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Abstract
Total and partial electron capture cross sections are calculated for
Si4+ + H(1s)/D(1s) collisions from 1 meV amu−1 to 1 keV amu−1, and for
Be4+ + H(1s) collisions from 2.5 eV amu−1 up to 1 keV amu−1, using the
recently developed hyperspherical close-coupling (HSCC) approach. For
both systems, our results are in good agreement with calculations based on
the molecular orbital expansion method in reaction coordinates (RC). For
Si4+ + D(1s) our total charge transfer cross sections agree well with experiment,
but not the partial cross sections. For Be4+ + H, we show that partial wave cross
sections from the RC method have more oscillatory structures than those from
the HSCC method, even though the total cross sections agree. In comparison
with the RC method, the HSCC approach does not require the introduction of
any ad hoc external parameters in the formulation.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In a recent paper a hyperspherical close-coupling (HSCC) method has been developed to study
ion–atom collisions at low energies [1]. This method has been used to analyse charge transfer
cross sections in He2+ + H collisions [1] and in H+ + Na collisions [2]. For ion–atom collisions
at low energies, the traditional standard theoretical approach is the perturbed stationary states
(PSS) approximation, where the total wavefunction is expanded in terms of molecular orbitals
of the transient molecule. The PSS method is known to have many fundamental difficulties [3].
Remedies to the PSS method include the introduction of switching functions or the adoption
of the so-called reaction coordinates (RC). While both approaches have been very successful
in predicting cross sections in good agreement with experiments, both the switching functions
and the RC have to be chosen with some auxiliary external conditions. While calculations
based on the HSCC method have been carried out for He2+ + H and H+ + Na systems, there
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are no reliable experimental data for comparison at low energies, and comparison with other
calculations can only be made for the total cross sections.

In this paper, we present the HSCC results for two collision systems: Si4+ + H(D) and
Be4+ + H. The RC method has been applied to both systems. For Si4+ + D collisions, the
total electron capture cross section has been measured by Pieksma et al [4] in a merged
beam experiment for collision energies down to about 0.01 eV amu−1. At such low energies,
calculations using the RC method [4, 5] showed the presence of a large isotope effect, i.e., the
cross section for the Si4+ + D collision is different from the one for the Si4+ + H collision
at the same velocity. Furthermore, at low energies the total electron capture cross sections
appear to display the Langevin limit, i.e., the cross section increases as 1/v, where v is the
relative collision velocity. We employed the HSCC method to study this system in view
of the existence of experimental data down to about 0.01 eV amu−1 and the availability of
calculations based on the RC method. For the Be4+ + H(1s) collision, careful study has been
made by Errea et al [6, 7] in the energy region 2.5 eV amu−1–25 keV amu−1. Two approaches
have been used: a semi-classical treatment modified with a common translation factor [8], and
a quantum mechanical treatment modified with a common reaction coordinate (CRC) [9, 10].
Both methods employ some form of switching function whose origin lies in the semi-classical
approach. Their semi-classical treatment is well adapted to the high energy region which has
been widely studied, at least theoretically [11–15]. Our focus will be in the lower energy
region where the work of Errea et al [6, 7] is the only known theoretical calculation available.
An added advantage of this system is that partial wave cross sections have been presented by
Errea et al [7] at a few energies, thus allowing us to compare the partial wave cross sections
with those from the HSCC method.

The recently developed HSCC method for ion–atom collisions is based on the standard
HSCC method for treating general three-body collision systems [16], but specifically modified
for collisions involving two heavy nuclei and one light electron. This method provides a full
quantum mechanical treatment of the collision without any ad hoc parameters. Its validity
would be judged by the rate of convergence of the number of channels included in the
calculation. By comparing the results of the HSCC method we aim to establish the validity of
the HSCC method, and also the validity of the RC method.

In section 2, we review briefly the HSCC method for ion–atom collisions. Results for
Si4+ + H(D) and for Be4+ + H(1s) reactions are presented in section 3. A summary and
conclusions are given in section 4. Atomic units are used unless otherwise indicated.

2. The hyperspherical close-coupling method

To determine electron capture cross sections, say, in Be4+ + H(1s) collisions, we use the HSCC
method. In combination with the R-matrix propagation method and slow/smooth-variable
discretization techniques, the HSCC approach has been described in detail in [1]. Here we
summarize only the essentials of the method.

The three particles in BeH4+ are described with the help of mass-weighted hyperspherical
coordinates. In the ‘molecular’ frame, the first Jacobi vector ρ1 is chosen to be the vector from
Be4+ to H+, with reduced mass µ1. The second Jacobi vector ρ2 goes from the centre of mass
of Be4+ and H+ to the electron, with reduced mass µ2. The hyperradius R and hyperangle φ
are defined as

R =
√
µ1

µ
ρ2

1 +
µ2

µ
ρ2

2 . (1)
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tan φ =
√
µ2

µ1

ρ2

ρ1
(2)

where µ is arbitrary. Another angle, θ , is defined as the angle between the two Jacobi vectors.
When µ is chosen equal to µ1, the hyperradius R becomes very close to the internuclear
distance for an ion–atom collision system.

After introducing the rescaled wavefunction

�(R,�, ω̂) = ψ(R,�, ω̂)R3/2 sin φ cosφ, (3)

the Schrödinger equation takes the form(
−1

2

∂

∂R
R2 ∂

∂R
+

15

8
+ Had(R,�, ω̂)− µR2 E

)
�(R,�, ω̂) = 0, (4)

where � ≡ {φ, θ}, and ω̂ denotes the three Euler angles of the body-fixed frame with respect
to the space-fixed frame. Had is the adiabatic Hamiltonian

Had(R,�, ω̂) = 	2

2
+ µRC(�), (5)

where 	2 is the grand-angular momentum operator and C(�)/R gives the total Coulomb
interaction.

To solve equation (4), we expand the rescaled wavefunction in terms of normalized and
symmetrized rotation functions D̃, and body-frame adiabatic basis functions
µI (R,�)

�(R,�, ω̂) =
∑
ν

∑
I

Fν I (R)
ν I (R,�)D̃
J
I MJ
(ω̂) (6)

where ν is the channel index, J is the total angular momentum, I is the absolute value of the
projection of J along the body-fixed z′ axis and MJ is the projection along the space-fixed
z axis. To solve the hyperradial equations we divide the hyperradial space into sectors. We
then use a combination of the R-matrix propagation method [17] to propagate the R-matrix
from one sector to the next, and a slow/smooth-variable discretization method [18] within each
sector. The R-matrix is propagated to a large hyperradius (depending on the collision energy)
where the solution is matched to the known asymptotic solutions to extract the scattering
matrix. The electron capture cross section for each partial wave J is then obtained from the
calculated scattering matrix.

The method described above has to be carried out for each partial wave J until a converged
cross section is reached. Using the numerical procedure introduced in Liu et al [1] such
calculations can be easily carried out for many partial waves. We have checked that the results
are insensitive to the matching radius within the number of channels included in the calculation,
see below.

To apply the HSCC method to Si4+ + H(D), we treat Si4+ as an inert ionic core described
by a model potential. The model potential is taken from the early work of Gargaud and
McCarroll [5]. Thus the starting approximate Hamiltonian is the same and any differences
from the HSCC method and the RC method are due to the dynamic treatment of the collision
system.

3. Results

3.1. Si 4+ + H (D) collisions

The hyperspherical potential curves used in the present calculation for the Si4+ + H system
are shown in figure 1. Each curve is labelled by its asymptotic limit and only I = 0 and 1
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Figure 1. Hyperspherical adiabatic potential curves for SiH4+. The figure shows four I = 0
channels (solid curves) and two I = 1 channels (broken curves).

are included. The sharp avoided crossing between the entrance channel Si4+ + H and the
Si3+(4p) + H+ at R near 18 au is very narrow. This crossing was treated as completely diabatic
in [5]. We did not make such an approximation but our calculation indeed shows that this
crossing is diabatic down to the 1 meV amu−1 studied here. From the calculations, the major
transitions occur at the avoided crossing near R = 11 au, which would populate the Si3+(4s)
state at the end of the collision, and at the avoided crossing near R = 7.5 au which would
populate the Si3+(3d) state. The Si3+(4s) state is predominantly populated at low collision
energies while Si3+(3d) is populated at higher energies. Note that the potential curves in
figure 1 are essentially identical to the Born–Oppenheimer potential curves used in Gargaud
and McCarroll [5]. We have calculated the hyperspherical potential curves for Si4+ + H and
Si4+ + D systems separately. At the accuracy shown in the figure, they are indistinguishable.

In figure 2 we show the total charge transfer cross sections for Si4+ + H(D) collisions
versus collision energies from 1 meV amu−1 to 1 keV amu−1. We compare our results with the
experimental data and theoretical calculations given in [4]. Our results are in good agreement
with the theoretical results reported in that paper where the cross sections were carried out
using the RC method as described in [5]. The small differences among the theories are mostly
due to the fact that the calculations were being carried out at different energies. Thus, using
the same Hamiltonian, the HSCC and the RC method gave essentially identical total charge
transfer cross sections and the results are in good agreement with experiment.

Partial electron capture cross sections in general are difficult to obtain from the merged
beam experiments. Despite this, Wu and Havener [19] have been able to extract the ratio of
electron capture cross sections to 3d with respect to 4s for Si4+ + D collisions. Their results for
this ratio are 1.3 and 1.8 for collisions at 50.6 and 98.6 eV amu−1, respectively, which should
be compared to 2.3 and 3.2 from the calculations of Gargaud and McCarroll [5] and 2.1 and
2.8 from the present HSCC calculations. In other words, the two theoretical results agree with
each other, but not with experiment.
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Figure 2. Comparison of the total charge transfer cross sections from our calculations and Pieksma
et al [4] for Si4+ colliding with H or D. Solid curves correspond to our results. Broken curves and
squares correspond to the theoretical and experimental results of Pieksma et al, respectively. In
the electronic version the results for H(D) are given by black (red) curves.

The experimental data of Pieksma et al and the theoretical calculations indicate that
the total charge transfer cross sections for Si4+ + D(H) appear to follow the Langevin model
for collision energies below 0.1 eV amu−1. The validity of a classical model for predicting
charge transfer cross sections at such small collision energies seems intriguing. According
to the Langevin model, for each collision energy E there is a critical impact parameter bc

such that for b < bc the incident particle can overcome the effective potential barrier and
become trapped by the inner potential well where electron capture can occur. We examine if
the quantum calculations support this classical prediction. For this purpose, we employ the
relation:

σJ = 2πbP(b)

k
, (7)

with J = kb, where k is the momentum, to extract the electron capture probability from each
calculated partial wave cross section. In figure 3 we show P(b) versus b for total electron
capture probabilities at three different energies. Clearly the range of impact parameters for
electron capture increases with decreasing energies. The value of bc for each energy according
to the Langevin model is also indicated. Assuming that the probability for electron capture is
one half for 0 < b < bc, we calculated the total electron capture cross section according to the
Langevin model to be 1000, 1414 and 3167 au, which are to be compared to the values of 857,
1466 and 3772 au obtained from the quantum calculations for E = 10, 5 and 1 meV amu−1,
respectively. The cutoff impact parameters from the Langevin model for the three energies
are 25.2, 30.0 and 44.9 au, are also in good agreement with the cutoff from the quantum
calculations, indicating that tunnelling does not contribute significantly to the total charge
transfer cross sections.

The results of figure 2 also show a significant isotope effect for collision energies
below 1 eV amu−1. According to a molecular approach such as the RC method, the Born–
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Figure 3. Electron capture probabilities versus impact parameters at low energies. The arrows
indicate the values of the critical impact parameter bc, according to the Langevin model, where
the incident ion can overcome the effective centrifugal potential barrier of the ion–atom collision
system.

Oppenheimer potential curves are independent of the mass of the heavy particles. Thus the
isotope effect comes entirely from the different effective mass in the radial equation. In the
HSCC method, the hyperspherical potential curves depend on the mass of each nucleus. In
principle, one can expect the isotope effect to also come from the different potential curves.
For the present systems in the meV amu−1 energy region, however, we found that such an
effect is negligible.

3.2. Be4+ + H collisions

We next consider electron capture cross sections for the reaction

Be4+ + H(1s) → Be3+(n) + H+. (8)

To compare the present HSCC method with the CRC method used by Errea et al [6, 7] we
used the same set of molecular orbitals (or hyperspherical channels) in the calculation. The
adiabatic hyperspherical potentials including the incident channel and those leading to the
capture into Be3+(n = 3, 4) states are shown in figure 4. For clarity, only the I = 0 and 1
components are shown. (The inset shows the close-up of the entrance channel with two other
channels near the avoided crossing region.) In the actual calculations all the I = 0, 1, 2 and
3 components have been included, the same as in the calculations of Errea et al, even though
the I = 2 and 3 components make only small contributions.

In table 1 the total and partial cross sections to the n = 3 and 4 states of Be3+ are tabulated
against the results from Errea et al. To begin with, we note that the total cross sections from
the two calculations agree very well over the whole velocity range. Since electron capture to
the n = 3 states of Be3+ is dominant, the agreement for the n = 3 partial cross sections is also
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Figure 4. Hyperspherical adiabatic potential curves U I
µ for BeH3+, corresponding to n = 3 and

4 manifolds, and to the entrance channel. Only eight I = 0 channels and five I = 1 channels
are shown. The inset gives a close-up view of the three potential curves near the avoided crossing
region at R near 5 au.

Table 1. Partial and total electron capture cross sections in units of 10−16 cm2 for Be4+ + H(1s)
collisions with a collision velocity smaller than 0.2 au. The first line for each velocity corresponds
to our results, and the second line to the quantum mechanical (Q17) or semi-classical (S96) results
of Errea et al [7].

v (au) n = 3 n = 4 Total

0.01 0.40 0 0.40
Q17 0.42 0 0.42

0.02 2.41 0.002 2.41
Q17 2.42 0.018 2.44

0.03 5.23 0.005 5.23
Q17 5.28 0.05 5.34

0.04 8.49 0.22 8.71
Q17

0.05 11.84 0.66 12.50
Q17 11.87 0.64 12.51

0.07 17.72 1.78 19.50
Q17 17.92 1.92 19.85

0.1 24.07 2.78 26.85
Q17 24.51 2.94 27.46

0.2 32.53 3.09 35.62
S96 34.42 3.11 37.61

very good. For the weaker n = 4 channels, results show very good agreement for v = 0.2
down to 0.05 au. For v = 0.03 and 0.02 au, our n = 4 partial cross sections are much smaller
than the results quoted in Errea et al.
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Figure 5. Total charge transfer transition probability P(b) times impact parameter b as a function
of b at v = 0.1 au. The solid and broken curves correspond to our quantum mechanical calculations
and to the results of [7], respectively.

The precise reason for the discrepancy in n = 4 channels is somewhat complicated. In the
approach of Errea et al, the potential curves are identical to the Born–Oppenheimer potential
curves. For a one-electron, two-nuclei Coulomb system at a fixed internuclear distance, the
Hamiltonian is separable in the BO approach such that potential curves of the same symmetry
can cross. This is not the case for the HSCC approach with the hyperradius being the adiabatic
parameter. Thus the real crossing in the BO potential curves becomes the sharp avoided
crossing in the HSCC approach. Therefore, even if the same number of channels are used in
the calculation, the two approaches do not include the same channels in the region of small
hyperradius or internuclear distance. To remedy this situation the data for the n = 4 channels
shown in table 1 at low energies were calculated by including some channels that dissociate
to the Be3+(n = 5) states. These higher adiabatic channels incorporate part of the diabatic
Be3+(n = 4) states at the small internuclear distances of Errea et al. (To use exactly the same
channels we would need to obtain diabatic hyperspherical channels for states involved in the
avoided crossing—a project in progress.) On the other hand, we have no reason to believe
that the HSCC and the RC results have to agree with each other at low energies for the small
channels. Such discrepancies have been observed in He2+ + H collisions [1] and in protons
colliding with Na [2] at low energies. It was shown in Le et al [2] that the coupling matrix
elements from RC and the HSCC are not identical. From the HSCC viewpoint, the accuracy
of the n = 4 channels can be checked by increasing the base size if accurate cross sections are
needed.

One of the main goals of the present study is to compare in detail the results from the
HSCC with those from the CRC. For this purpose, we compare the partial wave cross sections
at three different energies in figures 5–7. (The CRC results were kindly provided by Dr Luis
Mendez.) In figure 5, we compare the two calculations at v = 0.1 au, showing the impact
parameter weighted probability bP(b) for the total electron capture processes. Note that the
two calculations show amazingly good agreement in detail. In figure 6 we compare the same
weighted probabilities for v = 0.05 au. The agreement is again very good, especially at large
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Figure 6. Total charge transfer transition probability P(b) times impact parameter b as a function of
b at v = 0.05 au. The solid and broken curves correspond to our quantum mechanical calculations
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b at v = 0.01 au. The solid and broken curves correspond to our quantum mechanical calculations
and to the results of [7], respectively.

and small impact parameters. There are deviations for b ranging from 2 to 4 au with the CRC
calculations showing more oscillations than from the HSCC calculations. At v = 0.01 au, as
shown in figure 7, the overall agreement is still very good, but the CRC results present more
oscillatory structures on top of the smooth curve from the HSCC calculations.

From the results shown above it is clear that the calculations based on the CRC and the
HSCC methods are very close to each other in the larger features, particularly for the dominant
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channels. The CRC method as implemented by Errea et al expands the total wavefunction
similar to equation (6) except that the hyperradius is replaced by a RC ξ, and the channel
functions were solved by fixing ξ = ρ, where ρ is the internuclear separation. The RC ξ is
expressed in the form

ξ = ρ + s(r,ρ)/µ (9)

where s(r,ρ) is defined by

s(r,ρ) = f (r, ρ)r − 1
2 f 2(r, ρ)ρ (10)

and where f (r, ρ) is the switching function and r is the electronic coordinate. The switching
function f has been chosen such that the asymptotic boundary conditions are correctly
represented, thus ensuring that the resulting equations are Galilean invariant. The choice
of f is decided based on the physical model for collisions at higher velocities, i.e., from the
semiclassical regime [6, 20].

A causal look at the HSCC and the CRC methods would prompt one to speculate that the
RC plays, to some extent, a role similar to the hyperradius in the HSCC method. The fact
that calculations from the two methods agree so well over the velocity range covered seems
to indicate that the CRC method can be used to describe ion–atom collisions at low energies
despite the fact that the switching function is not uniquely defined, i.e., the results appear
to be insensitive to the precise form of the switching function chosen. On the other hand,
the remaining discrepancy between the HSCC and the CRC method may indicate the degree
of inaccuracy introduced by the ad hoc switching functions in the latter model. Since the
HSCC method does not introduce any approximations at the beginning, and adiabatic channel
functions are used in the expansion, one would expect that the convergence of HSCC is better
at lower energies. Thus we would tend to attribute the presence of extra oscillatory structures
in the partial wave total charge transfer cross sections to the result of the use of the switching
functions, as seen in figures 6 and 7.

4. Summary and conclusions

In this paper we used the HSCC method to calculate electron capture cross sections for
Si4+ + H(D) and Be4+ + H(1s) collisions from about 1 meV amu−1 up to 1 keV amu−1. For
Si4+ + H(D) the total electron transfer cross sections are found to be in good agreement with
the experimental data and theoretical calculations in Pieksma et al [4]. For Be4+ + H, we found
that the total charge transfer cross sections are in good agreement with the CRC method of
Errea et al [6, 7]. We did find some discrepancies in the cross sections for electron capture to
the weaker n = 4 manifold, as well as in the partial wave cross sections at low energies. The
agreement between the CRC and the HSCC method indicates that both approaches are capable
of describing low energy ion–atom collisions. The advantage of the HSCC method is that it
introduces no ad hoc parameters in the formulation. We have also compared the HSCC and
the CRC results at the level of partial wave cross sections or the equivalent impact parameter
probabilities. At v = 0.1 au we found perfect agreement. Slight deviations occur at lower
velocities where the CRC results show more oscillations than the HSCC method. Similarly, for
the total electron capture cross sections to the weaker n = 4 channels we found discrepancies
between the two calculations at low energies.

The general agreement between the CRC and the HSCC method is encouraging. Since
the HSCC method is so far limited to one-electron collision systems, while the CRC method
has been applied to many-electron systems, the good agreement in the two calculations implies
that the CRC calculations for complex systems can be expected to be adequate as well. Finally
the general agreement between the CRC and the HSCC method probably comes from an
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equivalence between the hyperradius and the RC used in the literature, at least to first order in
the mass ratio of the electron to that of the mass of the heavy particles. This issue remains to
be addressed in the future.
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