)

To test the convergence of each quantal method, we com-
pare the impact parameter weighted charge-transfer prob-
abilities versus impact parameter. The partial-wave cross sec-

tion is converted to the impact-parameter-dependent
probability by

—10

Cross section (10

oIz 27bP(b) '
k
with J=kb, wherek is the momentum. In Figs(8) and 1Qa)
u we show the results from HSCC at 600 eV and 1.6 keV,
0 respectively. We aI;o plot in these f@gures the results from the
Partial wave..J AO calculations using 14-state basis g&2]. Note 'ghat 'these
AO results agree with the CTF results shown in Figd)9
FIG. 8. (Color online Comparison of the partial-wave charge- and 1@b) and, for all practical purposes, are also in agree-
transfer cross section from the HSCC and CRC methods at a colliment with the semiclassical MO results from Hattenal.
sion energy of 20 eV. [37] and Winter and Hattori38]. Thus we will treat these

(23
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0.4 - - - ; sections agree perfectly with the same 14-channel semiclas-
A @ ;fgiﬁﬂiﬂﬂi: :ggg sical CTF resultgor the AO results The 4-channel CRC is

— A o= 4_channel HSCC | adequate at large impact parameters but not at small impact
;; 0ol --- 14-state AO ] parameters. For 1.6 keV, at large impact parameters the
5 | E,, =600 eV 4-channel and 14-channel CRC agree with each other, but
2 o ’ they deviate from the 14-channel semiclassical CTF results.
g AW YN\ A Again the 4-channel CRC is not adequate at small impact
= 00 hOAVAR — e = parameters.
g (b) — 14—channel CRC What can one conclude from these comparisons? The de-
= 031 — tCha””e' CRC ficiency of the 4-channel calculations at small impact param-
a —channel CTF . .
€ eters can be easily attributed to the lack of enough channels
> 0.2 E,,=600eV 1 at small impact parameters. In fact, the potential curves at
5 small internuclear separations are quite close to each other
8 0.1 — and coupling to the higher channels becomes important as
& the collision energy increases. The agreement between the

0 2 | 4 6 8 10 4-channel and 14-channel CRC calculations at large impact
mpact parameter (a.u.) parameters indicates that convergence with respect to the

FIG. 9. (Color onling Convergence of the HSC@) and CRC number of channels is not the issue. The fact that they agree
(b) methods with respect to the number of channels included ifVith the CTF results at 600 eV but not at 1.6 keV is attrib-

calculations for the collision energy of 600 eV. These quantal relited to the approximation of neglecting terms in the CRC

sults are compared to the semiclassical AO calculations and theouplings, which are included in the semiclassical CTF cal-

semiclassical CTF calculations; see text. culation, leading to an overestimate of the charge-transfer
probabilities, as shown in Figs(t9 and 1@b). To verify this,

semiclassical results as converged. At 600 eV, clearly thg, o performed a CTF calculation without thé term and

4-channel calculation is not enough, but the 10- and 20¢,firmed that the cross sections at large impact parameters

channel calculations appear to have converged already. A<iltre indeed very close to that of the CRC approach. For the

1.6 keV_, on the other hand, for bOth th_e 10- and 20'Chamn%SCC method, the results in Figs@ and 1@a) illustrate
calculations, even though the oscillations are well repro-

duced, the magnitudes are off, especially at larger impa Ehe slow convergence of the method at increasing energies.

parameters. At both energies, clearly the 4-channel calculd the HSCC method there are no equivalent factors like the

tions overestimate the capture probabilities. This has beeﬁwitching functions or the electron translation factors to in-

observed already in earlier work by Lt al. (see Table Il corporate the translational effect of an electron moving with
and Fig. 6 from[29]). one or the other atomic center. Within the HSCC formula-

The convergence tests on the CRC method are shown i#on. the only way that such a translational effect can be

Figs. 9b) and 1@b). At 600 eV, the 14-channel CRC cross included is to increase the number of channels. The conver-
gence in such calculations is expected to be very slow as the

(a) — 20—channel HSCC collision energy is increased. On the other hand, semiclassi-
1r . == 10-channel HSCC - cal methods for collisions in this energy regime are now well
y == 4-channel HSCC established, so there is no need to push the quantum collision

\ 7~ 14-state AO theories to this higher-energy regime.

E,.=16keV  _

I
n

= IV. SUMMARY AND CONCLUSIONS

—— 14—channel CRC

—— 4-channel CRC 7 . . . -
— -~ 1{4_channel CTF In this paper, in the example of a simple collision

N system—namely, Hé+H—we gave a detailed comparison
| 3 N E.,=1.6keV | of the HSCC and CRC methods at the level of partial-wave
Y 3 cross sections over a broad range of collision energy. We
A NN N found very good agreement between the two methods at low
0 . . . . energies from 30 eV up to 200 eV. Similar agreements at the
0 2 ‘I‘m ot grameter?a 10 12 total cross section levels have also been observed in two
pactp U other systems previous[80,3]]. Since the two methods are

FIG. 10. (Color onling Convergence of the HSC@) and CRC ~ Quite d_iffe_rent_ computation_all_y, this good agreement is a
(b) methods with respect to the number of channels included irStrong indication of the validity of both methods. We can
calculations for the collision energy of 1600 eV. These quantal retherefore safely conclude that both methods are capable of

sults are compared to the semiclassical AO calculations and thebtaining accurate cross sections for collisions at low ener-
semiclassical CTF calculations; see text. gies even if there is a lack of experimental data. This is of

o

—_
T

©
6]
T
)

Probability times impact parameter (a.u.)
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practical importance since, while the HSCC method can bexplicit factors to account for the translational effects, but
used so far only for one-electron ion-atom collision systemsrather by a modification of the internuclear variable, the
the CRC approach has been applied to many-electron casé$SCC method has been shown to converge slower than the
One can expect that these calculations are reliable if thether approaches at higher energies. On the other hand, the-
structure part of the CRC calculations are done correctly andretical approaches for ion-atom collisions at higher energies
accurately. We note, however, that the remaining discreparare well established and there is no need to extend the HSCC
cies seen at energies below about 30 eV might indicate eithenethod to such a higher-energy region.

numerical instabilities of the CRC method and/or sensitivity

of the results to the_fqrm of reaction _coordinates used in the ACKNOWLEDGMENTS
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