
Comparison of hyperspherical versus common-reaction-coordinate close-coupling methods
for ion-atom collisions at low energies

Anh-Thu Le,1,* C. D. Lin,1 L. F. Errea,2 L. Méndez,2 A. Riera,2 and B. Pons3
1Department of Physics, Cardwell Hall, Kansas State University, Manhattan, Kansas 66506, USA

2Laboratorio Asociado al CIEMAT de Física Atómica y Molecular en Plasmas de Fusión,
Departamento de Química Universidad Autónoma de Madrid, 28048 Madrid, Spain

3Centre Lasers Intenses et Applications (UMR CNRS), Université de Bordeaux I,
351 Cours de Libération, 33405 Talence Cedex, France
(Received 22 December 2003; published 3 June 2004)
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center-of-mass energy from 20 eV up to 1.6 keV. It is shown that the partial-wave charge-transfer cross
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agreement is a strong indication of the validity of both methods. The small difference at very low energies and
the convergence with respect to the number of channels in both approaches at higher energies are also
discussed.
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I. INTRODUCTION

Inelastic and charge-transfer reactions between atoms or
ions at low energies govern the behavior of gaseous media.
This concerns a wide range of questions of practical impor-
tance from laboratory to terrestrial and astrophysical envi-
ronments. Over the past few decades, different theoretical
methods have been used to evaluate the reaction cross sec-
tions that are required for a quantitative understanding of
these media[1]. For slow collisions the electron is moving in
the field of two slowly moving nuclei such that the collision
complex can be approximated as a transient molecule. There-
fore, molecular orbitals(MO’s) are the natural representation
for describing slow ion-atom or atom-atom collisions. This
forms the basis of the well-known perturbed-stationary-state
(PSS) approximation, introduced by Massey and Smith[2]
more than half a century ago. In the PSS approximation, the
total wave function is expanded in terms of molecular orbit-
als, similar to the adiabatic Born-Oppenheimer(BO) ap-
proximation for molecules where the internuclear separation
is an adiabatic parameter.

In the PSS approach, the numerical calculation of cross
sections usually proceeds in two steps: the quantum chemical
treatment of the transient molecule and the subsequent treat-
ment of the heavy particles dynamics. However, ever since
its introduction, this intuitively attractive PSS model is
known to have many defects because the molecular orbitals
in the BO approximation do not satisfy correct asymptotic
scattering boundary conditions. These defects are well docu-
mented, including incorrect dissociation thresholds, nonvan-
ishing asymptotic couplings, and the calculated cross sec-
tions not Galilean invariant. Although the defects are well
known, the remedies are less obvious. Despite these difficul-
ties, cross sections and rate constants for many different col-

liding systems have been calculated in response to the need
in applications.

For high-energy collisions where the motion of the nuclei
may be treated classically, the remedy is centered on the
inclusion of “electron translation factors”(ETF’s) in the ex-
pansion of the electronic wave function[3]. The ETF, non-
controversial in separated-atom bases, has, however, contin-
ued to trouble treatment with molecular orbitals. The
difficulties arise from the conceptual incompatibility of the
translational factors, which associate each electron with a
specific fragment, and the BO molecular basis in which each
electron moves in a fixed-nuclei complex. Nevertheless, the
introduction of ETF’s removes the major defects of the stan-
dard PSS approximation and excellent agreement with ex-
periments have been obtained from such calculations[1,4,5].
Although the form of the ETF is well established for atomic
bases, there are several choices for molecular bases. The
generally accepted solution, for collision energies where ion-
ization processes are not significant, is the use of a common
translation factor[6], where all the molecular functions are
multiplied by the same ETF, which is expressed in terms of a
switching function that allows one to fulfill the initial condi-
tion; this switching function usually contains adjustable pa-
rameters, which is sometimes taken as a drawback of the
method, but an optimized ETF improves the convergence
speed of the expansion[7]. There is another different
approach—the advanced adiabatic approximation[8], which
expands the electronic wave function onto dynamically
scaled molecular states and employs the theory of hidden
crossings(HC’s) [9] to describe the inelastic transitions. In
this approach a generalized(common) ETF is also intro-
duced to fulfill the correct boundary conditions.

For low-energy collisions where the motion of the nuclei
is treated quantum mechanically, the concept of electron
translational factors loses its meaning. Despite this fact,
similar ETF-modified molecular orbitals have been used in
the quantum approach[10,11]. In the meanwhile, the so-*Electronic address: atle@phys.ksu.edu
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called common reaction coordinates(CRC’s) have been in-
troduced since late 1960s[12–14] and implemented since the
late 1980s and 1990s to obtain cross sections for a few col-
lision systems at low energies[15–17]. Criteria for choosing
the reaction coordinates have been proposed and used in the
calculations[18,19], but similar to the ETF’s, their choices
are not unique. Although the CRC method has been tested by
experimental data at high energies, the results obtained from
this method have not been adequately tested at low energies,
especially since high-quality experimental data are hard to
come by for low-energy ion-atom collisions. While the ex-
perimental situations have been improved to some extent
from merged beam experiments in simple ion-atom collision
systems in the past decade[20], such measurements can still
only give total electron capture cross sections and thus the
reliability of the CRC method has not yet been critically
tested, especially for the weak channels.

Within the last year, a new implementation to low-energy
ion-atom collisions based on the hyperspherical close-
coupling (HSCC) method has been developed. The hyper-
spherical method has been widely used in a variety of three-
body systems[21], from reactive atom-diatom[22,23],
electron-atom[24,25], and positron-atom[26,27] collisions
to three-body recombinations[28]. The HSCC method has
been employed to obtain charge-transfer and excitation cross
sections for a number of simple ion-atom collision systems
so far[29–33] with results in general agreement with experi-
ments when available. In two cases, one in proton-Na[30]
and the other in Be4++H and Si4++H [31], the total charge
transfer cross sections from the HSCC method have been
shown to agree rather well with the previously published
CRC results, except for small differences at very low ener-
gies(of the order of a few eV or less). Such a comparison is
interesting since the good agreement establishes the validity
of both the HSCC and CRC methods. Furthermore, it con-
firms that the CRC method can be used to obtain reliable
inelastic or charge-transfer cross sections at low energies de-
spite the parameters introduced in the choice of reaction co-
ordinates. This is of practical importance since the HSCC
method can be employed only for a one-electron ion-atom
collision systems while the CRC method has been applied to
few-electron ion-atom collisions[34,35].

The goal of the present paper is to further test the agree-
ment between the HSCC and CRC methods, at the partial-
wave cross section levels and over a broad range of collision
energies. For this purpose we used the HSCC and CRC
methods to calculate charge-transfer cross sections in He2+

+Hs1sd collisions for energies from 20 eV up to 1.6 keV.
This system has been analyzed for different ranges of en-

ergy by many authors using different versions of PSS as well
as HC theory[36–42]. It should be noted, however, that
there exist few quantal approaches for He2++H collisions at
low energies. The first quantal close-coupling calculations
were reported by van Hemertet al. [10], who used semiclas-
sical ETF’s but solved the motion of the heavy particles
quantum mechanically. An alternative approach is the work
by Fukuda and Ishihara who used the distorted atomic orbital
(DAO) approach[43]. Quite recently, Liuet al. [29] per-
formed HSCC calculations for this system using four adia-
batic channels. In this paper HSCC and CRC calculations

were performed by each one of our groups separately such
that we can compare the cross sections at the partial-wave
levels, as well as the coupling matrix elements. This would
help to establish that the two approaches indeed agree even
at the differential level.

This paper is organized as follows. In Sec. II we first
summarize the HSCC and CRC methods briefly. The ap-
proximations used in each method will be stressed. It will be
shown that the hyperspherical radius which is the adiabatic
parameter in the HSCC method is very similar to the reaction
coordinatej used in the CRC method. This allows us to even
compare the potential curves and the coupling terms directly.
In Sec. III, we present detailed comparisons of the results
from the HSCC and CRC methods, on the level of nonadia-
batic couplings and partial-wave capture cross sections. The
last section gives a summary and conclusions. All the ener-
gies are given in the center-of-mass frame. Atomic units are
used unless otherwise indicated.

II. THEORY

A. Hyperspherical close-coupling method

The details of the HSCC theory are given in Liuet al.
[29]. In this subsection we describe the basic ingredients of
the method. We also give here a description of a modification
of the method—namely, the diabatization procedure used to
adequately compare with the results from CRC. In the
center-of-mass frame we solve the time-independent
Schrödinger equation for the three-body HeH2+ system in the
mass-weighted hyperspherical coordinates. Letr1 be the first
Jacobi vector from He2+ to H+, with reduced massm1 andr2
the second Jacobi vector from the center of mass of He2+ and
H+ to the electron, with reduced massm2. The hyperradiusR
and hyperanglef are defined as

R=Îm1

m
r1

2 +
m2

m
r2

2, s1d

tan f =Îm2

m1

r2

r1
, s2d

wherem is arbitrary. In this paper we choosem equal to the
reduced massm1 between the two nuclei. The hyperradius is
then very close to the internuclear distance. We further define
an angleu as the angle between the two Jacobi vectors. By
introducing the rescaled wave function C
=cR3/2sin f cosf, we solve the Schrödinger equation in the
form

S−
1

2

]

] R
R2 ]

] R
+

15

8
+ HadsR,V,v̂d − mR2EDCsR,V,v̂d = 0,

s3d

whereV;hf ,uj, andv̂ denotes the three Euler angles of the
body-fixed frame axes with respect to the space-fixed frame.
The Had is the adiabatic Hamiltonian with the hyperradius
fixed:
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HadsR,V,v̂d =
L2

2
+ mR2CsR,Vd, s4d

whereL2 is the square of the grand-angular momentum op-
erator andCsR,Vd is the total Coulomb interaction energy
among the three particles[29]. The HSCC method treats the
hyperradiusR as a slow variable in the same way the BO
approximation treats the internuclear distance. Thus we first
solve the adiabatic equation to obtain adiabatic channel func-
tions FnI

A sR;Vd. Here n is the channel index, andI is the
absolute value of the projection of total angular momentumJ
along the body-fixedz8 axis, taken to be the axis between the
two heavy particles. The superscriptA designates the channel
functions as adiabatic. We solve this equation by using
B-spline basis functions. In the next step, similar to the stan-
dard BO approach, we solve Eq.(3) by expanding the re-
scaled wave function on the adiabatic basis:

CsR,V,v̂d = o
n

o
I

FnIsRdFnI
A sR;VdD̃IMJ

J sv̂d. s5d

In this equation,D̃ is the normalized and symmetrized rota-
tion function, andMJ is the projection of angular momentum
J along the space-fixedz axis. The hyperradial wave func-
tions satisfy the coupled equations

S−
1

2

]

] R
R2 ]

] R
+

15

8
+ UlI − mR2EDFlIsRd

−
R2

2 o
nI8

sWlI,nI8dII8 + VlI,nI8dFnI8sRd = 0, s6d

where U is the adiabatic potential andV is the rotational
coupling. The nonadiabatic couplingsW are given by

WlI,nI8sRd = 2KFlI
A U d

dR
UFnI8

A L d

dR
+KFlI

A U d2

dR2UFnI8
A L ,

s7d

where the angular brackets imply integration over the angu-
lar coordinatesV. Note that the first term in this equation
corresponds to the radial coupling. These radial couplings
can be computed accurately in the avoided crossing region
only if adiabatic functions are calculated over very densely
distributed meshed points. In the HSCC method as presented
in [29], we solved the coupled hyperradial equations using
R-matrix propagation[44] combined with the slow-smooth
variable discretization(SVD) technique[45]. This method
bypasses the tedious calculations of nonadiabatic couplings
explicitly and the radial couplings are implicitly included in
the overlaps between the channel functions at different hy-
perradii. In order to compare with the CRC method in detail
for the present paper, approximate radial couplings have
been extracted from the overlap matrix elements(see next
section).

To compare the results from the HSCC method with the
CRC method, there is, however, another complication. In the
CRC approach, the adiabatic BO Hamiltonian for the present
system is separable in spheroidal coordinates. This leads to
real crossings of some of the adiabatic potential curves. In

the HSCC method, the adiabatic Hamiltonian is not sepa-
rable; thus, the adiabatic potential curves do not cross.
Therefore, even if the same number of adiabatic channels are
used in the calculation, the two approaches do not include
the same channels in general. To be able to include exactly
the same channels in the calculations, in practice we perform
a “partial” diabatization procedure; that is, we diabatize only
the needed sharp avoided crossings.

The adiabatic and diabatic representations are related by
the unitary transformation

FD = CFA. s8d

Here diabatic channel functions are denoted with a super-
script D, andC is a unitary matrix. The transformation ma-
trix C is chosen as the solution of the linear equation[46]

dC

dR
− CP= 0, s9d

whereP is the radial coupling(for simplicity, we omit theI
index in the following equations):

Pln =KFl
AU d

dR
UFn

AL . s10d

As mentioned above, in the HSCC method we adopt the
SVD technique of Tolstikhinet al. [45] where nonadiabatic
couplings(7) or radial couplingsP, in particular, are implic-
itly included in the overlaps between the channel functions.
Within the same spirit, we perform diabatization using only
the overlap matrix elements. Specifically, we choose to ap-
proximate the derivative with respect to hyperradiusR in
Eqs.(9) and (10) by the simple difference

PlnsRd <
1

DR
fkFl

AsRduFn
AsR+ DRdl − kFl

AsRduFn
AsRdlg.

s11d

Similarly, we have

dCln

dR
<

1

DR
fClnsR+ DRd − ClnsRdg. s12d

Equation(9) then becomes

ClnsR+ DRd < o
m

ClmsRdkFm
AsRduFn

AsR+ DRdl. s13d

Thus the transformation matrixC can be obtained through
the overlap matrix elements and the initialC. In practice, in
order to diabatize the sharp avoided crossings we limit the
summation in Eq.(13) to a few channels which have the
largest overlaps. The diabatization should be started from a
large enough distance where one can choose the initial con-
dition for C to be the identity matrix. Once the diabatic basis
is obtained, further implementation of the diabatic HSCC
approach is straightforward with the adiabatic channel func-
tions in the expansion(5) replaced by the diabatic ones.

A more detailed account of this diabatization procedure
within the HSCC approach is given in Hesseet al. [47],
where it is also used to eliminate channels that couple
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weakly with the dominant channels, such that the number of
basis functions in the coupled-channel calculations can be
reduced.

B. Common-reaction-coordinate method

The CRC method is based on the use of the close-
coupling expansion

CJsr2,jd = o
k

xksjdFksr2;jd, s14d

wherer2, as in Eq.(1), denotes the electronic position vector
with respect to the center of mass of the two nuclei, theFk
are adiabatic BO wave functions, and the vectorj is the
common reaction coordinate. The CRC itself is a function of
electronic and nuclear coordinates; it was introduced to en-
sure that the expansion(14) fulfills the scattering boundary
conditions. In the application of the method, the molecular
orbitalsFksr2;r1d are obtained by solving the BO electronic
equation[48], and these orbitals are then evaluated at a point
wherer1 (the internuclear separation) is numerically equal to
j. It is easily noted that expansion(14) is identical to Eq.(5)
when the reaction coordinate is defined by Eqs.(1) and (2).
In our implementation, which is explained in detail in Ref.
[17], the reaction coordinate is written as

j = r1 +
1

m
ssr1,r2d = r1 +

1

m
F fsr1,r2dr2 −

1

2
f2sr2,r1dr1G ,

s15d

where fsr1,r2d is a switching function that fulfills

lim
r1→`,rA,finite

fsr1,r2d = − p,

lim
r1→`,rB,finite

fsr1,r2d = q, s16d

whererA andrB are the distances from the electron to nuclei
A andB, respectively;pr1 andqr1 are the distances from the
nuclear center of mass to nucleiA andB, respectively. With
this definition,CJ is a solution of the Schrödinger equation
to Osm−1d, in the limit of large internuclear separations. Sub-
stitution of Eq.(14) into the Schrödinger equation yields the
system of differential equations

fs2m−1d¹j
2 + sE − e jdgx j

J + o
k

f2m−1Mjk · =j + kF ju¹j
2uFklg

= 0, s17d

where, as in all applications of the method, terms propor-
tional tov2 have been neglected, wherev=ki /m andki is the
initial momentum. The modified dynamical couplingMjk is a
vector whose componentq has the form

Mjk
q =KF jU ]

] jq
UFkL + kF ju = ssqd · = + ¹2ssqduFkl,

s18d

where¹ denotes the gradient with respect to the electronic
coordinater2.

In this work we have employed a CRC defined in terms of
the switching functionf of Harel and Jouin[48]:

fsr1,r2d =
1

2
fgashd + 1 − 2pg, s19d

with

ga = aa/2 h

sa − 1 +h2da/2 s20d

andh=r1
−1srA−rBd. The parametera was chosen to be 1.25

in the present calculation, but a test has been made to con-
firm that the results are insensitive to the values ofa used
(see[50] and references therein).

As shown in[17], using the eikonal approximation and
assuming constant and state-independent nuclear velocity,
one obtains the common translation factor(CTF) method as
the high-energy limit of the CRC method, with the same
switching function used to define the CRC and CTF; this
CTF method describes asymptotically both the electronic ra-
dial motion and the rotation of the electronic cloud. In par-
ticular, the semiclassical limits of the present calculations are
those reported in[51].

In practice, a transformation to diabatic basis is carried
out, by using Eq.(9) with P equal to the radial component of
the matrixM, and the calculation of cross sections is evalu-
ated by taking

xk
Jsjd =

1

j
FkI

J D̃IMJ

J sv̂d, s21d

where we have employed the same notation as in Eq.(5).
The ensuing set of radial equations is solved numerically and
the elements of the scattering matrixSij

J are obtained from
the numerical solution employing standard collision theory.
The total cross section for transition from statei to statej is
given by

si j =
p

ki
2o

J

si j
J =

p

ki
2o

J

s2J + 1duSij
J u2. s22d

C. Comparing HSCC and CRC formulations

The brief summary in the two previous subsections
clearly demonstrated the similarity and difference in the
HSCC and CRC methods. Formally the two methods appear
to be equivalent if the hyperradiusR is identified with the
reaction coordinatej. Both methods are correct asymptoti-
cally to orderOsm−1d, a major improvement over the PSS
approach. Comparing Eq.(15) with Eq. (1) wherem1=m and
m2=1.0, both the hyperradiusR and the reaction coordinate
yield corrections to the internuclear separationr1 by amounts
proportional tor2/m. In the HSCC method the radial and
rotational couplings have the simple mathematical forms as
in the PSS approach, but the BO wave functions in the PSS
theory are replaced by the adiabatic hyperspherical channel
functions. In practice, in the CRC method the wave functions
and potential energies are the same as in the PSS approach,
but the modified coupling matrix elements, as shown in Eq.
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(18), have a few additional terms. Both the HSCC and CRC
methods remove the spurious asymptotic radial couplings
and the use of a vector to define the CRC removes the spu-
rious, slowly decreasing rotational couplings(see[18]). An-
other difference is the asymptotic potential energies in the
HSCC method takes into account of the masses of the heavy
particles, but not in the usual implementations of the CRC
method, where these corrections are neglected(see Ref.
[17]). Thus the HSCC method can be easily applied to study
charge transfer in collisions such as D++H at low energies
[52], but this would be more difficult using the CRC method.
On the other hand, the CRC method has been extended to
many-electron collision systems, while generalization of the
HSCC method to many-electron systems would be much
more difficult. Formally, within a given number of adiabatic
channel functions, no additional approximations are made in
the HSCC method. For the CRC method, there is still free-
dom in the choice of switching functions even when the
number of channels is fixed, but in calculations it has been
shown that the results are insensitive to variations in the
switching functions in general. In the next section numerical
results from the two methods are used to illustrate the two
methods.

III. RESULTS AND DISCUSSIONS

A. Low-energy comparison

For collision energies below 200 eV, the dominant reac-
tion channels are charge transfer to He+sn=2d excited states.
Thus, for both the HSCC and CRC methods, in the present
calculation we include only four channels, one is the incident
channel Hs1sd+He2+, and the other three are the main
charge-transfer channels He+sn=2d+H+. These four adia-
batic potential curves included in the HSCC calculation are
plotted in Fig. 1. The potential curves are labeled in terms of
the molecular orbitals. As mentioned in the previous section,
we have diabatized the adiabatic hyperspherical potential
curves which transform the two sharp avoided crossings at
aboutR=1.7 a.u. and 3.6 a.u. into real crossings. The inset
shows the close-up of these curves that have been diabatized.
These potential curves are essentially identical to the four
adiabatic curves from the CRC method(not shown). We con-
clude that we use the same four channels in both calculations
for the whole range of hyperradius(or internuclear separa-
tion).

In Figs. 2 and 3 we compare, respectively, the radial and
rotational coupling matrix elements from the two methods.
As mentioned in the previous section, in the HSCC approach
the radial couplings are calculated approximately using Eq.
(11). The rotational couplings are calculated explicitly in the
HSCC method(see [29,30]). We can see good agreement
from the two methods forR larger than about 6.0 a.u. At
smaller distances, the agreement becomes less satisfactory
for all the radial couplings. The rotational couplings
2ps-2pp also differ somewhat forR,6 a.u., whereas the
other two rotational couplings from the two methods are in
good agreement. Note that in both figures we do not distin-
guish the hyperradius from the internuclear separation or

from the reaction coordinates. They differ somewhat only for
R much less than 1 a.u.

Figure 4 compares partial-wave charge-transfer cross sec-
tions at 200 eV. The agreement is very good for the whole
range of partial wavesJ. We show on the inset forJ from
150 up to 950 where the partial-wave cross sections are
small. Here we also include the result from the DAO calcu-
lation of Fukuda and Ishihara[43]. The overall agreement
among the three calculations are indeed quite impressive. We
note that earlier calculations by Fukuda and Ishihara[43] and
by Liu et al. [29] showed that, for the range ofJ indicated in
the inset, the quantal results at this energy are very close to
the semiclassical results by Winter and Hatton using MO’s
with plane-wave ETF[38].

The agreement between HSCC and CRC partial-wave
cross sections is even better at 100 eV and 50 eV, shown in

FIG. 1. (Color online) Potential curves included in the minimum
four-channel HSCC calculations. The inset shows the close-up for
the region near the two sharp avoided crossings atR=1.7 a.u. and
3.6 a.u. We have added the next upper channel in the inset to clearly
illustrate the avoided crossing near 1.7 a.u.

FIG. 2. (Color online) Comparison of radial couplings from the
HSCC (dashed lines) and CRC(solid lines) methods.
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Figs. 5 and 6, respectively. The general behaviors of the
cross sections at 200 eV and these two energies are very
similar, with large contributions to the total cross section
coming from relatively small partial wavesJ, below about
J=180, 100, and 50, respectively. In fact, this general behav-
ior remains the same for the whole range of energy from
about 200 eV down to about 40 eV. In semiclassical lan-
guage, the dominant transition occurs at impact parameters
smaller than about 1.6 a.u. We noted that the prominent
peaks at smallJ for this range of energy result mainly from
rotational coupling, while the small peaks at largerJ come
mainly from radial couplings. This is in agreement with the
results reported by Grozdanov and Solov’ev[41] and Janev
et al. [42]. The good agreement of cross sections from the

two approaches indicates that differences in the radial and
rotational couplings, as shown on Figs. 3 and 2, have only
minor effects on the accuracy of the cross sections in this
energy region.

The J-dependent behavior of the cross section is totally
different at 30 eV, where the prominent peak at smallJ dis-
appears; see Fig. 7. Still, the general behaviors remain simi-
lar in both approaches. The positions of the peaks are also in
good agreement. However, the CRC cross section is notice-
ably smaller than that of the HSCC approach. It is interesting
to note that at this energy the four-channel adiabatic HSCC
calculation by Liu et al. [29] is very different from the
present diabatic one for partial wavesJ smaller than about
50. For largerJ the two results are identical. This indicates

FIG. 3. (Color online) Comparison of rotational couplings from
the HSCC(dashed lines) and CRC(solid lines) methods.

FIG. 4. (Color online) Comparison of partial-wave charge-
transfer cross sections from the HSCC(solid line) and CRC(dashed
line) methods at a collision energy of 200 eV. The inset shows the
close-up forJ from 150 up to 950. The results from the DAO
method of Fukuda and Ishihara[43] are also shown(dotted lines).

FIG. 5. (Color online) Comparison of partial-wave charge-
transfer cross sections from the HSCC and CRC methods at a col-
lision energy of 100 eV. The inset shows the good agreement for
the higherJ where the cross sections are very small.

FIG. 6. (Color online) Comparison of the partial-wave charge-
transfer cross sections from the HSCC and CRC methods at a col-
lision energy of 50 eV.
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the importance of treating the avoided crossing nearR
=1.7 a.u. diabatically. In order to confirm this conjecture, we
increased the number of channels included in both adiabatic
and diabatic HSCC calculations. The results of diabatic
HSCC calculations are stable with respect to the number of
channels, whereas the adiabatic result converges to the di-
abatic one as more channels are included. This implies that
the four-channel diabatic basis is better for describing the
collision process at this energy. This is not surprising since
this avoided crossing nearR=1.7 a.u. is very sharp and nar-
row. In fact, in order to get converged results within the
adiabatic HSCC approach, only the next upper channel needs
to be included in the calculation(see the inset of Fig. 1).

At an even lower energy of 20 eV(see Fig. 8), the general
behavior of the partial-wave cross section from the HSCC

method is still similar to that of 30 eV, whereas the peaks
from the CRC approach show some irregular oscillatory
structure. As the cross section becomes very small, of the
order of 10−10 a.u., the “spurious” structure might be an in-
dication of the numerical instabilities in the CRC method or
could be due to real differences between the two approaches
at low energies. Note that similar differences have been ob-
served in Be4++H collisions[31] andp+Nas3sd collisions at
very low energies[30] previously.

At 20 and 30 eV, we have found that radial coupling is
the main mechanism for charge transfer, while above
50–200 eV, rotational coupling also plays an important part.
For a higher range of energy, this was noticed previously by
Grozdanov and Solov’ev[41] and Janevet al. [42]. We have
also checked the convergence of the charge-transfer cross
sections from both calculations to confirm that adding more
channels does not alter the results for energies below
200 eV.

B. Convergence of the HSCC and CRC calculations
at higher energies

It is interesting to compare the results from the quantal
approaches such as the HSCC and CRC methods in the
higher-energy region, where one can compare them with the
more widely available results from semiclassical calculations
and experiments.

As the collision energy increases, the transition becomes
less state selective and the minimum four-channel basis set
shown in Fig. 1 would become less adequate. In this subsec-
tion we test the convergence of the two quantal methods at
600 eV and 1.6 keV and compare them with the semiclassi-
cal close-coupling approaches based on atomic orbitals
(AO’s) and on molecular orbitals including common transla-
tion factors. The two semiclassical methods have been exten-
sively tested and employed for collisions in the higher-
energy region.

In this higher-energy region we performed 20-channel and
10-channel HSCC calculations. We used diabatic basis func-
tions and for the 20-channel calculations all theI =0 and I
=1 channels that dissociate up to He+sn=4d are included,
while for the 10-channel calculations they include all the
channels up to He+sn=3d.

To test the convergence of each quantal method, we com-
pare the impact parameter weighted charge-transfer prob-
abilities versus impact parameter. The partial-wave cross sec-
tion is converted to the impact-parameter-dependent
probability by

s J =
2pbPsbd

k
, s23d

with J=kb, wherek is the momentum. In Figs. 9(a) and 10(a)
we show the results from HSCC at 600 eV and 1.6 keV,
respectively. We also plot in these figures the results from the
AO calculations using 14-state basis set[53]. Note that these
AO results agree with the CTF results shown in Figs. 9(b)
and 10(b) and, for all practical purposes, are also in agree-
ment with the semiclassical MO results from Hattonet al.
[37] and Winter and Hatton[38]. Thus we will treat these

FIG. 7. (Color online) Comparison of the partial-wave charge-
transfer cross section from the HSCC and CRC methods at a colli-
sion energy of 30 eV.

FIG. 8. (Color online) Comparison of the partial-wave charge-
transfer cross section from the HSCC and CRC methods at a colli-
sion energy of 20 eV.
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semiclassical results as converged. At 600 eV, clearly the
4-channel calculation is not enough, but the 10- and 20-
channel calculations appear to have converged already. At
1.6 keV, on the other hand, for both the 10- and 20-channel
calculations, even though the oscillations are well repro-
duced, the magnitudes are off, especially at larger impact
parameters. At both energies, clearly the 4-channel calcula-
tions overestimate the capture probabilities. This has been
observed already in earlier work by Liuet al. (see Table II
and Fig. 6 from[29]).

The convergence tests on the CRC method are shown in
Figs. 9(b) and 10(b). At 600 eV, the 14-channel CRC cross

sections agree perfectly with the same 14-channel semiclas-
sical CTF results(or the AO results). The 4-channel CRC is
adequate at large impact parameters but not at small impact
parameters. For 1.6 keV, at large impact parameters the
4-channel and 14-channel CRC agree with each other, but
they deviate from the 14-channel semiclassical CTF results.
Again the 4-channel CRC is not adequate at small impact
parameters.

What can one conclude from these comparisons? The de-
ficiency of the 4-channel calculations at small impact param-
eters can be easily attributed to the lack of enough channels
at small impact parameters. In fact, the potential curves at
small internuclear separations are quite close to each other
and coupling to the higher channels becomes important as
the collision energy increases. The agreement between the
4-channel and 14-channel CRC calculations at large impact
parameters indicates that convergence with respect to the
number of channels is not the issue. The fact that they agree
with the CTF results at 600 eV but not at 1.6 keV is attrib-
uted to the approximation of neglectingv2 terms in the CRC
couplings, which are included in the semiclassical CTF cal-
culation, leading to an overestimate of the charge-transfer
probabilities, as shown in Figs. 9(b) and 10(b). To verify this,
we performed a CTF calculation without thev2 term and
confirmed that the cross sections at large impact parameters
are indeed very close to that of the CRC approach. For the
HSCC method, the results in Figs. 9(a) and 10(a) illustrate
the slow convergence of the method at increasing energies.
In the HSCC method there are no equivalent factors like the
switching functions or the electron translation factors to in-
corporate the translational effect of an electron moving with
one or the other atomic center. Within the HSCC formula-
tion, the only way that such a translational effect can be
included is to increase the number of channels. The conver-
gence in such calculations is expected to be very slow as the
collision energy is increased. On the other hand, semiclassi-
cal methods for collisions in this energy regime are now well
established, so there is no need to push the quantum collision
theories to this higher-energy regime.

IV. SUMMARY AND CONCLUSIONS

In this paper, in the example of a simple collision
system—namely, He2++H—we gave a detailed comparison
of the HSCC and CRC methods at the level of partial-wave
cross sections over a broad range of collision energy. We
found very good agreement between the two methods at low
energies from 30 eV up to 200 eV. Similar agreements at the
total cross section levels have also been observed in two
other systems previously[30,31]. Since the two methods are
quite different computationally, this good agreement is a
strong indication of the validity of both methods. We can
therefore safely conclude that both methods are capable of
obtaining accurate cross sections for collisions at low ener-
gies even if there is a lack of experimental data. This is of

FIG. 9. (Color online) Convergence of the HSCC(a) and CRC
(b) methods with respect to the number of channels included in
calculations for the collision energy of 600 eV. These quantal re-
sults are compared to the semiclassical AO calculations and the
semiclassical CTF calculations; see text.

FIG. 10. (Color online) Convergence of the HSCC(a) and CRC
(b) methods with respect to the number of channels included in
calculations for the collision energy of 1600 eV. These quantal re-
sults are compared to the semiclassical AO calculations and the
semiclassical CTF calculations; see text.
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practical importance since, while the HSCC method can be
used so far only for one-electron ion-atom collision systems,
the CRC approach has been applied to many-electron cases.
One can expect that these calculations are reliable if the
structure part of the CRC calculations are done correctly and
accurately. We note, however, that the remaining discrepan-
cies seen at energies below about 30 eV might indicate either
numerical instabilities of the CRC method and/or sensitivity
of the results to the form of reaction coordinates used in the
calculations since similar discrepancies have been found for
weaker channels in other collision systems[31,32]. In the
higher-energy region where available results from the semi-
classical calculations are quite satisfactory, we have shown
that the quantal HSCC and CRC methods merge reasonably
well with the semiclassical AO or CTF theories. Without any

explicit factors to account for the translational effects, but
rather by a modification of the internuclear variable, the
HSCC method has been shown to converge slower than the
other approaches at higher energies. On the other hand, the-
oretical approaches for ion-atom collisions at higher energies
are well established and there is no need to extend the HSCC
method to such a higher-energy region.
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