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Signature of chaos in high-lying doubly excited states of the helium atom
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We examined nearest-neighbor spacing (NNS) statistics in doubly excited states of helium near the double
ionization threshold. Using the Brody parameter ¢ to measure the NNS distribution between the regular
Poisson distribution (¢=0) and the chaotic Wigner distribution (¢=1), we showed that for levels near the N
=20 threshold of He", or at about 0.13 eV below the double ionization threshold, the NNS distribution has
q=0.66. The result shows the slow approach of the NNS of helium energy levels towards the Wigner distri-
bution vs the excitation energy. Using an s-wave model where the angular momentum of each electron is
restricted to zero, we also examined the NNS for levels up to the N=30 threshold of He*. We showed the
gradual increase in g as the excitation energy is increased. To generate the theoretical data needed for the NNS
analysis, we have used the hyperspherical close-coupling method, with the recently proposed diabatization of
potential curves and the truncation of channels, to greatly reduce the complexity in the calculation. We also
investigated the dependence of g vs the nuclear charge in the same scaled energy region, and for different

symmetries, to assess their relation with the rate of approaching the g=1 Wigner distribution.
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I. INTRODUCTION

It has been known since the work of Poincaré that, within
a certain range of parameters, any given nonlinear classical
dynamic system with at least three-dimensional phase space
(assuming no additional constants of motion) is chaotic. In
quantum physics, chaos, or quantum chaos, is not easily de-
fined. A great deal has been done by comparing the model
quantum systems with classical analogs, e.g., stadium and
Sinai’s billiard. The result is that some criteria have been
established for quantum systems that would indicate whether
the corresponding classical system be ordered or chaotic.
One of such criteria is the statistical study of the spectra. For
this, one distinguishes the local properties from the global
properties of the spectra of a quantum system. For the latter,
for example, one can speak of the density of levels vs the
excitation energy. For the former one speaks of the fluctua-
tions of the levels. Specifically one studies the statistical
properties of the nearest neighbor spacing (NNS) distribution
for adjacent states that have the same set of conserved quan-
tum numbers. This method evaluates the fluctuations in level
spacings, which get smoothed out as the system becomes
chaotic. For the ordered systems, on the other hand, the lev-
els are uncorrelated and thus have random energies, with
exponentially decreasing number of level spacings as the
spacing size increases. Thus for the ordered system, the NNS
follows the Poisson distribution

P(s) = exp(-s) (1)

and for a generic chaotic system, the NNS follows the
Wigner distribution [1]
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P(s) = m/2s exp(— ws*/4), (2)

where P(s)ds measures the probability of having levels with
spacing in the interval between s and s+ds. Here s is a di-
mensionless parameter. It is measured in units of mean-level
spacing.

The smoothing of the level spacing for a quantum system
can be understood as level repulsion resulting from the mix-
ing of states. Using the random matrix theory (RMT), which
was initiated by Wigner [2] and extended by Dyson and Me-
hta [3,4], it has been shown that a Gaussian orthogonal en-
semble (GOE) provides a complete description of quantum
chaos in systems with time-reversal symmetry [1]. The mix-
ing depends on the ratio v/d, where v is the average inter-
action potential between the levels and d is their average
energy separation. The random matrix theory has been used
to explain the rotational level statistics of compound-nuclei
with good success [5,6].

Quantum chaos has been investigated in many different
fields and in many simple model problems with two degrees
of freedom. These model problems provide the simplicity in
that actual numerical calculations can be carried out with
good accuracy either classically or quantum mechanically.
Quantum chaos has been studied in atomic physics in 1980’s
and 1990’s. In particular, the spectra of a hydrogen atom in a
magnetic field [7,8] and the spectra of helium atoms have
been extensively studied both in theory and experiment. De-
spite these earlier efforts, evidence of quantum chaos in he-
lium atom is still elusive.

In this paper, we revisit the signature of quantum chaos in
helium atom. In helium, almost all the classical orbits are
unstable. The energy levels of the helium atom, on the other
hand, are considered to be very regular, or ordered. For the
ground state and the singly excited states, their energy levels
are well described by the quantum numbers from the shell
model. At higher energies, the shell model description of the
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doubly excited states of helium has been known to be inad-
equate since the 1960’s [9]. However, subsequent theoretical
studies of doubly excited states in the 1970’s through 1990’s
have confirmed that the spectra of these low doubly excited
states are also regular [10]. Only at the highest energies stud-
ied, i.e., doubly excited states lying below the N=9 threshold
of He*, I, there is some subtle indication of a transition
towards quantum chaos [11]. In other words, experimental
evidence shows the energy levels of the helium atom are
ordered, spanning from the ground state to Iy, or from
79 to 0.67 eV below the double ionization threshold. If
quantum chaos is to exist in helium, the search has to be
made at energies much closer to the double ionization thresh-
old.

Extensive studies of quantum chaos of helium have been
carried out by Reinhardt and Bliimel in the 1990’s using the
so-called stretched 1D model [12,13]. In this model, each
electron is restricted to move along in one dimension, and to
maintain on opposites sides of the nucleus. With such a
model, calculation on the energy levels can be carried out to
higher . For levels from /;; to I;s, they have shown that
there is an indication that the NNS begins to show a larger
deviation from the Poisson distribution towards the Wigner
distribution, in comparison with the NNS for levels at lower
energies. No quantitative evaluation of how the NNS distri-
bution evolves towards the quantum chaos limit was dis-
cussed. On the experimental side, photoabsorption spectra of
He below Iy have been studied by Piittner e al. [11]. From
the measured spectra, the authors claimed to have observed
evidence of transition towards quantum chaos. Since Wigner
distribution is a limit for fully chaotic system, it is desirable
to have a quantitative indicator that measures the closeness
of NNS to the Wigner distribution as the excitation energy is
increased.

The NNS distributions have also been studied for the low-
lying states in many-electron atoms with a few open shells
by various authors [14-16]. In this case, the NNS has been
found to be quite close to the Wigner distribution. These
states have low excitation energies. Such core-induced quan-
tum chaos has no classical analog and is considered to be
different from the one studied here for helium. Such core-
induced quantum chaos has also been studied in atoms, such
as lithium, in a magnetic field [17]. The Wigner distribution
of these levels is a consequence of spectral repulsion, and is
considered to be different from quantum chaos where the
classical motion is chaotic. To distinguish such core-induced
chaos, other indicators beyond the NNS have been proposed
[18,19].

The rest of this paper is arranged as follows. In the next
section we first summarize the previous studies of the doubly
excited states of He. We then summarize previous theoretical
studies of the NNS distributions based on the one-
dimensional model He atom and address the issues of reso-
nance widths since most of the doubly excited states are
autoionizing states. In Sec. III we first introduce the hyper-
spherical close-coupling method that was used to calculate
the energy levels. We stress that the main breakthrough owes
to the possibility of diabatizing the adiabatic hyperspherical
potential curves which in turn allows us to throw away po-
tential curves that are considered to be irrelevant. The trun-
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cation of the number of channels permits us to calculate he-
lium spectra to much higher 7, than previously possible and
to generate data at energies much closer to the double ion-
ization threshold. We also discuss how to select levels for the
NNS analysis. Rydberg levels that can be attributed to indi-
vidual 7y are excluded. We adopted the so-called Brody pa-
rameter g to measure the transition from the Poisson distri-
bution (¢=0) to the Wigner distribution (¢=1). Thus a Brody
parameter g will be derived for each NNS distribution ana-
lyzed. To simplify the calculation and to extend to much
higher I, we also used a so-called s-wave model to study
level spacing statistics up to I3 For this purpose potential
curves up to I, have been calculated in order to study the
spectral interaction from these higher levels. The results of
the calculations and the analysis are presented in Sec. IV. We
also investigated the dependence of the NNS on the charge
of the nucleus for a fixed scaled energy region, and also for
different symmetries. Such dependence were studied using
the s-wave model. For the real 3D helium, we calculated the
NNS for '§¢ doubly excited states between /4 and /19, and a
Brody parameter ¢=0.66 was found. This shows that the rate
of reaching g=1 for the Wigner distribution is rather slow. In
the last section we summarize our results and discuss future
studies, possibly in connection with the Wannier threshold
law [20]. The physics of two electrons with total energy of
only a few to tens of meV’s above or below the full breakup
threshold is in its own world. With the new theoretical tools
developed in the present paper, we believe that future quan-
titative studies of helium in this narrow energy region are
becoming possible. Atomic units are used throughout the pa-
per unless otherwise stated.

II. ENERGY LEVELS OF THE HELIUM ATOM

The energy eigenvalues of helium atom have been calcu-
lated since the birth of quantum mechanics. For the present
purpose, we treat helium atom by a nonrelativistic Hamil-
tonian (with Z=2)

H=—-V,--V,- =24 —, (3)

We do not include any spin or other relativistic interactions.
Thus the eigenstates of the Hamiltonian are eigenfunctions
of L%, S, L, S, where L and S are the orbital and spin
angular momentum operators, respectively, with the quanti-
zation axis chosen along a space-fixed direction. The eigen-
states of H also have well-defined parity . The global sym-

metry of the helium eigenstates can thus be designated by
2s+lym
L™

A. Lack of experimental evidence of quantum chaos in He

Within the shell model, each eigenstate is also designated
by nl and NI' quantum numbers from each electron, with
n(N) the principal quantum number and /(') the orbital an-
gular momentum of each electron. We will choose the con-
vention that n= N, such that N is the principal quantum num-
ber of the inner electron. With these conventions, we now
discuss the spectrum of helium. The singly excited states
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such as 1sns 'S¢ or 1snp 'P° have been well studied. The
energy levels for each series follow the well ordered Rydberg
formula. There is no chaos to talk about if only one electron
gets excited.

As the excitation energy increases, resonances corre-
sponding to doubly excited states emerge. Consider doubly
excited states below I, that were first measured by Madden
and Codling in 1963 [21]. According to the shell model,
three ordered Rydberg series 2snp, 2pnd, and 2pnd ('P°) are
expected, each converging to the same I, if these series do
not “interact.” However, theoretical calculations showed that
they have strong configuration mixing [22]. The “interac-
tion,” however, does not alter their regular ordered spectra.
Instead three new “independent” Rydberg series emerge,
which were called by Fano and co-workers [9] as +, —, and
pd series. Subsequent group-theoretical analysis [23] and hy-
perspherical approach [10,24] showed that these doubly ex-
cited states can be classified with a new set of approximate
quantum numbers. Basically, the / and !’ in the shell model
are replaced by a new set of quantum numbers, while n and
N can still be treated as good quantum numbers. Thus a
doubly excited state can be labeled by (K,T)* where A takes
only +, —, or 0, in addition to N and n for each fixed L, S,
and 7 [24,10]. Using a hyperspherical approach, below each
Iy, each channel (or series) is represented by a potential
curve similar to the Born-Oppenheimer potential curve in
molecules and the channel is labeled by (K,T)*. For each
potential curve, if the interaction with other curves is ne-
glected, then the eigenvalues form an ordered spectrum.
Thus if the coupling among these different hyperspherical
channels is weak, the spectra of doubly excited states is a
collection of ordered series. This is the case for all the dou-
bly excited states below the I5 threshold [25].

The fact that the channels belonging to the same 7 only
interact very weakly has been traced to the collective bend-
ing vibrational motion of the two electrons. In fact, one can
replace K and T by a bending vibrational quantum number
v=N-K-T-1[10,26,27]. Thus the different Rydberg series
below each Iy correspond to states of different vibrational
modes. From the viewpoint of the shell model, doubly ex-
cited state have strong configuration mixing. But the mixing
results in new ordered spectra. In other words, the interaction
among the shell-model states does not give rise to spectral
repulsion, and there is no quantum chaos in doubly excited
states in helium from the interaction of levels within the
same [y. Experimental photoabsorption spectra below I,
through below I, clearly show that the spectra are ordered
[25].

As photoabsorption spectra were pushed to higher ener-
gies, local deviation from regularity begins to emerge. These
local irregularities have been observed starting with reso-
nances below I5s [25], where the intensity of several Rydberg
resonances can undergo modulations. Such phenomena are
well known in atomic physics and are often analyzed using
the multichannel quantum defect theory [28]. In helium, the
modulation is the result of a broad resonance interacting with
several states of another Rydberg series in the same energy
region. This broad resonance is the “intruder” from the low-
est member of the Rydberg series converging to the next
higher threshold. The intruder state in general has low prin-
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cipal quantum number and lies closer to the nucleus. The
higher members of the Rydberg series, on the other hand,
have larger principal quantum numbers and are farther away
from the nucleus. Even though these states overlap in ener-
gies, their interactions are weak, and the individual Rydberg
series is still discernible, except modified by the modulation.
These spectral features are known as overlapping resonances.
As the excitation energy increases further, the number of
intruder states increases. In the experiment of Piittner ez al.
[11] for resonances below Iy, intruders from N=10 and 11
channels enter, and deviation from regularity starts to appear.
In other words, we may say that glimpse of possible evi-
dence of quantum chaos begins to emerge below Iy, but the
spectra are still qualitatively similar to the spectra at lower
energies. To see quantum chaos, spectra at higher energies
would be needed. Unfortunately, spectra below I, appear to
be where the third-generation synchrotron radiation has
reached its limit. Interestingly, this is also roughly the energy
region where the theoretical method has reached its limita-
tion at the time (2001) [11].

B. Theoretical search of quantum chaos in He

In the past 40 years, many theoretical methods have been
developed to calculate the energy levels (and their widths) of
doubly excited states of helium, mostly based on the Hamil-
tonian given by Eq. (3). Very accurate results have been
achieved from these calculations and good agreement with
experimental measurements have been reported (see the re-
view paper [29]). However, most of these calculations can be
used to calculate doubly excited states up to Ig or I, only, for
example, Refs. [30-32]. In selective cases [33] where calcu-
lations have been carried out to higher N, only a limited
number of states were calculated for each symmetry and the
analysis of their level spacing statistics is not possible.

In Piittner ef al. [11], doubly excited states below I, have
been calculated using a complex-rotation method [31]. Their
calculation were carried out using a Cray98 supercomputer.
While their results were shown to agree very well with the
experimental photoabsorption spectra, the number of levels
obtained was too small for level spacing analysis. As a result,
they have to resort to study the model one-dimensional (1D)
He, where the system has only two degrees of freedom. From
the cumulative NNS, they showed that the energy levels sta-
tistics gradually approaches the Wigner distributions for lev-
els from below /g to below [,;. To improve the statistics, the
levels in a given energy region were calculated for slightly
different values of the nuclear charge Z, from 1/Z=0.45 to
0.55 in steps of 0.01.

The level statistics of 1D helium atom has also been stud-
ied previously by Reinhardt and Bliimel [12]. For such
“stretched” 1D helium where the two electrons are on the
opposite sides of the nucleus, many classical and semiclassi-
cal calculations have also been carried out. In their quantum
calculations, they showed that for levels between /; and Is,
the NNS distribution simply reflects regular sequences of
states that converge to the excitation thresholds. For states
between I and [}, and then for levels between /;; and /;5,
they saw increasingly that the distribution is moving toward
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the Wigner type. They did not perform quantitative analysis
of the deviation of NNS from the Wigner distribution.

C. Resonance widths and Ericson fluctuation

Most of the doubly excited states of He, as well as of the
model 1D He, are resonances where each resonance state has
its own width. If the width is small compared to the level
separation, asymmetric Fano profile can be observed or cal-
culated for each individual resonance. This is the case for all
doubly excited states below I,. For doubly excited states
above I5 through Iy, as indicated earlier, the so-called over-
lapping resonances appear because of the presence of in-
truder states from the higher channel(s). A limited number of
intruder states can modify the spectra locally to produce lo-
cal irregularity. For quantum chaos to appear, the number of
intruder states needs to be large enough, and the interaction
among them be strong, such that the level spacings become
more evenly distributed. In this limit, evidence of quantum
chaos will be seen experimentally with the appearance of
Ericson fluctuation [34] in the photoabsorption spectra where
the identity of each resonance is lost and the cross section
would fluctuate strongly as a function of energy. No such
evidence of Ericson fluctuations has ever been observed or
predicted theoretically in atoms as yet except in model 1D
He calculations [35].

III. THEORETICAL METHODS
A. Hyperspherical approach and partial diabatization

We chose to use scaled coordinates r— Zr and scaled
energy E— E/Z?, where Z is the charge of the nucleus. The
Schrodinger equation for a two-electron atom with nuclear
charge Z is then written as follows:

1 1 1 1 1
--vV,--V,-——=—+—-E|i(r;,r,)=0. 4
2 ! 2 2 ry ry Zryp Wriro) “)

Here, r; and r, are the coordinates of the two electrons and
rq, is the interelectronic distance. Using the scaled coordi-
nates, the nonseparable interelectronic interaction term de-
creases with the nuclear charge. In the limit of Z— o, the
system is separable and the NNS is expected to follow Pois-
son distribution.

We solved the Schrodinger equation (4) by using hyper-
spherical coordinates within the general framework of the
hyperspherical close-coupling (HSCC) method [30,36,37].
Starting with the radius vectors of the two electrons r;=rt;,
the hyperradius R and hyperangle « are defined as

R=\ri+r3, (3)
tan a:Q. (6)
T

In this coordinate system, the rescaled wave function ¥
=R sin a cos a, satisfies

PHYSICAL REVIEW A 72, 032511 (2005)

19 J 15
-~ —R*— +— + Hy(R,Q —R2E>‘If R,Q)=0, (7
(MR Pl (R, Q) (R,Q)) (7)
where Q={a,t,,F,}. H,4 is the adiabatic Hamiltonian with
the hyperradius fixed

A2
Hy(R.Q) =~ +RC(Q). (8)

Here A? is the square of the grand-angular momentum op-
erator and C({) is the effective charge,

1 1 1
C(Q) =—". - + / . ’ (9)
sina  cosa  Zy\l-sin2acos 0,

where 6, is the angle between r; and r,.

In the adiabatic approach, the adiabatic channel functions
are defined as the eigenfunctions of H,y with the adiabatic
potential energies U ,(R). We solve this eigenvalue problem
for each fixed R using partial-wave expansion in {f,F,},
including up to 26 partial waves. For the hyperangle a we
employ the discrete variable representation (DVR) [38]
based on the Gauss-Jacobi quadrature with about 900 DVR
points. The total wave function is then expanded in the adia-
batic basis set, which results in the coupled-channel equa-
tions for the hyperradial components.

In practical numerical calculations, adiabatic basis func-
tions are no longer directly used to obtain the coupled differ-
ential equations for the hyperradial components of the wave
function because of the presence of numerous avoided cross-
ings. Earlier HSCC calculations employed the so-called
diabatic-by-sector method [30,36]. Lately the smooth vari-
able discretization (SVD) technique developed by Tolstikhin
et al. [39] was employed in the recent HSCC calculations.
Both methods avoid the direct calculations and use of nona-
diabatic coupling terms. The diabatic-by-sector method, in
which each basis function is fixed within each sector, suffers
from slow convergence and thus more basis functions are
needed [40]. The SVD method only requires that the total
wavefunction be smooth in the adiabatic parameter R. By
expanding the hyperradial wavefunctions using DVR basis
functions, a new set of hyperangular basis functions are ob-
tained and they are used together to propagate the total wave
function from one end of the sector to the other end. This
method is very efficient and accurate and has been used in
many “contemporary” HSCC calculations [37,41-46].

The SVD method as used in the HSCC calculations is
highly algebraic. It fully eliminates the direct reference to
potential curves and their avoided crossings. Still these po-
tential curves and avoided crossings offer good starting point
for understanding the basic dynamics of each problem. In the
recent applications of HSCC to ion-atom collisions at low
energies, we have developed another modification to the
SVD method. The main idea is to transform all the sharp
avoided crossings into real crossings, but without actually
calculating the nonadiabatic couplings directly. Our proce-
dure differs from the full diabatization within a given set of
adiabatic basis set used earlier by Heil er al. [47]. We diaba-
tize a subset of adiabatic curves only when the overlap inte-
grals are larger than a prescribed number. The procedure is
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described elsewhere [48,49]. The effect is that all the sharp
avoided crossings are transformed into real crossings. The
broad avoided crossings would still remain avoided cross-
ings. In this partial diabatization method, no further approxi-
mation was made if all the coupling terms and all the chan-
nels are retained in the subsequent solution of the hyperradial
equations.

In this new picture the potential curves and channel func-
tions evolve smoothly with R. The most important advantage
of such a procedure is that it allows us to remove unimpor-
tant potential curves or “channels” from the subsequent
HSCC calculations. This method has been employed in a
number of ion-atom and other collision systems [48-50]
where we have been able to reduce the number of channels
by a factor of 2 or 3, depending on the collision systems and
collision energies. Since in general only 10-30 adiabatic
channels are used in low-energy ion-atom collisions, such
reductions do not save the computational time significantly,
except that the dynamics becomes much more transparent in
the reduced calculations.

In this paper, we will show that the elimination of chan-
nels can be used to drastically reduce the number of channels
in problems associated with high-lying doubly excited states.
For all the 'S¢ doubly excited states of He below I3, for
example, there are more than 500 channels. We can reduce
the calculations to only about 30 channels, i.e., by keeping
about less than 10% of the channels in the calculation. The
elimination is possible since channels converging to the same
Iy limit interact very weakly. Thus we include only the in-
teraction for channels dissociating to different thresholds,
i.e., channels that generate the intruder states. Examples of
such elimination will be shown later.

B. Level spacings analysis

Suppose we have a sequence of energy levels E;<E,
<---<E,. The integrated (or cumulative) level density is
defined as follows:

n

N(E)= 2, O(E-E), (10)

i=1

where O(E) is the Heaviside step function. Function N(E)
can be decomposed into two parts, a smooth average part and
a fluctuating part

N(E) = N,(E) + Ny(E). (11)

The fluctuation part is used to compare different systems
which may have different average behavior. Therefore, in
practice one performs the unfolding procedure to get rid of
the average smooth part. Technically speaking, one performs
a mapping from the old variables E; to new variables ¢, E;
— €, with =N,,(E;). In other words, in the new variables,
the integrated level density is a straight line and the mean
spacing is a constant, scaled to unity.

Clearly, the unfolding procedure is by no means unique as
it depends on the way the decomposition (11) is performed.
In this paper we follow the unfolding procedure given in
Refs. [51,52]. First, the local mean spacing D; for each spac-
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ing 0,=E; | —E; is obtained by averaging over an equal num-
ber of neighboring spacings on either side of E;,

k
1
D =—— - 12
i 2k+1j=2_k O-H-] ( )

The new spacing s;=€;,|—¢€; is then defined as

Sj: o-i/Di' (13)
In other words, one performs the mapping
E..—E.

€1 = €+ (2k+1)—H—"—, (14)
i~ Ej,

where j;=max(l,i—k) and j,=min(n—1,i—k). The statisti-
cal measures depend on the number of included consecutive
spacings k, which are used to calculate the local mean spac-
ing in Eq. (12). Therefore we require stability with respect to
small changes in k. Typically we use k=5 up to k=10. Fi-
nally, to make sure of the stability with respect to unfolding
procedure we also unfold our spectra by fitting the smooth
part of the integrated level density by a polynomial expan-
sion

Nu(E) =2 o, (15)
i=0

and, subsequently, a mapping E;— €;, with =N, (E);).

Having unfolded the energy spectrum, we can now calcu-
late the NNS distribution P(s) which is the distribution of the
variable s;=€;.1—¢; and compare it with the Poisson and
Wigner distributions. To have an idea how the distribution is
close to the Poisson or Wigner distributions it is convenient
to fit P(s) to the Brody distribution [53]

P,(s) = as? exp(- BsTt), (16)
with
_ NNELTAI
a=(1+q)B, B—{T<1+q>] ) (17)

The Brody parameter g varies from O for a Poisson distribu-
tion to 1 for a Wigner distribution and is a measure (but not
the only one) of the level repulsion.

IV. RESULTS AND DISCUSSIONS
A. Diabatic potential curves

To illustrate the numerical procedure used for this work,
in Fig. 1 we show all the seven ' PY potential curves converg-
ing to I, plus another curve converging to Is. The original
adiabatic potential curves are shown in dashed lines while
the solid lines are the diabatic curves. Note that they differ
mostly only in the region of sharp avoided crossings. In Fig.
1 most of the crossings involve only two curves, but in one
case the crossings involve three nearby curves. This figure
illustrates that the diabatization procedure does work well.

The diabatized potential curves within each manifold that
go to the same [y limit can be designated by the set of
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FIG. 1. (Color online.) He('P°) potential
curves converging to /, and the lowest curve con-
verging to /5. The thick colored curves are adia-
batic, the thin black curves are diabatic.

LE et al.
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(K,T)* quantum numbers, one set for each channel. This
designation implies that the coupling among the channels is
weak. For low-lying doubly excited states, it has been shown
that a single-channel approximation can adequately predict
the binding energies of these doubly excited states [54-56].

We next show the high-lying 'S¢ potential curves of He,
for channels between [y, and 1,4, in Fig. 2. The initial adia-
batic potential curves have been diabatized. The lowest curve
below each I has been marked in thick red lines. By select-
ing only the lowest curve from each Iy manifold, we regroup
all these diabatic potential curves in Fig. 3. In this figure, the
horizontal scale is given by VR. The potential curve at each
point is expressed in terms of the effective principal quantum
number N(R)=+-2/U(R), such that in the asymptotic
limit, the vertical scale measures the principal quantum num-
ber N of the Iy threshold. It is clearly seen that strong

avoided crossings appear between successive curves.

We comment that for 'S¢ symmetry, there are N channels
converging to each threshold /. Each of these channels can
be designated by (K,T7)*=(K,0)*, with K=N-1,N-3,N
-5,...,—(N=1). The lowest curve within each manifold has
K=N-1 for the 'S¢ symmetry. One can define a bending
vibrational quantum number v=N-K-T-1 such that all the
potential curves in Fig. 3 have v=0, i.e., each corresponds to
the ground state of the bending vibrational mode of the states
associated with I. For these v=0 states, the two electrons
tend to stay on opposite sides of the nucleus, similar to a
stretched one-dimensional He atom.

In Fig. 3 we draw a dotted horizontal red line for each of
the principal quantum numbers N=3, 9, and 18. Each is the
limit for the Rydberg series associated with the respective Iy.
As N increases, the number of potential curves from the up-

FIG. 2. (Color online.) 'S¢ diabatized poten-
tial curves for 3D helium between /;, and /,4 ion-
ization thresholds. The thick red curves corre-

spond to the lowest curves from each manifold.
They have the approximate quantum numbers K

=N-1.

-0.0025
-0.005
£ _0.0075 [l
>
o
I}
| o
[}
g -0.01 Jl
5
o
-0.0125

1000
Hyperradius (a.u.)

032511-6



SIGNATURE OF CHAOS IN HIGH-LYING DOUBLY...

PHYSICAL REVIEW A 72, 032511 (2005)

24 |

22 H

20 H
518 | N=19
b= |
g 16 | _N=17
S 10 N=15 ‘ .
g 14 . FIG. 3. (Color online.) Lowest potential
2 12 I =13 curves from each manifold up to N=24 for 's¢
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per channels crossing the horizontal line increases. To illus-
trate this fact more clearly, we redraw these potential curves
and show them against the hyperradius R in Fig. 4 for the
three cases N=3, 9, and 18. For N=3, we note that the lower
part of the N=4 curve has actually penetrated below the I3
threshold, but the penetration is weak so that all the “bound”
states from the N=4 curve are above the /5 threshold. In this
case the levels below /5 form a regular Rydberg series. For
N=9, we note that the curves from N=10 and 11 enter below
Iy. The interaction of these channels results in overlapping
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FIG. 4. (Color online.) Close-up of the 'S¢ hyperspherical po-
tential curves in the energy region near the I3, 1y, and /g thresholds.

resonances similar to those observed in Piittner ef al. [11].

The situation for N=18 is different where the potential
curves from many more channels, N=19-23, penetrate be-
low I;g. If these channels do not interact, the energy levels
supported by each potential curve can be calculated. The
results from such calculations are shown in Fig. 5, labeled
under columns (a)—(e), for N=18 to N=22, respectively. For
N=23, there is no “bound” state in the energy range shown
in Fig. 5. Grouping all these “noninteracting” levels together,
the spectrum is shown under column (f). By including the
couplings among these potential curves, new eigenvalues are
obtained. The resulting energy levels are shown under col-
umn (g).

Comparing visually the levels under columns (f) and (g)
in Fig. 3, it does appear that the levels in column (g) are

~~

0.0065

0.0067 -
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0.0069 |-

Energy (a.u.)

0.0071 |

NEEER
LI E AT T

0.0073 |-

|
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!
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Inin

0.0075
(a) (b) © (d) (e) ® (9)

FIG. 5. (Color online.) 'S¢ energy levels below I;g threshold
from one-channel calculations for N=18 to N=22, in columns (a)—
(e), respectively. Column (f) groups all “noninteracting” levels from
(a)—(e) together and column (g) represents the results from coupled-
channel calculations.
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more evenly separated. This is the consequence of spectral
repulsion. For column (f), we use arrows to indicate places
where two levels have very small level spacing. The exis-
tence of more abundant small level spacings is characteristic
of Poisson distribution. In such a small sample and limited
calculation, we do still get one pair of levels in column (g)
where the level spacing is small. We definitely have observed
spectral repulsion, but the NNS as shown below, definitely is
not reaching near the Wigner distribution yet. To reach that
limit, levels at higher N’s are needed. In the meanwhile, we
comment that higher Rydberg states belonging to N=18 have
been removed from the NNS analysis, following the pre-
scription of Eq. (18) below.

B. The s-wave model of He

In the so-called s-wave model, we limit the orbital angular
momentum of each electron to zero, thus for each I, thresh-
old, there is only one channel. This model has been used
previously in the literature [57,58]. Using this model, we can
easily extend our calculations to much higher thresholds. For
the present purpose, it is adequate that we limit our calcula-
tions to potential curves below I . The energy levels will be
calculated and the level spacing statistics will be examined.

The singlet potential curves from N=21 up to N=40, ex-
pressed in terms of effective quantum numbers Ng(R)
=-2/U(R) for Z=2, are presented in Fig. 6. The pro-
nounced avoided crossings in the potential curves are clearly
seen. These avoided crossings are known to be crucial in
understanding the dynamics of this model problem. Further-
more, the number of “intruding” channels becomes larger as
energy (or effective quantum number) increases. For N=21,
there are 6, and for N=30, there are 8. First we will examine
the level spacing statistics vs the nuclear charge Z.

Before we proceed further, it is important to clarify the
ways how the data were calculated and how they are
sampled. First, except for Z=o, the calculated doubly ex-

90

100

cited states (i.e., states which lie above I,) are resonance
states. Each state has a position and a width. In our calcula-
tion, we treat each as a bound state. Second, below each
ionization threshold, there always exists a certain range of
energy where energy levels are regular (the so-called Ryd-
berg regime). These levels should be excluded from the sta-
tistical analysis. If these Rydberg levels are also included in
the level statistics analysis, then for Coulomb systems pure
Wigner distribution could never be reached. Such example
has been studied by Zakrzewski et al. [59] for the energy
levels of hydrogen atom in a magnetic field.

In our procedure, first we solve the hyperradial coupled
equations to obtain the discrete eigenfunctions using the
DVR basis set associated with Laguerre polynomials {Lf)},
which exponentially decline for R— . To obtain eigenval-
ues between I,5 and /5, for example, we chose the maximum
value of the quadrature abscissas R,,,,=15 000 and channels
below 1,5 were excluded in the coupled equations. To ex-
clude Rydberg states close to each threshold and possible
pseudostates from the calculated eigenvalues, we make sure
that the states included in the analysis are all confined within
a smaller box of Ry, <R,. Thus the states should satisfy
the condition

Rbox
f |W(R)|*dR = &, (18)

0

where ¢ is typically chosen to be 0.85 and Ry, /R . ~2/3.

We chose Z=2,6 and infinity. Clearly when the nuclear
charge reaches infinity, the interaction between the two elec-
trons can be neglected and the Hamiltonian is separable. The
scaled energy levels are given by E(n,N)=—1/(2n?
—1/(2N?). While the energy levels from each electron follow
the simple regular hydrogenic expression, the level spacing
statistics for this noninteracting overlapping system is the
Poisson distribution. Although the energy levels for the
independent-electron case are known analytically, we have
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FIG. 7. (Color online.) NNS distribution from HSCC calcula-
tions in the energy range I,5<E<I;, for an s-wave 1$¢ model
two-electron atoms with nuclear charges Z= (i.e., independent
electrons) (a), Z=6 (b), and Z=2 (c). The Poisson and Wigner dis-
tributions are shown as the dotted red and dashed blue curves,
respectively.

calculated them using HSCC so we can compare the three
cases on equal footing.

Our results are presented in Figs. 7(a)-7(c) for Z=, 6,
and 2, respectively, in the energy range I,5<E <I,. Figure
7(a) shows that the NNS distribution for Z=% does indeed
match the Poisson distribution quite well. The results for C**

PHYSICAL REVIEW A 72, 032511 (2005)

in Fig. 7(b) show closer to the Wigner distribution. The NNS
distribution for the case of helium, shown in Fig. 7(c), is
already quite close to the Wigner distribution. There are 283,
253, and 180 levels included in the statistical analysis for
Z=, 6, and 2, respectively. R,,=15000 and Ry,,=10 000
were used for all three cases.

The closeness to the Poisson or Wigner distributions can
be measured in terms of the Brody parameter ¢g. Recall that
Brody parameter is zero for Poisson distribution and 1 for
Wigner distribution. For Z=6, we obtained ¢=0.73 and for
Z=2, q=0.95 in the energy range I,5<<E <I5,. Thus for the
s-wave model of He, the NNS distribution is quite close to
the Wigner distribution for this energy range. Note that the
Brody parameter is simply one of the methods to measure
the degree towards quantum chaos. Or more precisely, a
measure of the degree towards the Wigner distribution. The
actual number has no real significance but the trend clearly
points out that the level spacing is closer to the Wigner dis-
tribution for helium than for C** in the same range of scaled
energy. This is consistent with our expectation that the inter-
electronic term which is responsible for the chaos is reduced
for higher nuclear charge Z.

C. Level spacing statistics of 3D He between /4 and I,

We now analyze the level spacing statistics of He where
the energy levels are calculated from the diabatized potential
curves shown in Fig. 3. Following the method presented in
the previous subsection for the s-wave model, we have ana-
lyzed the levels with energies between I,4 and I;9. There
were 139 levels used in the analysis and R,,, and R}, were
3000 and 2000, respectively. In Fig. 8 the NNS distribution
obtained from such a calculation is shown. The Brody pa-
rameter calculated from the distribution was ¢=0.66. This is
still quite far away from g=1.0 for the Wigner distribution. It
is in principle possible to extend our calculations to probe

1 3 ¥ T ¥ T ¥ |
0.8 4
-~
/ N
\
/ \
Y/ \
0.6 N \\ ]
// \ FIG. 8. (Color online.) NNS distribution for
g / 5 \\ 15¢ states from real 3D HSCC calculations for the
\ energy range [14<E<Ig. The Poisson and
0.4 F— 4 Wigner distributions are shown as the dotted red
/ \‘ and dashed blue curves, respectively.
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the NNS for levels of much higher 7, where a greater Brody
parameter ¢ is expected. However, the effort is probably not
justified since the trend has been shown in the s-wave model
already (see also Piittner ef al. [11] and Bliimel and Rein-
hardt [12] for the trend in the 1D stretch helium model).
Instead, we compare the present true 3D calculations with
the s-wave model for the same energy range of 1,4 to /9.

In Fig. 9 the lowest potential curves from each manifold
of 3D helium are compared to the potential curves from the
s-wave model for N=11 up to N=20. Note that their
asymptotic thresholds are identical. For each threshold, the
potential well from the 3D calculation is deeper than its cor-
responding one in the s-wave model. This is easily under-
stood since in the 3D calculation, for the channels selected
the two electrons tend to stay on opposite sides of the
nucleus such that they have less interelectronic repulsion. A
closer inspection also shows that the strength of the avoided
crossing (narrower gap) between successive curves in the 3D
model is stronger. Thus one expects that the spectral repul-
sion is stronger for the 3D system than for the s-wave model
of He. We have examined the NNS for the s-wave model
within the same /4 to I region and obtained a Brody pa-
rameter ¢=0.33. This shows that the s-wave model within
the same energy region is further away from the chaotic re-
gion as compared to the real 3D helium in the same energy
range, just as expected from our analysis. We note, however,
that as the number of levels used in the analysis is quite
small, the statistics is not so good in this case, which is also
evidenced by quite a large y? value for the fitting to the
Brody distribution.

D. NNS distributions for triplet-S states

We next study how the different symmetry affects the
NNS distributions. For this purpose, we employed only the
s-wave model where the angular momentum of each electron

55

is again set to zero. However, by choosing the triplet sym-
metry, the spatial wavefunction changes sign under the ex-
change of two electrons. We analyze the same I,5 to I3, re-
gion. For Z=2, we obtain ¢g=0.80, to be compared to g
=0.95 for the singlet. For Z=6, we obtained ¢=0.46 for the
triplet, to be compared to g=0.73 for the singlet. For Z goes
to infinity, of course, the NNS is expected to be the Poisson
distribution.

We thus easily conclude that the NNS distributions de-
pend on the symmetry of the quantum system. For the triplet-
S symmetry of the s-wave model of He, the spatial wave
function vanishes when the two electrons are at the same
distance from the nucleus. Thus the effective interelectronic
interaction is weaker and the avoided crossings between suc-
cessive potential curves are weaker (not shown). The weaker
spectral repulsion is reflected by their resulting NNS further
away from the Wigner distribution as compared to singlet
states in the same energy regime.

Although the above analysis was carried out for the
s-wave model, we expect that qualitatively the conclusion
applies to the real 3D system. The rate for approaching the
Wigner distribution is faster for the 'S¢ states than for the 35¢
states.

E. Generalization to other symmetries in He and other atomic
and molecular systems

Based on our limited NNS distribution analysis for energy
levels it is interesting to raise additional questions on a wide
range of atomic systems where statistical analysis of the en-
ergy levels is more appropriate than the energies of indi-
vidual states.

(1) First, the analysis can be extended to different sym-
metries of He. Examples of potential curves for 1P have
been shown in Fig. 1 where the seven curves below /, and
the lowest curve below 5 are displayed. Within the N=4
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manifold, the potential curves have been diabatized and each
curve can be labeled by the (K,7)* quantum numbers. The
v=0 curves that are equivalent to what were used for the 'S¢
states in Fig. 3 have K=N-2, T=1, and A=+. Doubly ex-
cited states associated with this group of potential curves are
prominently populated in photoabsorption of He from the
ground state. The highest experimentally observed doubly
excited P states are those below I, measured by Piittner et
al. [11]. No quantum chaos has been clearly seen in the
experiment so far. The Brody parameter for this group of
doubly excited states can be analyzed in the same way as for
the 'S° states.

(2) We anticipate the NNS distribution to approach the
Wigner distribution as the excitation energy becomes close to
the double ionization threshold for any symmetry or any fi-
nite nuclear charge in a two-electron atom or ion. In other
words, the Brody parameter ¢ will reach 1.0 as the double
ionization threshold is approached. The key difference is the
rate at which g approaches 1.0. Or alternatively, the differ-
ence is the value of ¢ for a given range of excitation ener-
gies. We have seen such difference in the s-wave model for
different Z, and between 'S¢ and *S¢ states. For other sym-
metries, for example, for 1PO, the curves from each Iy with
K=N-1, T=0, and A=- can couple with each other among
the different N’s when N is large. These states also have v
=0 but the fact that they have A=— makes these states be-
have closer to the 2S¢ states. Such analogy has been well
studied for the low-N doubly excited states. Their rate for
approaching the Wigner distribution is expected to be as
slow as the 3$¢ states.

(3) Theoretical studies of classical and quantum chaos for
the motion of three charged particles are often confined to He
atom only. Nevertheless, one can ask about quantum chaos
for other familiar systems involving three charged particles,
such as H™, H3, and e*e"e™. For H™, the present approach can
be used directly for the NNS analysis. Without the actual
calculation, we suspect that the Brody parameter g will be
larger compared to He in the same scaled energy region. For
Hj, within the same scaled energy region, we anticipate the
Brody parameter to be smaller. Recall that within the Born-
Oppenheimer approximation, the Hamiltonian for HJ is sepa-
rable and the nonadiabatic coupling among the potential
curve is very weak. Using mass-scaled hyperspherical coor-
dinates [36,60], all of these systems can be studied on equal
footing and the nonadiabatic coupling in Hj is weaker than
in ¢*¢7¢”, which in turn is weaker than in H™. We thus expect
the Brody parameter ¢ be smallest for H, and highest for H™
in the same scaled energy region. In other words, H; would
have the slowest rate of approaching the Wigner distribution.

V. SUMMARY AND CONCLUSIONS

In this paper we studied the signature of quantum chaos in
helium atom by examining the nearest-neighbor spacing
(NNS) distributions of the energy levels of doubly excited
states which lie very close to the double ionization threshold.
Specifically we calculated the energy levels of 'S¢ states that
lie between the N=14 and 19 thresholds of He* ion. These
levels are only about 0.278 to 0.151 eV below the double
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ionization threshold. Using the Brody parameter to quantify
the degree of chaos, we found that ¢g=0.66 for the NNS
distribution for these states. To examine the approach to the
Wigner distribution in the chaotic limit, we also used the
so-called s-wave model where the orbital angular momentum
of each electron was restricted to zero. Using this model, we
have analyzed the NNS distribution for the model He atom
for levels between N=25 and 30 thresholds of He". In this
case we found ¢=0.95 for He, indicating that at such high N,
the Wigner distribution limit is almost reached. Existing ex-
perimental measurements and other theoretical calculations
have been limited to levels below N=9. At such low N, there
is limited signature of quantum chaos. We have also exam-
ined the NNS within the s-wave model for different nuclear
charges, and for different symmetries. For levels that do not
“interact” strongly, the Brody parameter in general would be
smaller and significant signature of quantum chaos would
occur at energies much closer to the double ionization
threshold.

The solution of the Hamiltonian for the helium atom near
the double ionization threshold in general is very compli-
cated, with huge number of eigenstates within a small energy
range. If all the levels within the given energy range are
analyzed, the NNS would be Poisson distribution [11]. To
see quantum chaos we need to be able to isolate levels that
interact strongly. This is conveniently performed within the
framework of the hyperspherical close-coupling method.
With the implementation of the recently developed procedure
for obtaining diabatic potential curves, it has been shown
that potential curves that converge to the same [, in general
interact weakly, and each channel in the Nth manifold can
still be labeled by the set of (K ,1)A quantum numbers, or
approximately speaking, by a unique vibrational quantum
number v=N-K-T-1. By limiting only the interactions of
the v=0 channel from each threshold, we have drastically
simplified the coupled channel calculations. The removal of
most of the curves in Fig. 2 to end up with a very small set
of curves in Fig. 3 exemplifies the major computational ad-
vance made in the present paper. We were able to carry out
all the results reported in this paper on simple desktop per-
sonal computers.

While we have studied the NNS distribution, and used the
Brody parameter to quantify the degree of approaching the
Wigner distribution as a measure of quantum chaos, we cau-
tion that such a procedure is not unique. Since the classical
helium atom is intrinsically chaotic at all energies [61], our
measure of quantum chaos has been based on the NNS dis-
tribution alone. Alternative methods of parametrizing these
level spacings may draw a somewhat different quantitative
conclusion. However, the Brody parameter does provide a
measure of the trend of NNS distribution towards the Wigner
distribution for each system as the excitation energies are
increased.

Another warning about the NNS distribution studied in
this paper is in order. We have shown that the stronger inter-
action between nearby levels is needed to achieve a larger
Brody parameter g towards 1.0, but such coupling, in real
physical systems, would mean larger decay widths. There-
fore these states have short lifetimes. Since classical chaos is
a long-time phenomenon, the quantum chaos, as measured
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using the NNS distribution, probably does not have direct
bearing to the classical chaos. From the experimental point
of view, the lifetimes of these levels are likely larger than the
level spacings, such that the physical observable that would
signify quantum chaos would be the Ericson fluctuations.
Such phenomena have been observed in nuclear physics
[62,63], but no such evidence has been found in atomic
physics. The fact that they would occur at such a high energy
near the double ionization threshold, as predicted by the
present paper, explains why they are so elusive in atomic
systems. The best chance where Ericson fluctuations can be
observed in atoms would be in the photoabsorption cross
sections. But many experimental challenges remain and it is
not likely to be studied with the present-day third-generation
synchrotron light sources. Resolution of light sources ap-
proaching those in lasers would be needed for such an inves-
tigation. From the theoretical side, however, the present ver-
sion of the HSCC is expected to be capable of calculating the
Ericson fluctuations. With a little more effort, we expect that
calculation of the photoabsorption cross sections above the
N=9 threshold to, say, N=20 or 25 would be possible. It
would be interesting to convince ourselves that indeed Eric-
son fluctuations are observed in the region where the NNS
approaches the Wigner distribution.

Before closing, it is appropriate to address where to go
from here. First, the calculation of spectra, either in electron-
He* collisions, or in photoabsorption cross section from the
ground state of He, should be carried out. The levels calcu-
lated in this paper will appear as clearly separated resonances
in the low-N region, and it would be interesting to see how
the Ericson fluctuations emerge as one approaches the high-
N region. Such calculations are expected to be straightfor-
ward since this amounts to the solution of the coupled hy-
perradial equations only. With the number of channels trun-
cated to several tens only (see Fig. 3 or 4), the computation
effort is small even if we have to scan a range of energy with
dense points.

Second, it is tempting to speculate, and to be confirmed
by real calculations in the future, a connection between
quantum chaos and the Wannier threshold law for double
ionization. While it is generally “believed” that the Wannier
threshold law [20] is the correct asymptotic theory for double
escape of two electrons near threshold from an ionic core, its
region of validity has never been established and controversy
[64] continued to appear when experimental cross sections
are analyzed [65,66]. The channels included in the analysis
of quantum chaos are the channels believed to contribute to
the two-electron escape. We anticipate a cross correlation
between the rate of approaching quantum chaos (such as the
Brody parameter g— 1) and the exponent of the Wannier
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threshold law. When the rate of reaching the Wigner distri-
bution is slower, the corresponding Wannier exponent is also
smaller. We have no quantitative results to support this argu-
ment yet. However, among all the NNS studied in this paper,
those systems or symmetries that have slower rates of reach-
ing the g=1 limit are those with small Wannier exponents.
The Wannier threshold law has a long history and many tens
of theoretical and experimental papers have been devoted to
this subject [67-70]. Since previously no theoretical or ex-
perimental papers can handle the energy region within less
than 0.1 eV (scaled) from the double ionization threshold,
most of the discussions of the region of validity of Wannier
threshold law is qualitative.

With the present HSCC method, we believe that it is pos-
sible to carry out realistic calculations down to 0.03 or
0.04 eV from the threshold for the electron impact ionization
of atomic hydrogen. Within the HSCC framework, such cal-
culations have been carried out previously by Kato and Wa-
tanabe [41] for electron impact ionization of atomic hydro-
gen without the truncation of channels. Using up to about
100 channels they could include channels only up to /5 or I
region, or at an energy of about 0.5 eV from the double
electron escape threshold. At 0.5 eV below the double escape
threshold, the signature of quantum chaos is quite limited.
Using the truncated set of channels, we can carry out the
calculation to energies much closer to the two-electron es-
cape threshold. We note that new theoretical tools [71-75]
for treating double ionization have emerged since the work
of Kato and Watanabe. Still, it is very difficult to reach en-
ergies very close to the two-electron escape threshold with-
out the truncation of channels employed in the present paper.
We note that in the most recent study of the threshold law in
e-H ionizing collisions [76], the lowest collision energy is
still 0.27 eV from the threshold. For the bound states, this
would correspond to I; for H™. In this region, the effect of
channel interaction is weak and no quantum chaos is ex-
pected. It would be desirable to extend the present HSCC
approach, to repeat the calculation in the low energy region
as in these studies and then to energies even closer to the
two-electron escape threshold. Such calculations, of course,
would require additional numerical development.

ACKNOWLEDGMENTS

This work was supported in part by the Chemical Sci-
ences, Geosciences and Biosciences Division, Office of Ba-
sic Energy Sciences, Office of Science, U. S. Department of
Energy. T.M. was supported in part by a Grant-in-Aid for
Scientific Research (C) from the MEXT, Japan, by the 21st
Century COE program on Coherent Optical Science, and by
Matsuo foundation.

[1] O. Bohigas, M.-J. Giannoni, and C. Schmit, Phys. Rev. Lett.
52,1 (1984).

[2] E. P. Wigner, in Proceedings of the Fourth Canadian Math-
ematical Congress, edited by M. S. MacPhail (University of

Toronto Press, Toronto, 1959), p. 174 [reprinted in Statistical
Theories of Spectra, edited by C. E. Porter (Academic, New
York, 1968)].

[3] F. J. Dyson and M. L. Mehta, J. Math. Phys. 4, 701 (1963).

032511-12



SIGNATURE OF CHAOS IN HIGH-LYING DOUBLY...

[4] M. L. Mehta, Random Matrices (Academic, New York, 1991).

[5] F. Haake, Quantum Signature of Chaos (Springer, Berlin,
1991).

[6] T. Guhr, A. Miiller-Groeling, and H. A. Weidenmiiller, Phys.
Rep. 299, 189 (1998).

[7] H. Friedrich and D. Wintgen, Phys. Rep. 183, 37 (1989).

[8] C. H. Iu, G. R. Welch, M. M. Kash, L. Hsu, and D. Kleppner,
Phys. Rev. Lett. 63, 1133 (1989).

[9]J. W. Cooper, U. Fano, and F. Prats, Phys. Rev. Lett. 10, 518
(1963).

[10] C. D. Lin, Adv. At. Mol. Phys. 22, 77 (1986).

[11] R. Piittner, B. Gremaud, D. Delande, M. Domke, M. Martins,
A. S. Schlachter, and G. Kaindl, Phys. Rev. Lett. 86, 3747
(2001).

[12] R. Bliimel and W. P. Reinhardt, in Quantum Chaos, edited by
G. Casati and B. V. Chirikov (Cambridge University Press,
Cambridge, England, 1995), p. 301.

[13] R. Bliimel and W. P. Reinhardt, Chaos in Atomic Physics
(Cambridge University Press, Cambridge, England, 1997).

[14] J. P. Connerade, 1. P. Grant, P. Marketos, and J. Oberdisse, J.
Phys. B 28, 2539 (1995).

[15] V. V. Flambaum, A. A. Gribakina, and G. F. Gribakin, Phys.
Rev. A 58, 230 (1998).

[16] N. Vaeck and N. J. Kylstra, Phys. Rev. A 65, 062502 (2002).

[17] M. Courtney and D. Kleppner, Phys. Rev. A 53, 178 (1996).

[18] H. Held and W. Schweizer, Phys. Rev. Lett. 84, 1160 (2000).

[19] J. M. G. Gomez, R. A. Molina, A. Relano, and J. Retamosa,
Phys. Rev. E 66, 036209 (2002).

[20] G. H. Wannier, Phys. Rev. 90, 817 (1953).

[21] R. P. Madden and K. Codling, Phys. Rev. Lett. 10, 516 (1963).

[22] P. L. Altick and E. Neal Moore, Phys. Rev. Lett. 15, 100
(1965).

[23] D. R. Herrick and O. Sinanoglu, Phys. Rev. A 11, 97 (1975).

[24] C. D. Lin, Phys. Rev. A 29, 1019 (1984).

[25] M. Domke, K. Schulz, G. Remmers, A. Gutierrez, G. Kaindl,
and D. Wintgen, Phys. Rev. A 51, R4309 (1995).

[26] D. R. Herrick and M. E. Kellman, Phys. Rev. A 21, 418
(1980).

[27]J. M. Feagin and J. S. Briggs, Phys. Rev. A 37, 4599 (1988).

[28] M. Aymar, C. H. Greene, and E. Luc-Koenig, Rev. Mod. Phys.
68, 1015 (1996).

[29] G. Tanner, K. Richter, and J.-M. Rost, Rev. Mod. Phys. 72,
497 (2000).

[30] J.-Z. Tang, S. Watanabe, M. Matsuzawa, and C. D. Lin, Phys.
Rev. Lett. 69, 1633 (1992).

[31] B. Gremaud and D. Delande, Europhys. Lett. 40, 363 (1997).

[32] M. Domke, K. Schulz, G. Remmers, G. Kaindl, and D. Win-
tgen, Phys. Rev. A 53, 1424 (1996).

[33] S. L. Themelis, Y. Komninos, and C. A. Nicolaides, Eur. Phys.
J. D 18, 277 (2002).

[34] T. Ericson, Phys. Rev. Lett. 5, 430 (1960).

[35] R. Bliimel, Phys. Rev. A 54, 5420 (1996).

[36] C. D. Lin, Phys. Rep. 257, 1 (1995).

[37] C. N. Liu, A. T. Le, T. Morishita, B. D. Esry, and C. D. Lin,
Phys. Rev. A 67, 052705 (2003).

[38] J. C. Light, I. P. Hamilton, and J. V. Lill, J. Chem. Phys. 82,
1400 (1985).

[39] O. I. Tolstikhin, S. Watanabe, and M. Matsuzawa, J. Phys. B
29, 1.389 (1996).

[40] K. 1. Hino, A. Igarashi, and J. H. Macek, Phys. Rev. A 56,

PHYSICAL REVIEW A 72, 032511 (2005)

1038 (1997).

[41] D. Kato and S. Watanabe, Phys. Rev. A 56, 3687 (1997).

[42] O. I. Tolstikhin and H. Nakamura, J. Chem. Phys. 108, 8899
(1998).

[43] T. Morishita, K. Hino, T. Edamura, D. Kato, S. Watanabe, and
M. Matsuzawa, J. Phys. B 34, L475 (2001).

[44] T. Morishita, T. Sasajima, S. Watanabe, and M. Matsuzawa,
Nucl. Instrum. Methods Phys. Res. B 214, 144 (2004).

[45] A. T. Le, C. N. Liu, and C. D. Lin, Phys. Rev. A 68, 012705
(2003).

[46] A. T. Le, M. Hesse, T. G. Lee, and C. D. Lin, J. Phys. B 36,
3281 (2003).

[47] T. G. Heil, S. E. Butler, and A. Dalgarno, Phys. Rev. A 23,
1100 (1981).

[48] M. Hesse, A. T. Le, and C. D. Lin, Phys. Rev. A 69, 052712
(2004).

[49] A. T. Le and C. D. Lin, Phys. Rev. A 71, 022507 (2005).

[50] T. G. Lee, M. Hesse, A. T. Le, and C. D. Lin, Phys. Rev. A 70,
012702 (2004).

[51] S. S. M. Wong and J. B. French, Nucl. Phys. 198, 188 (1972).

[52] R. Venkataraman, J. Phys. B 15, 4293 (1982).

[53] T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey,
and S. S. M. Wong, Rev. Mod. Phys. 53, 385 (1981).

[54] H. Fukuda, N. Koyama, and M. Matsuzawa, J. Phys. B 20,
2959 (1987).

[55] N. Koyama, A. Takafuji, and M. Matsuzawa, J. Phys. B 22,
553 (1989).

[56] H. R. Sadeghpour, Phys. Rev. A 43, 5821 (1991).

[57] G. Handke, M. Draeger, and H. Friedrich, Physica A 197, 113
(1993).

[58] M. Draeger, G. Handke, W. Ihra, and H. Friedrich, Phys. Rev.
A 50, 3793 (1994).

[59] J. Zakrzewski, K. Dupret, and D. Delande, Phys. Rev. Lett. 74,
522 (1995).

[60] X. H. Liu, Z. Chen, and C. D. Lin, Phys. Rev. A 44, 5468
(1991).

[61] K. Richter, G. Tanner, and D. Wintgen, Phys. Rev. A 48, 4182
(1993).

[62] O. Bohigas er al., in Nuclear Data for Science and Technology,
edited by K. H. Bochhoff (Reidel, Dordrecht, 1983), p. 809.

[63] F. S. Stephens, M. A. Deleplanque, 1. Y. Lee, A. O. Macchia-
velli, D. Ward, P. Fallon, M. Cromaz, R. M. Clark, M. Des-
covich, R. M. Diamond, and E. Rodriguez-Vieitez, Phys. Rev.
Lett. 94, 042501 (2005).

[64] A. Temkin, Phys. Rev. Lett. 49, 365 (1982).

[65] J. R. Friedman, X. Q. Guo, M. S. Lubell, and M. R. Frankel,
Phys. Rev. A 46, 652 (1992).

[66] D. Lukic, J. B. Bluett, and R. Wehlitz, Phys. Rev. Lett. 93,
023003 (2004).

[67] A. R. P. Rau, Phys. Rev. A 4, 207 (1971).

[68]J. H. Macek and S. Yu. Ovchinnikov, Phys. Rev. A 50, 468
(1994).

[69]J. M. Feagin, J. Phys. B 17, 2433 (1984).

[70] J.-M. Rost, Phys. Rev. Lett. 72, 1998 (1994).

[71] C. W. McCurdy, M. Baertschy, and T. N. Rescigno, J. Phys. B
37, R137 (2004).

[72] T. N. Rescigno, M. Baertschy, W. A. Isaacs, and C. W. Mc-
Curdy, Science 286, 2474 (1999).

032511-13



LE et al. PHYSICAL REVIEW A 72, 032511 (2005)

[73] L. Malegat, P. Selles, and A. K. Kazansky, Phys. Rev. Lett. 85, (2004).
4450 (2000). [75] I. Bray, Phys. Rev. Lett. 89, 273201 (2002).

[74] P. Selles, L. Malegat, A. Huetz, A. K. Kazansky, S. A. Collins, [76] P. L. Bartlett and A. T. Stelbovics, Phys. Rev. Lett. 93, 233201
D. P. Seccombe, and T. J. Reddish, Phys. Rev. A 69, 052707 (2004).

032511-14



