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Abstract
In recent years intense mid-infrared lasers with wavelength of a few microns have become the
standard tools for research in strong field physics laboratories worldwide. These lasers offer the
opportunities to extend the traditional study of high-order harmonics generation and attosecond
sciences from the extreme ultraviolet to soft x-rays. In this tutorial we revisit the familiar strong
field approximation and its simplification—the quantum orbits theory. We draw special
emphasis on the factorization of laser induced dipole moment as the product of a returning
electron wave packet with the photo-recombination dipole transition matrix element. The former
depends on the laser properties only (up to a normalization constant) while the latter is related to
laser-free photoionization transition dipole. The factorization leads to the suggested modification
beyond the strong field approximation—the quantitative rescattering theory. In applying these
theories to mid-infrared lasers, we analyze the behavior of the returning electron wave packet
and its scaling properties vs the wavelength of the laser. A few examples are given to
demonstrate how the quantitative rescattering theory is capable of reproducing experimental
harmonic spectra under various conditions. Future opportunities in employing harmonics
generated by optimized mid-infrared lasers for probing molecular structure and for serving as
useful table-top coherent light sources up to the x-ray region are also discussed.

Keywords: harmonic generation, intense laser field, attosecond physics, mid-infrared lasers

(Some figures may appear in colour only in the online journal)

1. Introduction

Over the last twenty-five years, tremendous progress has been
made in the understanding and application of high-order
harmonic generation (HHG) [1]. HHG offers the potential for
creating new table-top coherent light sources from the
extreme ultra-violet (XUV) to the x-ray regions. Such new
light sources may be in the form of single attosecond pulses
(SAP) as short as below about 100 as [2, 3], or in the form of
attosecond pulse trains (APT) [4]. Availability of attosecond
pulses has opened up a new area of research of attosecond

science [1] in recent years. Another important application is
HHG spectroscopy, which aims at obtaining atomic and
molecular structure information from the measured HHG
spectra [5–13]. With the availability of ultrashort laser pulses
of duration of sub-ten femtoseconds, HHG spectroscopy is a
powerful tool for ultrafast imaging [14–16] of a dynamic
molecular system. To make further progress in the field it
requires not only advances in technological and experimental
tools, but also theoretical insight that offers the capability to
perform theoretical simulations in order to understand the
basic mechanisms responsible for the observed harmonics,
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and to decode the information embedded in the measured
harmonic spectra.

Since the early days, HHG has been understood quali-
tatively in terms of the three-step model (TSM), also called
the recollision or rescattering model, proposed by Corkum
[17]. Historically, this recollision picture was also discovered
by Kulander and collaborators [18], who called it the simple
man model. Within the classical recollision model, an HHG
process is understood in terms of the following three steps.
First, the active electron tunnels out of the potential barrier
formed by the quasi-static electric field of the laser and the
Coulomb potential of the atomic core. Tunneling happens
most likely near the peak of the laser sub-cycle. Second, after
the electron is born into the continuum it propagates in the
strong laser field. Third, as the laser reverses its electric field
direction, the electron has a chance to be driven back to the
parent ion and recombine with the core to emit a high harmonic
photon. A similar concept of ‘atomic antenna’, but in a less
transparent form, has been suggested earlier by Kuchiev [19].

For semi-quantitative calculations, a detailed theory of
HHG based on the strong-field approximation (SFA) was first
given by Lewenstein et al [20]. (In fact, a brief description of
the theory was given even earlier in L’Huillier et al [21]).
This model of HHG is either called SFA or Lewenstein
model. It is an extension of the SFA for ionization of atoms
and solids in intense laser fields first proposed by Keldysh [22]
and later expanded by Faisal [23] and Reiss [24]. For strong-
field ionization, this is also called Keldysh-Faisal-Reiss (KFR)
theory [25]. The SFA can be considered as a quantum version
of the TSM. Similar to the TSM, it can also be extended to
describe related recollision phenomena such as high-energy
above-threshold ionization (HATI) (see, for example, reviews
by Milosevic et al [26] and Becker et al [27]) and non-
sequential double ionization (NSDI) in atoms [28–31].

At the quantitative level, high harmonic generation and
related nonlinear strong field processes can, in principle, be
obtained by numerical solution of the time-dependent
Schrödinger equation (TDSE). In reality, TDSE calculations
are very time-consuming and accurate numerical results are
difficult to come by, except for simple atoms or molecules
within the single-active-electron (SAE) approximation. In
spite of these difficulties, various groups have performed ab
inito calculations, mostly for simple atoms like helium and
small molecules, by including full (or truncated) degrees of
freedom of the system, using the TDSE or the simplified
methods such as the time-dependent density functional theory
(TDDFT) and time-dependent Hartree–Fock (TDHF) method
[32–38]. If such calculations indeed are carried out accurately,
then the results can be used to benchmark against simpler
approximate models such as the SFA and others. It is highly
impractical to use these methods to generate theoretical
results to compare directly with experimental data. We
emphasize that experimental HHG spectra are obtained from a
focused beam. Inclusion of HHG generation and propagation
in the medium would require such calculations be carried out
for hundreds of laser intensities. To our knowledge, only
recently has TDDFT calculations been carried out at this level
[39, 40] for HHG generated by 800 nm lasers for Ar. To

extend similar calculations to molecular targets or to mid-
infrared lasers would require even much more effort with
accuracy that is difficult to check.

Theoretical calculations of HHG starting with the SFA
has many advantages since it can efficiently be applied to
atoms as well as complex polyatomic molecules. However the
SFA has a serious drawback since it is not accurate. To
improve the SFA, it is best to start by identifying where it fails.
A practical method to improve is first to use saddle point
approximation to reduce the SFA induced dipole to a factorized
form, where each factor is associated with an individual step of
the three-step model. By replacing each of these factors with an
‘improved’ one, the new formula is then shown to provide a
better description of the harmonic generation process. This
approach has been suggested by Ivanov et al [9, 41] who
factorized the SFA in the time domain. Such a factorization is
not complete since one still has to sum over different born
times (or ionization times) during the laser pulse. Note that the
original TSM by Corkum was also formulated in the time
domain [17]. One can go one step further to get a ‘partial’
factorization in the energy domain. This is achieved in the so-
called quantum orbits (QO) theory [20, 27, 42–44].

Today, one of the most accurate and efficient methods for
calculating HHG is the quantitative rescattering theory (QRS)
[12, 45, 46]. In the QRS, the HHG dipole as a function of
harmonic photon energy is factorized as a product of return-
ing electron wave packet and exact photo-recombination
transition dipole. This factorization is in the energy domain.
The QRS was proposed based on the numerous evidence from
the numerical solution of the TDSE for atomic targets [45–47]
and molecular ion H2

+ [48]. Furthermore, HHG spectra from
the QRS have been found to agree well with various
experiments for atoms [49, 50] and molecules, including
aligned molecules [11, 51] and polyatomic molecules [52–
54]. In the QRS, it is essential that the electron wave packet
can be accurately calculated from the SFA. Once theoretical
transition dipoles for the target are known in the required
energy range, the QRS allows efficient calculations of the
HHG spectra as the laser parameters are varied. Such effi-
ciency further speeds up the solution of the macroscopic
propagation equations in order to obtain harmonics generated
from the gas medium that can be readily compared to
experiments. Indeed, macroscopic HHG spectra calculated
based on the QRS have been shown to agree well with var-
ious experiments [55–58].

It is interesting to note that a factorization similar to that
of the QRS has been proposed by Itatani et al [6]. The validity
of that factorization has also been critically tested numerically
within the SFA in [59], showing that it is valid only if the
transition dipole was calculated in the plane-wave approx-
imation. In fact, factorization can also be derived rigorously
within the QO approach which is an approximate SFA.
Therefore, in the spirit of the QRS, the returning electron
wave packet can be obtained from the SFA or from the QO
theory. Similar derivation of factorization has been reported
later by other groups [60–64].

For more than twenty years, high harmonics are nearly
always generated with Ti-sapphire lasers with wavelength
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centered close to 800 nm. In the last few years, with new laser
technology, high harmonics are generated with mid-infrared
lasers with wavelength covering from about 1 μm up to about
4 μm. Such mid-infrared lasers allow the generation of har-
monic spectra extending to soft- and sometimes hard-x-ray
regions [65–72]. While the SFA theory is expected to work
for such lasers, it is desirable to examine how HHG and,
especially, its electron wave packet, depend on the wave-
length. As the wavelength is increased, the semiclassical
approximation of SFA, i.e., the QO model, becomes more
accurate. Since QO theory is conceptually related to the
classical three-step model (TSM), harmonics generated by
mid-infrared lasers can thus be analyzed in terms of classical
concepts such as ionization versus recombination times, long
versus short electron trajectories, as well as recombination by
first versus higher order return. Furthermore, the QO theory
can be cast mostly in analytical form which allows us to study
harmonic generation in the long wavelength limit analytically.

The goal of this tutorial is to provide a detailed analysis
of the strong field approximation for HHG with the emphasis
on the application with mid-IR lasers, when the QO theory
becomes more adequate. This tutorial is organized as follows.
In section II, we first enumerate the various formal approx-
imations made in order to obtain the SFA from the TDSE. By
employing saddle-point approximation on the SFA integral,
we then derive the QO theory. In the QO theory, concept and
expressions that can be related to the motion of a classical
electron in an oscillatory electric field can be derived, except
that they are complex quantities. In the QO theory, harmonics
are generated from a sequence of recollision events. The
relative importance of harmonics from each recollision event
can be analyzed as the wavelength of the driving laser is
increased. Furthermore, from the QO theory, we derive the
factorization of the laser induced dipole for HHG in the
energy domain. By analyzing in which step the SFA works
and which step fails, a quantitative rescattering model (QRS)
is empirically derived. Here we pay special attention to the
concept of the electron wave packet and its different forms In
section II we also analyze the nature of the long and short
electron trajectories of the first and higher order returns,
especially within the QO theory. This analysis is then
extended to mid-IR wavelengths in section III, where we
discuss the wavelength scaling of HHG in the long wave-
length limit. In section IV we summarize the theory of
macroscopic propagation of harmonics in the gas medium.
Using the QRS for the single atomic or molecular induced
dipoles as inputs to the propagation equations, we can com-
pare our macroscopic simulations directly with experimen-
tally measured harmonics, thus allowing us to draw
wavelength scaling of the macroscopic HHG yields. Fur-
thermore, using the QO theory we can identify how con-
tributions from different orbits behave and phase match in the
medium. A short section V is devoted to illustrate some
applications based on the QRS theory. The tutorial is con-
cluded with a short summary and future outlook.

In this tutorial we have not attempted to cover all the
extensive works published on the SFA and related methods.
Thus, unlike a review article, our references are far from

complete. Furthermore, while we have shown how the QRS
can be applied to many areas of strong field physics, we do
not cover many specific applications. For these, the readers
are referred to the original publications. Atomic units are used
throughout the paper, unless otherwise indicated.

2. Theoretical models for high-order harmonic
generation

2.1. Lewenstein model or strong-field approximation for HHG

2.1.1. Formal derivation of Lewenstein model. The strong
field approximation (SFA) is a widely used model for atoms
or molecules in an intense laser field. The main assumption
made in SFA is that the continuum electron dynamics is
dominated by the laser field while the core potential is a small
perturbation that can be ignored to the lowest order. The
majority of strong field effects can be understood at least
qualitatively by the SFA model, which is much less
computational demanding than solving the TDSE
numerically. In this subsection the SFA model describing
HHG process is derived using a number of approximations
from the TDSE in the length gauge. This model is usually
referred to as Lewenstein model [20] that serves as a starting
point in many HHG studies.

Consider an atom (or an ion) in a single active electron
(SAE) approximation under the influence of an intense laser
field tE ,( ) the Schrödinger equation in the length gauge takes
the form

i
t

t V t tr r r E r,
1

2
, ,

1

2∣ ( ) ( ) · ( ) ∣ ( )

( )

⎜ ⎟⎛
⎝

⎞
⎠

¶
¶

Y ñ = -  + + Y ñ

where V r( ) is the potential due to the ionic core.
The total Hamiltonian can be decomposed as

H t H tr E . 20( ) · ( ) ( )= +

The field free Hamiltonian

H V r
1

2
30

2 ( ) ( )= -  +

determines the ground state g∣ ñ and the excited bound states
e{∣ }ñ of this system

H g I g , 4p0 ∣ ∣ ( )ñ = - ñ

H e E e , 5e0 ∣ ∣ ( )ñ = ñ

where Ip is the ionization energy.
The electron in the continuum can also be described by

the eigenstates of H0

H
k

k k
2

, 60

2
∣ ∣ ( )ñ = ñ

where k is the kinetic momentum of the outgoing electron.
g ,∣ ñ e{∣ }ñ and k{∣ }ñ form a complete basis set of the whole
Hilbert space.
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Consider the case that the field intensity is large enough
so that the Keldysh parameter I U2 1,p p g = with

Up
E

4 L

0
2

2=
w

being the ponderomotive energy. By assuming that

the electron in the ground state is tunnel ionized into
continuum directly without intermediate resonances, then all
the excited bound states can be ignored. Furthermore,
consider the situation of weak ionization, which requires the
intensity be much smaller than the saturation intensity. In this
situation only a small fraction of the targets are ionized during
the interaction time so that the depletion of the ground state
can be neglected. Within the above assumptions the
wavefunction can be expanded as

t e g d k b tk k, . 7iI t 3p { }∣ ( ) ∣ ( )∣ ( )òY ñ = ñ + ñ

The HHG spectrum with polarization along a direction ei

can be calculated from the time-dependent induced dipole
moment

D t t t te D e r 8i i i( ) · ( ) · ( )∣ ∣ ( ) ( )= = áY Y ñ

from its Fourier components as

P D . 9i
4 2( ) ( ) ( )w w wµ

Consider the transitions between continuum state and
ground state which contribute to the harmonics while
dropping the higher order continuum-continuum part, the
induced dipole can be written as

t d k g b tD r k k, c.c. 103( ) ∣ ∣ ( ) ( )ò= á ñ +

Next we use the Keldysh theory (or the KFR model) [22–
24] in the length gauge [73] to evaluate the induced dipole
moment. The KFR model (or its generalization in the form of
the S-matrix theory [25]), was initially derived for strong field
above-threshold ionization [22–24, 73, 74]. The approach to
HHG process here is equivalent to the original derivation
given by Lewenstein [20].

We introduce the time evolution operator U t t,( )¢ for the
total Hamiltonian H(t) such that

t U t U t g, , , 11∣ ( ) ( )∣ ( ) ( )∣ ( )Y ñ = -¥ Y -¥ ñ = -¥ ñ

and the time evolution operator U t t,0 ( )¢ for the field-free
Hamiltonian H0 such that

U t g e g, . 12iI t
0 p( )∣ ∣ ( )-¥ ñ = ñ

From equation (7), b tk,( ) can be solved as

b t e U t gk k, , . 13iI tp( ) ∣ ( )∣ ( )= á - ¥ ñ-

By substituting equation (13) into equation (10) we obtain

t d k e g U t g

e g U t g

D r k k

r

, c.c.

, c.c.

14

iI t

iI t

3 p

p

( ) ∣ ∣ ∣ ( )∣

∣ ( )∣
( )

ò= á ñá -¥ ñ +

= á -¥ ñ +

-

-

Based on the S-matrix theory [24, 73], the above
equation can be rewritten as

t i t g U t t

t U t g

i t g U t t

t g

D r

r E

r

r E

e d ,

, c.c.

d e ,

e c.c. 15

iI t
t

t
iI t

iI t

0

p

p

p

{( ) ∣ ( )

· ( ) ( )∣ }

∣ ( )

· ( ) ∣ ( )

ò

ò

= - ¢á ¢

´ ¢ ¢ -¥ ñ +

=- ¢ á ¢

´ ¢ ñ +

-

-¥

-¥

-

¢

The total Hamiltonian can also be decomposed as

H t H t V r . 16F( ) ( ) ( ) ( )= +

HF(t) is the Hamiltonian of a free electron in the laser
field

H t tr E
1

2
, 17F

2( ) · ( ) ( )= -  +

whose eigenstates are the Volkov states (in the length gauge)

t tp A e . 18i t t
p

p Ad
t

1
2

2

∣ ( ) ∣ ( ) ( )[ ( )]òc ñ = + ñ -  + 
-¥

Here p∣ ñ denotes the plane wave state

r p
1

2
e , 19ip r

3 2
∣

( )
( )·

p
á ñ =

and tA( ) is the vector potential of the laser field

t t tA Ed . 20
t

( ) ( ) ( )ò= - ¢ ¢
-¥

The time evolution operator corresponding to HF(t) can
be constructed by Volkov states

U t t p t t, d . 21F p p
3( ) ( ) ( ) ( )ò c c¢ = ¢

The operator U t t,( )¢ satisfies the Dyson equation

U t t U t t i t U t t VU t t, , d , , . 22F
t

t

F( ) ( ) ( ) ( ) ( )ò¢ = ¢ -    ¢
¢

In the strong field regime, the electron-core potential
V r( ) can be treated as a small perturbation for the electron in
the continuum. In the lowest order approximation,
equation (22) is

U t t U t t, , . 23F( ) ( ) ( )¢ = ¢
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In essence, within the above approximation, the electron
in the continuum is treated as a free particle moving in the
strong laser field. Equation (15) is then reduced to

t i t g U t t t g

i t p g t

t t g

i t p g t

t t g

D r r E

r

r E

r p A

E p A r

d e , e c.c.

d d e

e c.c.

d d e

e

e c.c.

24

t
iI t

F
iI t

t
iI t

iI t

t
iI t

iI t

i t t

p

p

p A

3

3

d 1
2

p p

p

p

p

p

t

t
2

( ) ∣ ( ) · ( ) ∣

∣ ∣ ( )

( ) · ( ) ∣

∣ ∣ ( )

( ) · ( )∣ ∣

( )

[ ( )]

ò

ò ò

ò ò

ò

c

c

=- ¢ á ¢ ¢ ñ +

=- ¢ á ñ

´ ¢ ¢ ñ +

=- ¢ á + ñ

´ ¢ á + ¢ ñ

´ +

-¥

- ¢

-¥

-

¢

-¥

-

¢

-  + 
¢

i t p t t

t

p A E

p A

d d d

d e c.c. 25

t

iS t tp

3

, ,

( ( )) ( )

· ( ( )) ( )( )

*ò ò=- ¢ + ¢

+ ¢ +
-¥

- ¢

In equation (25), gd p p r( ) ∣ ∣= á ñ is the dipole matrix
element for the bound-free transition where p∣ ñ denotes the
plane wave state, and the phase factor

S t t t t I t t

t t I

p p A

p A

, , d
1

2

d
1

2
. 26

t

t

p

t

t

p

2

2

( ) [ ( )] ( )

[ ( )] ( )⎜ ⎟⎛
⎝

⎞
⎠

ò

ò

¢ =  +  + - ¢

=  +  +

¢

¢

The integral in equation (24) has a simple and intuitive
interpretation which corresponds to the quasi-classical three
step model [17, 20]: p can be treated as the classical canonical
momentum, since the electron-ion interaction is neglected for
the continuum electron, p turns into a conserved quantity;

tp A( )+ can be assumed as the instantaneous velocity at
time t; the factor t t gE p A r eiI tp( ) · ( )∣ ∣¢ á + ¢ ñ ¢ describes the
ionization process which occurs at time t′ while

g tr p Ae iI tp ∣ ∣ ( )á + ñ- determines the amplitude of photo-

recombination at time t; the factor e i t tp Ad
t

t
1
2

2[ ( )]ò-  + 
¢ is the

phase accumulated from t′ to t while the electron propagating
in the continuum; at a given recombination (or photon
emission) time t the induced dipole is obtained by integrating
over the contributions from all ionization time t t¢ < and all
canonical momentum p. The factor S t tp, ,( )¢ in equation (25)
is often referred to as the quasi-classical action but it also
incorporates some effects of the ionization and recombination
process through its dependence on Ip, see equation (26). The
complex conjugate part in the dipole moment is the time
reversal of the above three-step process which is a pure
quantum contribution and has no classical interpretation.

In practice the SFA form of equation (25) is rarely used.
Instead, a simpler form, based on the saddle point
approximation for the integral over 3D momentum in
equation (25), has been used more often. This will be
discussed in the next subsection.

2.1.2. Lewenstein model in the saddle-point approximation for
3D integral over momentum and its accuracy. Before going
to the main content in this subsection we briefly give here a
formal description of the saddle point approximation from a
mathematical point of view, adapted from [75, 76]. First
consider a one-dimensional integral

I Ed e , 27if( ) ( )( )ò w w= w

-¥

¥

where E ( )w is a smooth amplitude and eif ( )w is a phase
function varying much faster than E .( )w Since all the fast
oscillating part have little contribution to the integral, I is
dominated by the integrand close to the saddle point ωs given
by the saddle point equation

f 0, 28s( ) ( )w¢ =

in which f′ denotes the first derivative of f. In general there are
a set of saddle points satisfying this equation. Using the
truncated Taylor expansion in the vicinity of sw up to the
second order one can obtain the saddle point approximation

I
i

f
E

2
e , 29

s s
s

if s

( )
( ) ( )( )å p

w
w»


w

where f″ is the second derivative of f. The summation runs
over all the saddle points labeled by s. Equation (29) is based
on the assumption that in the Taylor expansion of f ( )w near
ωs the second order term is dominant over higher order terms
This may become invalid when f s( )w happens to be zero,
which will yield an artificial divergence in equation (29). This
divergence is not real and could be removed by including the
third order term in the Taylor expansion.

Similarly the saddle point approximation can be applied
to a n-dimensional integral as the following

E
i

t f
Ed e

2

de
e . 30n if

s

n

s
s

if s

( )( ) ( )
( )

( ) ( )( ) ( )ò åw
w

ww
p

»


w w

In equation (30) the saddle point sw is determined by the
saddle point equation

f 0, 31s( ) ( )w =w

and f fs s( ) ( )w w =  w w is the n × n Hessian matrix at the
saddle point .sw

Now let us investigate the dependence of the integrand in
equation (25) on p. The action S t tp, ,( )¢ varies on a
characteristic scale p t t2 1 .2 ( )- ¢ If we approximate
t t- ¢ as the optical period of an 800 nm laser i.e.
t t 2.6- ¢  fs, we can get p 2 0.25 eV.2  Provided that
the dipole matrix element d p( ) changes much slower than this
energy scale the integrand in front of e−iS can be treated as a
smooth function while e iS- yields a very strong oscillation.
Thus one can apply the saddle-point method to estimate this
integral over p. In most cases d p( ) changes smoothly over
tens of electron volts so that the saddle point approximation is
guaranteed, except for molecules with very large internuclear
separations (typically tens of atomic units) [77]. This
discussion also shows that the saddle point approximation
should get more accurate for longer wavelengths.
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We now apply the saddle point approximation to the 3D
integral over momentum in equation (25). The saddle point in
equation (31) for p in our case can be written in a vector form
as

S t t t t I

t t t

t t

p p A

p A p A

p A

, , d
1

2

d

d 0, 32

t

t

p

t

t

t

t

p p

p

2( ) [ ( )]

[ ( )] · [ ( )]

[ ( )] ( )

⎜ ⎟⎛
⎝

⎞
⎠ò

ò

ò

 ¢ =   +  +

=  +  + 

= +   =

¢

¢

¢

which gives the saddle point solution ps as

t t
t tp A

1
d . 33s

t

t
( ) ( )ò= -

- ¢
 

¢

Since S t t t t t tp v r r, , d ,
t

t

p ( ) ( ) ( ) ( )ò ¢ =   = - ¢
¢

the

semi-classical interpretation of equation (32) is clear: the
dominant contribution to the HHG photon emission comes
from the trajectory with canonical momentum ps such that the
electron born at time t′ returns to the same position at time t.

The Hessian matrix of S t tp, ,( )¢ is given by
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where I is the 3 × 3 unit matrix.
By using equation (30) the saddle-point approximation of

equation (25) can be written as
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Here ò is an arbitrary small positive regularization constant
introduced to smooth out the singularity. The saddle-point
approximation for the integral over p yields a factor
t t 3 2( )- ¢ - which accounts for the quantum diffusion effect,
i.e., the spread of the wave packet of the continuum electron.
Larger excursion time in the continuum will have less
contribution to the harmonic emission.

Consider the case that the electric field is linearly
polarized along the x-axis. Equation (33) shows that ps is also
along the x-axis. Equation (35) for Dx(t) reduces to a one-
dimensional equation

D t i t
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in which p p x gedx x( ) ∣ ∣= á ñ is the x component of the dipole
transition matrix element from the ground state to the plane
wave state propagating along x axis with momentum p.

Equations (25), (35), and (36) are the standard equations
in the SFA (or the Lewenstein model) for the laser induced
dipole moment. To account for the ground state depletion a
damping factor a(t) is introduced [20]. This factor is often
calculated by using the Ammosov–Delone–Krainov (ADK)
theory [46, 78]. Different attempts to go beyond this model
have been proposed. We will discuss some of these
extensions in section 2.4.

To judge about the quality of the saddle point
approximation, we now compare the SFA result using
equation (36) with that of the full SFA of equation (25), in
which integration over 3D momentum is carried out
numerically. The comparison of HHG spectra is shown in
figure 1(a) and (b) for hydrogen atom with 800 nm and
1600 nm wavelength, respectively. Clearly, the two methods
agree very well, although we have to rescale the result with
the saddle-point approximation by a factor of 0.7 for the
800 nm case and 0.8 for the 1600 nm case. This scaling factor
is quite typical in the applications of the saddle point
approximation [26]. The saddle point approximation become
less accurate only at very low harmonics below the threshold.
Overall the accuracy is improved with increased laser
wavelength at similar range of laser intensity, as expected.

Figure 1. (a) Induced dipole vs harmonic order from the full SFA
and saddle point approximation using equation (36) for hydrogen.
Cosine-squared envelope laser pulse with 6-cycle total duration,
800 nm wavelength, 2.0 1014´ W cm−2 peak intensity is used. (b),
same as (a), but for 1600 nm and 1.0 1014´ W cm−2
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In the rest of this tutorial, we will imply equation (36) when
we refer to the SFA.

2.2. Quantum orbits theory

2.2.1. Formulation and basic equations. Equation (36) shows
the time dependent dipole moment induced by the laser field.
The HHG power spectrum is given by

P D , 37x
4 2( ) ∣ ( )∣ ( )w w wµ

in which ω is the harmonic photon energy. Dx ( )w is the
Fourier transform of Dx(t)
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In the above equation
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The basic idea of the QO theory is to further apply the
saddle-point approximation to the two-dimensional integral
over t and t′ [20, 44]. Saddle point equations for t and t′ reads
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Equation (43) implies that when the electron is born to
the continuum, the ‘kinetic energy’ is a negative value I ,p-
which accounts for the quantum effect of tunneling ioniza-
tion. Equation (44) describes energy conservation when the
electron recombines with the ionic core. Upon recombination
the electron returns to the ground state and emits a photon
with energy ω. For a given ω one can solve equations (43) and
(44) (with ps given in (42)) simultaneously to find a series of
saddle points t t, .s s( )¢ Due to the constraint imposed by
equation (43) both the solutions ts¢ and ts are complex-valued.

Each solution t t,s s( )¢ determines a unique ‘quantum–orbit’
which can be viewed as an extension of the classical–orbit of
an electron moving in the electric field [43, 44]. The saddle-
point approximation of equation (39) reads
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In the spirit of Feynman’s path integrals [42], Dx ( )( ) w+ is
a superposition of the contribution from individual quantum–

orbit weighted by e .i p t t, ,s s s( )- Q ¢ The quantum–orbit that
corresponds to negative ω does not have any classical
counterpart and will have little contribution. For this reason in
a typical quantum orbits calculation, the second term on the
right hand side of equation (38) is dropped, i.e.

D D D , 46x x
s

xs( ) ( ) ( ) ( )( ) åw w w» =+

where Dxs ( )w denotes the induced dipole moment by an
individual quantum–orbit
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Here 2 × 2 Hessian matrix S″ is given as
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In equation (46) only the quantum orbits leading to negative
Im { }Q are included in order to obtain converged results.

From equations (41) and (42) one can obtain
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Note that the form of QO equation (47) is strictly valid
only when there is no singularity of the transition dipole at the
solutions ts¢ of equation (43). Such a singularity actually
occurs if the target is a hydrogen atom. We will come back to
this point in section 2.3.2.
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2.2.2. Factorization in the quantum–orbit theory. From
equations (43) and (44) it follows that

d p A t d i I2 , 52x s s s x p( ) ( )( ) ( )e+ ¢ = ¢

d p A t d I2 . 53x s s s x p( )( )( )( ) ( )e w+ = -

For a particular quantum–orbit labeled by t t, ,s s( )¢ the
phase factor se¢ (or se ) may be either +1 or −1, to account for
the direction of the electron momentum at the moment of
ionization (or recombination). Note that we focus only on
above-threshold harmonics (i.e., with Ipw > ). For harmonics
below the threshold, the accuracy of saddle point-approxima-
tion in the 3D integration over momentum is questionable
(see section 2.1.2), causing the QO to be inadequate.
Therefore the induced dipole Dx ( )w can be rewritten as
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Equation (54) clearly shows the factorization of HHG
dipole Dx ( )w into two factors: the complex conjugate of the
bound-free dipole transition matrix element dx(p) and a
complex ‘returning electron wave packet’ w .( )w The latter
combines the ionization step and the propagation of
continuum electron in the laser field from ionization time ts¢
until recombination time ts. Note that we have absorbed the
phase factor εs into the wave packet, to account for
contribution from all possible trajectories. Clearly, we can
easily identify contribution of each trajectory in the electron
wave packet. We emphasize that the recombination step
enters equation (54) in the field-free form and all the laser-
dependent features are in the wave packet. The wave packet
depends on the structure, apart from the ionization potential,
only through a ω-independent i Id 2x p( ) at the exit of the
tunneling ionization (see equation (43)). In this derivation, the
factorization is valid for harmonics above the threshold, i.e.

I .pw > We will further discuss the electron wave packet in
section 2.3.2.

We remark that the saddle point equations (33), (43), and
(44) are the same for different atomic and molecular targets,
as long as the assumptions for the QO are valid. Different
targets differ only by their transition dipole matrix elements
and ionization potentials. Therefore the above derivation is
quite general and can be extended in a straightforward manner
to molecular targets. For simplicity, let us consider a linear
molecule, aligned along the x-axis, in a laser field E t ,( )
linearly polarized on the x − y plane with an angle θ with
respect to the molecular axis. The parallel component of HHG

dipole can be written as [46]
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with ê being the unit vector along laser polarization. Here we
assume that saddle-point integration over intermediate
momentum p has been carried out [see, equation (36)].
Following the QO derivation, we arrive at

D I we d 2 e , . 56p
m( )( )( ) ˆ · ˆ ( ) ( )*w w q w= -

Here wm is defined as in equation (54), but with a factor
i Id 2x p( ) replaced by i Ie d 2 e cosp( )ˆ · ˆ = i Id 2 ex p( ˆ)q +

i Isin d 2 e .y p( ˆ)q For every fixed θ this factor only gives an
overall coefficient to the wave packet. An equation similar to
equation (56) can be written for the perpendicular component
with the same wm and e dˆ · * being replaced by e d .ˆ · *^

We further note that the factorization is not limited to the
case with a single color laser. Indeed, for a synthesized pulse,
as long as the saddle-point approximation is applicable, the
specific forms of equations (33), (43) and (44) are only
modified by the form of the vector potential A, but the formal
derivation of the factorization remains the same. This remark
also applies to different forms of the SFA dipole such as
dipole acceleration and velocity forms We will further
illustrate this point in section 2.3.2.

The validity of this factorization in the QO theory implies
approximate factorization in the SFA, which was found
numerically in [59]. More importantly, the factorization
equation (54) can be utilized to ‘extrapolate’ to real atomic
and molecular targets with long range Coulomb interaction.
More specifically, one speculates that each factor in
equation (54) can be put in ‘by hand’ with more accurate
expressions that are beyond the assumptions used in the SFA
and QO. In fact, this speculation has been verified by
numerical solution of the TDSE [45, 47], which serves as the
basis for the recently proposed QRS theory [12, 46]. We will
come back to this point in section 2.3.

2.2.3. Analytical QO theory of HHG by monochromatic laser
fields. a. Sub-cycle dynamics of high-order harmonic
emission In this subsection we consider harmonic emission
by a monochromatic laser field within the QO theory where
the laser-induced dipole can be calculated analytically. The
laser field is given by E t E tcos L0( ) ( )w= (This is also called
the adiabatic approximation [44]). Here Lw is the frequency of
the driving laser, and the optical period is T 2 .L Lp w= Due
to the periodicity we can expect the time dependent dipole
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moment has the following property
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is the dipole moment within one half optical cycle. Its Fourier
transform
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leads to a continuous spectrum.
The spectrum of the whole dipole moment can be

expressed by
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Equation (61) shows that the spectrum induced by a
monochromatic laser field contains only odd harmonics of the
fundamental frequency ωL. These harmonics is fully deter-
mined by the induced dipole moment within half optical
cycle. Therefore in the following discussion we focus mainly
on the sub-cycle dynamics. In the quantum orbits analysis
only the orbit that has a ionization time (often called born
time) within the half optical cycle, T T4, 4 ,L L( )- has to be
considered.

b. Real parts of born time and recombination time: QO
versus classical picture. For a monochromatic electric field,
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The saddle point equations (43) and (44) now become
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By introducing the ponderomotive energy U ,p
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equations above can be rewritten as
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where t ,Lq w¢ = ¢ θ = ωLt are the born and return time scaled

by the optical period,
I

U2
p

p
g = is the Keldysh parameter and

I

U
p

p
w̃ = w-

can be interpreted as the kinetic energy of the

returning electron scaled by the ponderomotive energy. By

Figure 2. Red (or medium grey): the real part of ionization time and
recombination time for S1 (dashed) and L1 (solid) as functions of ,w̃
obtained from equations (66) and (67) with parameters: 800 nm
wavelength, 1.5 10 W cm14 2´ - peak intensity, argon target
( 0.94g = ). Solid black: classical born and return time calculated
from equations (68) and (69). Dot-dashed green (or light grey):
profile of the electric field.
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including the quantum origin of the tunneling process, the
solutions sq¢ and θs are all complex values.

The simple classical model assumes the electron is born
with zero kinetic energy, which is equivalent to 0.g = Then
equations (66) and (67) reduce into

cos cos sin 0, 68c c c c c( ) ( ) ( )q q q q q- ¢ + - ¢ ¢ =

2 sin sin . 69c c
2( ) ˜ ( )q q w- ¢ =

In this classical picture cq¢ and θc are all real quantities. We
can expect that real parts of quantum–orbit solutions Re s{ }q¢
and Re s{ }q are counterparts of the classical born and return
time and will approach them as 0.g 

In the classical picture, as shown in figures 2 and 3, the
electron born before the peak field ( 90 0q-  < ¢ < ) will not
return to the core. The electron born after the peak field
(0 90 q ¢ < ) has a chance to revisit the core with kinetic
energy U .pw̃ Moreover, the electron born in the region
0 12 q ¢ <  may revisit its core more than once, which is
often named higher order returns. The recombination time for
the first return roughly lies in 110 360 , q <  for the
second return 360 540 , q <  for the third return
540 720 . q <  Each return has its maximum return
energy (cutoff) such as 3.2w̃ = for the first return
( 17q¢ =  correspondingly), 1.5w̃ = for the second,

2.4w̃ = for the third. The overall cutoff of the HHG is
dominated by the first return, i.e. U I3.2 .p pcutoffw » + In each
return the orbit that has a particular return energy w̃ below
cutoff splits into two branches: the orbit which returns earlier
is named ‘short’ orbit while that returns later is named ‘long’
orbit. For odd-number returns (the first, third, fifth ...) the
electron born earlier will follow the long orbit, however for
even-number returns (the second, forth, ...) the electron born
earlier will follow the short orbit. In our discussion the label

‘S1’ refers to the short orbit in the first return, ‘L1’ refers to
the long orbit in the first return and so forth.

Figures 2 and 3 show that the quantum–orbit solutions
Re s{ }q¢ and Re s{ }q (at γ = 0.94) in general agree with the
classical quantities cq¢ and .cq However our example also
illustrates some discrepancies between them. The time
interval of ionization given by the QO is always narrower
than the classical prediction, in particular, the born interval of
the S1 orbit is reduced to 17 35 .q < ¢ <  Compared to the
classical result, the cutoff of the first return is extended to

3.8w̃ = due to quantum tunneling and diffusion [20, 44], and
the cutoff of the third return is also increased, while the cutoff
of the second return is decreased.

c. Imaginary parts of born time and recombination time
in the QO. The imaginary part of the born time Im s{ }q¢ is a
direct consequence of the quantum tunneling. As we shall
discuss in section 3.1, tIm s{ }¢ may be interpreted as the time
required for the electron to tunnel through the barrier [79].
This tunneling time mainly depends on Ip and the field
strength when the electron is born. As figure 4(a) shows,
Im s{ }q¢ for all orbits except S1 are very close to each other,
because these orbits are all born in a narrow time interval
right after the peak field so that the electric field at their born
time are almost the same. On the contrary the S1 orbit is born
later so that the corresponding electric field is much weaker,
which leads to a longer tunneling time. Figure 4(b) shows that
the imaginary part of the return time Im s{ }q is close to zero
for all orbits except S1. In other words, for the orbits with
long excursion time the recombination is well separated from
tunneling so θs is dominated by the real classical recombina-
tion time. On the contrary, for the S1 orbit, especially at low
energies 2,˜ w the excursion time is relatively small so that

Figure 3. The real part of (a) ionization time and (b) recombination
time for higher order returns as functions of w̃ calculated from both
quantum orbits and classical equations. The parameters are the same
as in figure 2. Figure 4. (a) Im s{ }q¢ and (b) Im s{ }q for quantum orbits up to the

third return as functions of w̃ calculated from equations (66) and
(67). The parameters are the same as in figure 2.
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the recombination feels the influence of the quantum nature of
the tunneling ionization, which gives rise to the nonzero
imaginary return time.

2.2.4. The amplitude and phase of high-order harmonics.
From equations (40) and (41) the factor Θ corresponding to
the saddle point solution t t,s s( )¢ can be derived as follows:
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Since ,sq¢ sq are complex, Θs is also a complex quantity.
The real part S tRe Re Re ,s s s{ } { } { }wQ = - in which

SRe s{ } is the phase accumulated during the electron
excursion in the continuum. As figure 5(a) shows, larger
excursion time leads to larger phase accumulated. From
figure 5(b), the imaginary part Im s{ }Q is always negative,
which will result in a damping factor eIm s{ }Q in the induced
dipole equation (47) and thus a factor e2 Im s{ }Q to the HHG
yield. This exponential factor is very critical to the HHG yield
and it is related to the tunneling ionization rate [80]. We shall
discuss this point further in section 3.1. This ionization rate
depends sensitively on the strength of the electric field when
the electron is born. Since the field strength at born time does
not significantly change for L1 and all higher order returns,
Im s{ }Q for those orbits are almost on top of each other and
independent of .w̃ On the other hand, the S1 orbit is born in a
weaker field so that its Im s{ }Q value is well below others’.
For S1 orbit, as w̃ grows the field strength at born time will
have a considerable increase (see figure 2) and Im s{ }Q will
also increase.

To evaluate Dxs ( )w one needs to know the bound-free
transition dipole matrix element p p x gd e .x x( ) ∣ ∣= á ñ In our
quantum–orbit analysis the ground state is approximated by a

Gaussian form [20]

g
a

r e . 71ar
3 4

22∣ ( )⎜ ⎟
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⎞
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á ñ = -

So dx(p) has a simple analytical expression
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e , 72x

p a
3 4
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⎝

⎞
⎠p

= -

with a = 0.8Ip. This Gaussian form is convenient since the
transition dipole does not have any singularity in the complex
plane which could lead to unnecessary complications
discussed earlier in section 2.2.1. We will show in
section 2.3.2 that the form of transition dipole does not affect
the shape of the wave packet as a function of energy.

Figure 6(a) plots the contribution Dxs
2∣ ( )∣w from each

quantum–orbit driven by an 800 nm laser. There are two main
factors that determine the HHG yield: the ionization rate
given by e2 Im s{ }Q and the quantum diffusion described by
t t .s s

3∣ ∣- ¢ - The S1 orbit has the least excursion time and thus
the least quantum diffusion, however its ionization rate is
considerably smaller. Quantum orbits method shows the latter
will dominate so that S1 is weaker than L1. In the lower
plateau region S1 may be comparable or even weaker than
some of the higher order returns. For the orbits other than S1,
since their ionization rates are comparable the dominant factor
will be diffusion. Therefore HHG yield drops as the excursion
time grows. For example, in the energy range that all returns
up to the third contribute, L1>S2>L2>S3>L3, as expected.
At the cutoff of each return the short and long orbits merge
together and the saddle-point approximation produces a spike.
Beyond the cutoff the contribution from the short orbit
diverges so it must be discarded. Such unphysical divergence
can be removed by including the third order derivative term in
the Taylor expansion of S [81] and applying the uniform
approximation [43]. We remark that the SFA based quantum
orbits method tend to underestimate the contribution from S1
as compared to the TDSE simulation [82, 83]. Figure 6(b)

Figure 5. (a) SRe s{ } and (b) Im s{ }Q for quantum orbits up to the
third return as functions of w̃ calculated from equation (70). The
parameters are the same as in figure 2.
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shows the HHG spectrum as the coherent superposition of
various quantum orbits. S1+L1 has a relatively simple
oscillating profile since only two orbits are involved. After
including higher order returns the spectrum has a more
complicated structure, which indicates considerable contribu-
tion from higher order returns to the lower plateau. Therefore
at single atom level the effect from higher order returns
cannot be neglected. However as we consider the macro-
scopic propagation effect this situation may be changed due to
the phase matching of each orbit, see section 4.4.

2.2.5. The quantum orbits for short laser pulses. The
quantum orbits analysis can also be applied to the situation
when the driving laser is a short pulse, for instance, a pulse
with a cosine-squared envelope

E t E
t

t

t

cos cos

2 2
. 73

L0
2 ( )( )

( )

⎜ ⎟⎛
⎝

⎞
⎠

 

p
t

w y

t t

= +

-

Here τ is the total duration of this pulse, or equivalently, a full
width at half maximum (FWHM) duration is approximately

2.75,t ψ is the carrier-envelope-phase (CEP), and E0 is the
peak electric field strength.

In the short pulse case (also called non-adiabatic case),
due to the breakdown of periodicity we have to treat each half
optical cycle individually. Specifically, we need to solve the
saddle point equations (43) and (44) to get all quantum orbits
for the whole pulse. Figure 7 shows the time profile of a short
pulse and the corresponding HHG emission time of the first
return as function of photon energy. Clearly, photons emitted
in different half cycles have different cutoff energies. The
total HHG spectrum is dominated by the emission from a few

half cycles near the center of the laser pulse, where the photon
has the largest cutoff and ionization is also strongest [44].
This is different from the monochromatic light case in which
there are numerous half cycles that contribute to the harmonic
spectrum equally. The HHG spectrum from a short laser pulse
shows a complicated structure as in figure 8 other than sharp
odd harmonics. Generally, a few-cycle laser pulse will yield a
relatively broad and continuous HHG spectrum in the higher
plateau. figure 8 also shows that the quantum orbits method is
in qualitatively agreement with the direct SFA integral given
by equation (36). The cutoff position and the main features of
the HHG spectrum are successfully reproduced by QO.

2.3. Quantitative rescattering theory

2.3.1. Formulation and basic concepts. Here we only briefly
describe the QRS formulation to help the reader understand
its relationship with other methods discussed in the previous
subsections. Interested reader is referred to [12, 46].

The QRS can be considered as a semi-empirical method,
relying on an approximate factorization of the HHG induced
dipole. The method was originally proposed based on
numerical solution of the TDSE for atoms [45, 47] and
molecular ion H2

+ [48]. It can also be thought of as an
‘extrapolation’ of the factorization equation (54) of the QO
theory (see section 2.2.2). The QRS has been ‘justified’
within different approaches, such as the time-dependent
effective range theory by Starace, Frolov and collaborators
[60–63], the adiabatic theory by Tolstikhin et al [64, 84].

For simplicity we discuss below the QRS for linear
molecules. Case of polyatomic molecules can be found in
[53]. In essence, within the QRS, the (complex) induced
dipole D ,( )w q for a molecule aligned with an angle θ with
respect to the laser polarization can be written as

D W E, , d , , 74( ) ( ) ( ) ( )w q q w q=

Figure 6. (a) HHG spectrum from each individual quantum–orbit. (b)
HHG spectrum as a coherent summation of S1 and L1 (dashed red or
light grey) and summation of all orbits up to the fifth return (solid
black). The parameters are the same as in figure 2.

Figure 7. Dashed red (or light grey): profile of the electric field of a
short laser pulse. Solid black: HHG emission time tRe s{ } as a
function of photon energy (first return only), obtained from
equations (43) and (44) for argon (Ip = 15.76 eV). Laser parameters:
wavelength 800 nm, peak intensity 2.0 1014´ W cm−2, FWHM
6 fs, 0.y =
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where d ,( )w q is the ‘exact’ transition dipole and the wave
packet W E, 2∣ ( )∣q describes the flux of the returning
electrons. The electron energy E is related to the emitted
photon energy ω by E I ,pw= - with Ip being the ionization
potential of the target. Transition dipole d ,( )w q is the
property of the target only, independent of laser parameters.
The real power of the QRS comes from the fact that the wave
packet, as a function of energy, is nearly independent of the
targets (i.e., except for an overall factor, accounting for the
different ionization rates). Furthermore, despite that the
theory was ‘derived’ using the single active electron model,
the transition dipole can be taken from theoretical calculations
that account for many-electron correlations. The QRS there-
fore offers a simple conceptual approach, which relates the
nonlinear strong-field physics with the traditional half-
collision physics (photo-recombination and its time-reversed,
photoionization).

The linear photo-recombination (or its time-reversed,
photoionization) transition dipole has been extensively
studied since the 1970ʼs and therefore will not be discussed
in this Tutorial. Thus we first focus on the electron wave
packet. It turns out that although HHG spectra calculated from
SFA or from the QO are not quite accurate, the wave packets
[see equation (54)] are quite accurate, as compared to
numerical results obtained from solving the TDSE. Recall
the three-step model for the HHG process: ionization,
propagation, and recombination. In the propagation step, the
electron stays mostly outside the target core, and its motion is
governed primarily by the laser field. In the strong field
approximation, this interaction is treated ‘exactly’. What is
missing is the weak electron-ion core interaction. On the other
hand, the SFA theory does not treat the ionization rate
correctly but this only amounts to an error of the normal-
ization of the wave packet. In the recombination step, the
SFA approximates the continuum electron by a plane wave in
the calculation of the transition dipole. This is a severe error
since recombination occurs near the ion core, and plane wave
approximation is well known to be inaccurate for calculating

photo-recombination transition dipole. Thus in the QRS
theory, the wave packet can be conveniently obtained by

W E W E
D

, ,
,

d ,
, 75SFA

SFA

PWA
( ) ( ) ( )

( )
( )q q

w q
w q

» =

where D ,SFA ( )w q is the induced dipole obtained from the
SFA by numerical integration of equation (36) and dPWA is
the transition dipole in the plane-wave approximation. We
comment that for most practical applications, the induced
dipole is not calculated using the QO theory since accurate
calculations of saddle points for short pulses is technically
more complicated than numerical integration of equation (36).

The wave packet can also be calculated by using a
reference atom with a similar ionization potential, assuming
that the transition dipole dref ( )w of the reference atom is
known.

W E
D

d
. 76ref

ref

ref
( ) ( )

( )
( )w

w
=

This can be done at either TDSE or SFA level, with the use of
the exact transition dipole or its plane wave approximation,
respectively. The wave packet for the target under considera-
tion is obtained by

W E
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W E, e . 77
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⎞
⎠q

q
» hD

Here N ( )q and Nref are the ionization probability for electron
emission along the laser polarization direction from the
molecule and reference atom, respectively. hD is introduced
to account for the phase difference between the two wave
packets. This phase difference has been shown to be nearly
independent of electron energy [46, 47, 53].

Now let us compare the QRS to other theories.
Historically, factorization is implied in Corkum’s three-step
model (TSM) [17]. Here the factorization into three factors
(tunneling ionization, propagation of the continuum electron
in the laser field, and recombination with the parent ion) is in
the time domain, not in the energy domain as in the QRS.
This model has been considered mostly as a qualitative
model. The quantum version of the TSM, the SFA, does not
have the factorization explicitly, although factorization in the
energy domain has been justified numerically [59]. In
section 2.2.2 for the first time we show that factorization
can be derived analytically within the QO theory. Interest-
ingly, a factorization similar to the QRS, but in an intensity
form (i.e., without the phase), was proposed in Itatani et al
[6]. In all the above theories, transition dipole in the plane-
wave approximation has been used. In the QRS, factorization
is assumed to remain valid, but the transition dipole is
calculated with accurate scattering continuum wavefunctions.
The validity of the QRS has been carefully checked earlier,
see, for example, [45–47] and [60–64].

The power of the QRS is not to be overlooked, especially
in application to molecular targets. It is extremely computa-
tionally efficient since the wave packet can be obtained from
the SFA and the transition dipole has to be calculated only
once for a required range of photon energy. As the laser’s
intensity, wavelength or duration are changed, only the wave

Figure 8. HHG spectrum with the short pulse as given in figure 7,
obtained from numerical SFA integral equation (36) (dashed line)
and from the quantum orbits method (solid line).
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packet has to be recalculated using the SFA. The QRS also
stresses that the transition dipoles are under field-free
condition, exactly the same as those in conventional
photoionization, even though recombination occurs in the
laser field. To our knowledge, the QRS is the only method in
which the target structure information enters HHG induced
dipole (or HHG spectra) in an explicit and simple form. At the
macroscopic level, the induced single-atom dipole provided
by the QRS allows efficient propagation of harmonic fields in
the medium, to generate theoretical high-harmonic spectra
that can be directly compared to experiments [55–58].

2.3.2. Returning electron wave packet and the choice of
different dipole forms in the SFA. In this subsection we show
the wave packet from the SFA, its dependence on the target,
and on different choices of the dipole form. The good
agreement between wave packets from different targets and
dipole forms also provides a clear evidence for the validity of
the factorization within the QO discussed in section 2.2.2.

Figure 9 shows the comparison of the electron wave
packets extracted from the TDSE and SFA for Ar. We use a
1600 nm wavelength laser pulse with 4-cycle total duration
(with a cosine-squared envelope) and peak intensity of
1.0 1014´ W cm−2. Overall, the wave packet extracted from
the SFA (shifted vertically for clarity) is in good agreement
with the TDSE result. Other examples can be found in
[46, 47]. Since HHG spectra from the QO agree well with the
numerical SFA (see figure 8), it is clear that a similar level of
agreement is expected for the QO wave packet as well.

Having established the adequacy of the SFA wave
packet, we next discuss the wave packet using a reference
atom within the SFA. Although this case has been illustrated
earlier in [45–47], here we give a toy model for a mid-IR
case. For our purpose we use a scaled hydrogen atom with
I 15.76 eVp = and the transition dipole in the plane wave

approximation written as [20]
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with α = 2Ip. Here the nuclear charge is scaled so that the 1 s
ground state has the ionization potential of argon. For
comparison we use a fictitious atom with the same Ip, but with
a different transition dipole
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with a = 0.0368 and b = 3.13. This choice of the transition
dipole gives an artificial ‘Cooper minimum’ in photoioniza-
tion cross section near 51 eV. We show in figure 10(a) and
10(b) HHG spectra from these two atoms and their electron
wave packets, respectively. Both results were obtained from
the SFA with 1600 nm wavelength laser pulse of 6-cycle total
duration (with a cosine-squared envelope) and intensity of
1014 W cm−2. The HHG spectra from the two targets are quite
different, with a clear minimum near 51 eV in the fictitious
atom case, which is the consequence of the presence of the
Cooper minimum in the photoionization cross section.
Nevertheless, the wave packets from the two targets are
nearly identical, except at the vicinity of the Cooper
minimum. The insensitivity of the wave packet (apart from
an overall factor) is the main reason that a reference atom can
be used. In fact, wave packet from a reference scaled
hydrogen atom has an advantage that it avoids the ‘spurious’
peaks often seen in the wave packet obtained from the SFA.
Such a spurious peak seen in figure 10(b) is the result of
division by zero in equation (75) at the Cooper minimum near
51 eV. No such a Cooper minimum exists in hydrogen. Note
that there is a small technical issue for hydrogen if the QO
theory is used instead of numerical integration of the SFA.
Indeed, within the QO theory, there is a singularity in
transition dipole at p I2 p

2 = - for hydrogen, see
equations (43), (47), and (78). Due to this singularity, the
QO equation (47) should be modified for hydrogen [85]. For
this reason, it is more convenient to use a Gaussian form for
transition dipole as in equation (72) [20, 86]. Based on the
above results, it becomes clear that this choice of dipole form
only affects HHG spectrum, but it does not change the shape
of the electron wave packet.

Let us now consider different choices of dipole form. It is
well known from photoionization theory that there are
different forms for the transition dipole operator. To be
specific let us consider hydrogen atom. The matrix elements
of r, p, and r rV r r3( )¶ ¶ = - are called length, velocity,
and acceleration dipole form, respectively [87]. These forms
are related by the following equations

p ri , 80f f0 0 ( )wY Y = - Y Y
r

r
r

. 81f f0 3
2

0 ( )wY Y = Y Y

Although these forms are equivalent, they give somewhat
different results for photoionization cross sections in
approximate theories. So far we have only considered the

Figure 9. Returning electron wave packets extracted from numerical
solutions of the TDSE and SFA for Ar. Data have been vertically
shifted for clarity. Cosine-squared envelope laser pulse with 4-cycle
total duration, 1600 nm wavelength, 1.0 1014´ W cm−2 peak
intensity is used.
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length form for the induced dipole, as it was originally
introduced in the SFA by Lewenstein et al [20]. Clearly,
velocity and acceleration forms of the SFA can also be
formulated. More specifically, instead of using equations (8)
and (9) for the induced dipole and HHG power in the length
form, we can use

t t tv p , 82( ) ( )∣ ∣ ( ) ( )= áY Y ñ

and

P v , 83x
2 2( ) ∣ ( )∣ ( )w w wµ

for the velocity form (assuming that the laser is linearly
polarized along x−axis), and

t t
V

ta
r

, 84( ) ( )∣ ∣ ( ) ( )= áY
¶
¶

Y ñ

and

P a , 85x
2( ) ∣ ( )∣ ( )w wµ

for the acceleration form. Here dipole velocity v ( )w (or
acceleration a ( )w ]) is the Fourier transform of v(t) [or a t( )]
and the wavefunction t( )Y is given by equation (7). The
formal derivation of the SFA in these forms proceeds in a
similar fashion as in section 2.1.1. Similar to photoionization,

these forms lead to different HHG spectra in the SFA. There
have been some debates about the preference of the velocity
or acceleration forms over the length form (see, for example,
[88–90]). Here we show that the electron wave packet is quite
insensitive to a specific choice of the dipole form, as long as
the same form is used in both photoionization and HHG
dipoles. In other words, we found that
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Here a plane wave p has been used for the final wavefunction
Ψf. The good agreement among the different dipole forms for
the wave packet is illustrated in figure 11. In fact, the results
are indistinguishable in the figure. This result is not
unexpected. In fact, the insensitivity of the wave packet with
respect to different dipole forms is just a special case of the
independence of the wave packet on the target, discussed in
the beginning of this subsection. It is a manifestation of the
approximate factorization of the induced dipole, as shown in
section 2.2.2. Finally we remark that although the discussion
above only concerns the magnitude of the wave packet, its
phase can also be analyzed. Interested reader is referred
to [46, 47].

2.4. Other modifications to the SFA

The standard SFA is well founded only for short range
potential targets such as negative charged ions. For long range
Coulomb potential some additional corrections taking into
account the so-called Coulomb-laser coupling can be imple-
mented to make the SFA model more accurate [91, 92]. For
example, the phase and amplitude of the Volkov wave
function that describes the continuum electron can be cor-
rected by using the eikonal approximation [93].

One of the approaches to improve the SFA for HHG was
suggested by Ivanov et al [41]. In their approach, the induced
dipole in time domain is expressed as a sum over ionization

Figure 10. (a) HHG yields from scaled hydrogen and a ‘fictitious’
atom. (b) Same as (a), but for electron wave packets. Cosine-squared
envelope laser pulse with 6-cycle total duration, 1600 nm wave-
length, 1.0 1014´ W cm−2 peak intensity is used.

Figure 11. Returning electron wave packets extracted from length,
velocity, and acceleration forms of the SFA for hydrogen. Cosine-
squared envelope laser pulse with 6-cycle total duration, 1600 nm
wavelength, 1.0 1014´ W cm−2 peak intensity is used.
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(born) times, which are the solution of the stationary phase of
the action. This is in contrast to the QO theory, where the
dipole is given in energy domain and both ionization and
recombination times satisfy stationary coupled equations.
Therefore in their approach the recombination time remains
real. At each born time, the dipole in their approach can be
written as a product of three factors: ionization, propagation,
and recombination. The procedure is then to make mod-
ification to each factor to account for the Coulomb interaction
between electron and the core. The Coulomb correction for
ionization can be done as in the Perelomov–Popov–Terent’ev
(PPT) theory [94] (see section 2.5). Note that in their original
paper, an ‘effective’ ionization potential of the form
I v 2p y

2+ was used in order to account for electron’s initial
momentum along the minor axis at the born time in the case
of elliptically polarized laser. For the propagation, they
modified the action to include the Coulomb term within a
certain approximation. The recombination amplitude can also
be modified. We remark that their approach is quite close to
the QRS. However, since it is done in the time domain, the
three steps become entangled upon Fourier transform to the
energy domain, thus destroying the direct relationship
between photo-recombination dipole and HHG dipole. Fur-
thermore, one still has to sum over many stationary solutions
so the factorization for the total yield is not guaranteed.
Nevertheless, there are some advantages in this approach,
including an intuitive description of sub-cycle dynamics. In
fact, this approach has been extended to include sub-cycle
multi-electron dynamics in HHG from aligned CO2 [9].

Other attempts to improve the SFA include using dif-
ferent forms of dipole such as dipole acceleration and dipole
velocity [88, 89, 95]. We also mention here other modifica-
tions of the SFA by including the effect of field dressing on
the bound state [96–98]. An attempt to account for the
Coulomb interaction by using approximate two-center Cou-
lomb wavefunction in the recombination step was also
reported for molecular ion H2

+ [99]. Quite recently, Madsen
and collaborators [100, 101] have also accounted for the
initial state distortion due to the instantaneous field the fra-
mework of the SFA. All these attempts have been partially
successful in improving certain feature of HHG spectra.
However, they do not, to the best of our knowledge, provide
evidence for the link between HHG dipole and target structure
information embedded in the recombination dipole.

2.5. Strong-field ionization: SFA versus other methods

Ionization is the first and utmost nonlinear step in a HHG
process. According to the factorization in the QRS and the
QO, ionization gives the overall magnitude of the returning
electron wave packet. Since experiments do not typically
measure absolute HHG yields, one might think that knowl-
edge of ionization from atomic targets is not critical in the
application of the QRS or other modifications of the three-
step model. That argument is only partially valid for the
single-atom response, when the depletion of the ground state
is insignificant. In practice, in order to compare with

experimental measurements, simulation of macroscopic
phase-matching propagation needs to be carried out (see
section 4). This accounts for, in particular, the laser intensity
variation within the interaction region. Therefore, the relative
ionization rates at different intensities are needed. Similarly,
knowledge of relative ionization rates for different molecular
alignments and/or orientation is required to simulate the
HHG from molecules. Clearly, absolute rates are needed to
calculate absolute HHG yields.

In this subsection we discuss three different theoretical
methods, namely, the SFA, PPT and ADK. In order to judge
about the quality of each method, we compare them with the
TDSE calculations in two illustrative examples.

2.5.1. Theoretical description of the SFA. In general, the SFA
is quite adequate for describing the dependence of ionization
on laser intensity, especially at long wavelengths, but the
absolute yield needs to be renormalized. Here we only work
within the length gauge. The reason is twofold. First, it has
been shown that for negative ions with a short range potential,
where the SFA is expected to be most accurate, the length
gauge is much more accurate than the velocity gauge for
photoelectron energy spectra, up to an overall scaling factor
[102]. Second, it was also found [103] that the alignment
dependent ionization rate for N2 from the length gauge SFA
agrees well with experiments, whereas the velocity gauge
does not. Note that for HHG, we also use the SFA in the
length gauge only (see, section 2.1.1).

Within the SFA in the length gauge [22], the ionization
amplitude for a transition of an active electron from a bound
state r0( )Y to a continuum state with momentum p is given by

p p A r E

p

f i dt t t

iS texp , , 87

0( ) ( )∣ · ( )

[ ( )] ( )
ò= á + Y
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-¥
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where

p
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I,
2

. 88
t
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2
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[ ( )] ( )
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+
¥

These equations are quite similar to equations (13) and (26),
respectively, but with the evolution operator being replaced
by that of a free electron in the laser field U t, .F ( )¥ The
electron is born into the continuum at time t and propagates
further in the laser field until the final time at a detector.
Again, the effect of the core potential is neglected, as usual in
the SFA, for the continuum state, which is approximated by a
Volkov state

r p A p A rt i t
1

2
exp . 89

3 2
∣ ( )

( )
{ [ ( )] · } ( )

p
á + ñ = +

The ionization probability is given by the integrated signal
over all emission directions

pP d d dpp fsin , 90e e e
2 2∣ ( )∣ ( )ò ò òf q q=

where ef and θe are the azimuthal angle and polar angle of the
electron momentum p. The integrations in equations (87) and
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(90) are carried out numerically. In case of a monochromatic
laser, further analytical calculation can be carried out to
express the probability and rate as sum of n-photon
absorption via generalized Bessel functions [91, 103].

We note that the Coulomb potential is neglected in the
SFA, while it is accounted for in the PPT [94, 104, 105] and
the ADK [78] theories. In fact, one can introduce a Coulomb
correction factor, C E ,c

Z2 3
0

2 c( )k= k to the SFA rates [106].
Here, Zc is the charge of the residual ion, I2 ,pk = and E0 is
the electric field strength of the laser. This version of the SFA
will be called the SFA-CC in the following.

The SFA can be extended to include higher order
interaction with the ion core. This has been done in the so-
called SFA2 [74] or improved SFA [26]. However this
higher-order effect does not change the total ionization
probability significantly and therefore is not included in
typical simulations.

Extension of the above equations for a molecule is
straightforward. Clearly, the ionization probability P in
equation (90) will depend on the direction of the laser
polarization with respect to the molecule. For molecules, it is
convenient to use quantum chemistry packages such as
Gaussian [107] or Gamess [108] to calculate molecular
orbitals. Within the single active electron approximation, the
bound state wavefunction for the active electron r0( )Y is
typically taken as the highest occupied molecular orbital
(HOMO) at the Hartree–Fock or DFT levels. The use of
Gaussian-type orbitals allows analytical calculations of the
matrix elements entering equation (87), making its numerical
integration very efficient.

2.5.2. PPT, ADK and their extension to molecules. The ADK
theory [78] for atoms has been extended to molecular
targets by Tong et al [109] (so-called the MO-ADK theory)
based on a single-center expansion for the asymptotic
molecular wavefunction. A similar approach can be used to
extend the PPT theory [94, 104] to molecular target
[110, 111]. The resulting theory, called the molecular PPT
(MO-PPT or simply PPT), is expected to have a broader range
of validity as compared to the MO-ADK theory. Recall
that the ADK is strictly a tunneling theory, which can also
be obtained from the PPT in the limit of small Keldysh
parameter 0.g 

There have been some confusions in the literature due to
misprints as well as different notations used in the ADK and
PPT theory, we therefore briefly describe the main results
here. For clarity we consider linear molecules. Nonlinear
polyatomic case can be done in a similar manner [112]. The
wavefunction of the active electron can be expressed in a
single-center expansion as rF r Y ,

l l lm( ) ( )å with the asympto-

tic radial functions F r C r rexp .l l
Z 1c( ) ( )k ¥ » -k- Here

m is the magnetic quantum number along the molecular
axis and I2 .pk = If the molecular axis is along the
laser polarization direction, following the derivation of [94,
104, 109] the cycle-averaged rate from the PPT can be

written as
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where functions A ,m ( )w g and g ( )g can be found in
[104, 113], and B m C Q l m, ,

l l( ) ( )å= with Q l m,( ) =
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is due

to averaging over an optical cycle [104]. In the limit of
0,g  both Am and g ( )g go to 1 and equation (91) coincides

with the MO-ADK theory [109]. For atoms it coincides with
equation (10) of [114] and with equation (54) of [104] with
the Coulomb correction factor E2 Z3

0
2 c( )k k included [94].

Note also that Popruzhenko et al [115] recently proposed an
‘improved’ correction that includes the next order term in γ.
We further remark that the structure coefficients are defined
slightly differently in Tong et al [109] and the original ADK
paper [78]. In essence, they are related by Cl

2∣ ∣ =
C ,n l

Z2 2 1c∣ ∣* * k k+ although the practical procedures to obtain
their values and the recommended values differ in these two
papers. In PPT theory, the structure coefficient was defined in
the same way as in the ADK, see equation (6) of [104]. In this
paper we follow the notation of Tong et al [109]. We remark
in passing that in [109], the direction of ionized electron was
assumed to be along z . +¥ This means that the electric
field is directed along z . -¥ In other words, strictly their
equation (7) should correspond to θ = π.

For a molecule aligned along an arbitrary axis with
respect to the field direction B(m) in equation (91) has to be
replaced by

B m C D Q l m, , 92
l

l m m
l( ) ( ) ( ) ( )å¢ = W ¢¢

with Dm m
l
¢ being the rotation matrix and Ω the Euler angles. In

Tong et al [109], the rate is expressed as a sum over all m′
terms as

W W , 93
m

m ( )å=
¢

¢

where Wm¢ is given in equation (91) with B(m) replaced by
B m .( )¢ Following Tolstikhin et al [116], for consistency
reason, one should only retain the dominant term with
m 0.¢ = Clearly, this would affect mostly near nodal lines,
where the m 0¢ = term vanishes. We found that this
modification of the original MO-ADK gives an alignment
dependence in better agreement with the SFA results.

2.5.3. Illustrative examples and general remarks. We now
compare the SFA with different methods to obtain ionization
probability for hydrogen atom in few-cycle laser pulses.
Comparison for the TDSE, ADK, PPT, and SFA for the
wavelength of 400 nm, 800 nm, and 1600 nm is shown in
figure 12 for a range of intensity from 1 1013´ to 1.5 1014´
Wcm−2. The laser pulse duration (full duration with the sine-
square envelope) is 12-cycle for 400 nm, and 6-cycle for the
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other cases. These parameters were chosen so that the
Keldysh parameter 1g  is well within the intensity range for
800 nm and the ionization probability is still far from
saturation. At 800 nm, shown in figure 12(b) the SFA result
(rescaled by a factor of 15) agrees fairly well with the TDSE

over the large range of laser intensity. The SFA-CC (rescaled
by 0.064) agrees much better with the TDSE. The ADK result
only agrees at high intensities above about 1 1014´ Wcm−2,
which is in the tunneling regime. Note that no scaling factor is
used for the ADK in this intensity range. However, below its
range of validity, the quality of the ADK result decreases
significantly. In fact, at 4 1013´ Wcm−2, the ADK
underestimates by almost two orders of magnitude. The
PPT result (rescaled by a factor of 1/3) nicely reproduces the
TDSE result for the whole range of laser intensity. As the
laser wavelength increases to 1600 nm (see figure 12(c)),
there is relatively good agreement among all the methods for
the whole intensity range. Clearly, all of these approximate
methods become better with mid-infrared lasers. While the
level of agreement with the TDSE for PPT and SFA is only
slightly reduced, as the laser wavelength decreases to 400 nm,
as shown in figure 12(a), the quality of ADK theory clearly
deteriorates in this multiphoton ionization regime. We remark
that in all these cases, the SFA underestimates, whereas the
SFA-CC overestimates, and the PPT slightly overestimates
the ionization probability for hydrogen. The above results are
quite typical. In fact, similar behaviors were also found for
other atoms as well as molecules.

As another example we show in figure 13 the comparison
for the case of molecular H2, perfectly aligned along laser
polarization direction. The TDSE results were taken from
Saenz et al [117]. In all cases, the pulse duration (total
duration with sine-square envelope) was taken to be about 32
fs. Note that no scaling factor is used in the PPT and MO-
ADK results shown in the figure. Here, the MO-ADK is only
valid near γ ≈ 1 (indicated by the dashed line in the figure)
for the case of 800 nn. For the other wavelengths, the 1g »
range falls into the saturation regime already. Overall, the
PPT is superior to the MO-ADK in the whole range of laser
intensity, although a small correction factor is still needed.
Comparison with different version of the SFA results can be
found in [117], which shows that in general an overall scaling
factor is needed for the SFA to reproduce the TDSE results
for H2. We remark that comparison with the MO-ADK results
for 400 nm and 266 nm is not quite useful here since in the
range of its validity the ionization is already well saturated
(ionization probability is identical to 1). Clearly, a shorter
pulse is more desirable.

The above analysis indicates that the ADK theory is
barely adequate for 800 nm wavelength in a small range of
laser intensity. The validity range for the ADK significantly
increases with longer wavelengths. For the SFA, the overall
quality of the SFA is quite good in a relatively broad range of
intensity, although one always needs to rescale the ionization
rates. That is the main reason that many calculations are still
based on the SFA. In particular, the SFA results can be
renormalized to the ADK results at the region of the ADK
validity. This practice is particularly useful for molecular
target (see, for example, [11, 46]). With slightly more
computational effort compared to the ADK, one can get the
PPT rates which are uniformly adequate for a larger range of
laser intensity and wavelength. Unfortunately, a small
correction factor is still needed.

Figure 12. Comparison of different methods for ionization
probability for hydrogen atom vs laser intensity for the wavelength
of 400 nm (a), 800 nm (b), and 1600 nm (c). Note that for each
wavelength the PPT and SFA results have been multiplied by a
factor given in the labels. The vertical dotted lines indicate the
position with 1.g =
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We further note that in applications of both ADK and
PPT, one needs to know the structure coefficients Clm. These
structure coefficients are extracted using the wavefunction at
asymptotic distance, which still poses difficulties at present.
In fact, the structure coefficients differ significantly from
different methods and different authors. The main difficulty
stems from the fact that standard quantum chemistry packages
such as Gaussian [107] or Gamess [108] are based on the

Gaussian-type orbitals expansion, which decays too rapidly at
large distance. For linear molecules, in principle one can
solve the Hartree–Fock equation with a grid-based numerical
method exactly [118]. Alternatively, one can use specially
optimized Gaussian basis sets for that purpose [119]. Another
approach is to construct a model potential for molecules and
solve the Schrödinger equation numerically to extract
structure constants [120, 121]. These approaches are
dependent on the Hartree–Fock or a specific choice of the
density functional, so variations in extracted structure
constants are still expected. Nevertheless, extension of these
methods to polyatomic molecules are desirable.

Clearly, the accuracy of theoretical ionization rates,
which governs the overall magnitude of the returning wave
packet, remains critical at present. The recently developed
weak-field asymptotic theory (WFAT) [116, 119, 122, 123]
appears to be quite promising. Nevertheless, its application to
polyatomic molecules remains to be seen. Treatment for polar
molecules has been proposed in the so-called Stark-corrected
MOADK and SFA [124–126]. A more rigorous treatment was
also reported in the WFAT [116, 122].

It is important to also realize that, in contrast to the ADK,
which is a truly static theory, the PPT does not give
instantaneous rate. For an arbitrary γ, sub-cycle (instanta-
neous) rate can be obtained by using Yudin-Ivanov model
[127], which reduces to the PPT for the cycle-averaged rate.
New developments in ionization rates include analytical R-
matrix method by Torlina and Smirnova [128] and its
extension to many-electron targets [129].

3. HHG with mid-infrared driving laser: universality
of the electron wave packet and scaling law

3.1. Quantum orbits analysis of long and short trajectories
at long wavelengths

In this section we apply the quantum orbits analysis on HHG
driven by mid-infrared lasers. Let’s imagine a situation when
the laser wavelength λ is increased gradually while the field
strength E0 is fixed, such that the laser-atom interactions are
kept in the tunneling regime. Since the HHG cutoff is
determined by I U3.2p p+ and U ,p

2lµ by using a mid-
infrared laser the HHG spectrum may be extended to hun-
dreds of eVs (covering the water window) or even the keV
regime (soft x-ray) [68, 69]. The Keldysh parameter

I

U

I

E2

2
, 94

p

p

p
L

0

1 ( )g w l= = µ -

where c2Lw p l= is the laser frequency. Clearly γ decreases
as the wavelength is increased, thus in the long wavelength
limit 1g  and ionization falls into the deep tunneling
regime. In this limit tunneling (imaginary part of the born
time) only occurs within a very tiny time interval compared to
the optical period. Our goal here is to seek further
simplification in the QO theory in order to investigate the
behavior of harmonics due to long and short orbits in this
regime.

Figure 13. Same as figure 12 but for H2 at the wavelength of 800 nm
(a), 400 nm (b), and 266 nm (c). The TDSE results were taken from
Saenz et al [117]. The laser polarization is along the molecular axis.
The vertical dotted lines indicate the position with 1.g =
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In the long wavelength limit, the saddle point
equations (66) and (67) can be simplified by approximating
the recombination time θ to be a real quantity [80, 130] while
keeping the born time q¢ complex. Here we separate the real
and imaginary part of the ionization time explicitly:

i ,q a b¢ = + 0
2

a< < p and 0.b > The sin q¢ and cos q¢
term can be rewritten as

i isin sin sin cosh cos sinh ,
95

( )
( )

q a b a b a b¢ = + = +
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Since sin q is real in this approximation, by following the

constraint equation (67), we have to approximate cos cosq q
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Then equations (66) and (67) can be reduced to
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When 1g  and the ionization time is ionized not too
far from the (sub-cycle) peak of the electric field, for example
0 ,
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Substituting equations (101)–(103) into equations (99)
and (100) yields
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In equations (104) and (105) we keep terms up to the order of
.2g One can solve these equations to obtain the real born time

sa and return time sq for a given scaled photon energy
I U .p p˜ ( )w w= - These solutions will depend on the

Keldysh parameter γ. Clearly as 0,g  equations (104)
and (105) reduce to classical equations (68) and (69), thus sa
and θs will converge to their classical counterparts cq¢ and ,cq
respectively. This convergence is shown in figure 14 for the
first return. Higher order returns also have similar conver-
gence. While clear differences can be seen for the 0.8 μm case
in figure 14, the QO results become very close to the classical
values quickly for 1.6l μm. Additionally, the born time of
S1 converges slower than L1 in the small w̃ region. When

1w̃ » we observe that the born time of S1 changes
significantly from 34◦ (0.8 μm case) to 48◦ (long wavelength
case).

From equation (103) one can deduce that
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Here E E E tcos cos Res s L s0 0 ( { })a w= = ¢ is the electric
field right at the born time. When 1,g  during the
tunneling process the electric field can be treated as quasi-
static with the strength Es. Equation (106) indicates that the
imaginary part of ts¢ can be interpreted as a timescale of
quantum tunneling [22]. Figure 15(a) verifies that as the

wavelength increases, tIm s{ }¢ converges to
I
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2

cos

p

c0 q¢
(black

curve) predicted by equation (106). Figure 15(b) shows that
for long wavelengths the imaginary part of the recombination
time tIm s{ } quickly converges to zero, which validates the
approximations made in the above derivation.

Starting from equation (70), for a long quantum–orbit
( 17sa < ), when 1,g  Im s{ }Q can be approximated as
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Figure 14. The real part of (a) ionization time and (b) recombination time for the long (L1) and short (S1) orbit of the first return as functions
of ,w̃ obtained by solving equations (66) and (67) for wavelengths 0.8 6.0[ ]- μm, peak intensity 1.5 10 W cm ,14 2´ - argon target
(Ip = 15.76 eV). The classical born and return time are also shown as solid black curves.

Figure 15. (a) tIm s{ }¢ and (b) tIm s{ } for the long and short orbits of the first return as functions of w̃ obtained by solving equations (66) and
(67) for wavelengths 0.8 6.0[ ]- μm. Other parameters are the same as in figure 14. The solid black curve in (a) shows the tunneling time
given in equation (106) with sa replaced by the classical born time .cq¢
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From equation (47), contribution from this quantum–orbit to
HHG spectrum depends on an exponential factor

D e e e . 108xs
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The exponential factor in equation (108) is similar to a
Landau-Dykhne type of tunneling ionization for an atom in a
static field Es [22, 78]. Therefore the quantum orbits theory can
account for the tunneling ionization rate in its electron wave
packet. The derivation of Im s{ }Q for a short orbit is much more
complicated than the derivation of equation (107). The former
requires us to approximate the imaginary part of the recombi-
nation time Im s{ }q to the order of 3g rather than simply zero.
Nevertheless for long wavelengths it is still reasonable to treat
the electric field as quasi-static at the born time of the short
orbit, thus the tunneling ionization rate equation (108) remains
valid for the short orbits as well. This point has been verified in
figure 16 which shows that, as the laser wavelength increases,

Im s{ }Q converges to the factor
I
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3 cos
p

c

3 2

0

( )-
q¢

(solid black curve)

for both long and short orbits. We remark that the same
exponential factor was obtained in [80] through a different
approach. There, the vector potential was approximated to be
linear near the maximum of the electric field.

3.2. Electron wave packet and scaling law at long wavelengths

Based on equations (49)–(51), (62) and (63) one can derive
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By combining with equations (66) and (67) we get
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Additionally, we notice equations (52) and (53),
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Substituting the above results into equation (47) one can
rewrite the harmonic spectrum from a particular quantum–

Figure 16. Im s{ }Q for the long and short orbit of the first return as
the function of w̃ given by equation (70) for wavelengths from 0.8
μm to 6.0 μm. Other parameters are the same as in figure 14. The
solid black curve shows the factor given in equation (107) where sa
is replaced by the classical born time .cq¢
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orbit as
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Here f ,s s s( )q q¢ is a function that depends on , .s s( )q q¢ Note that

here and in the following we omit the factor d i I2 ,x p
2( )

which is a constant for a given target. Since saddle point
solutions ,s s( )q q¢ relies on w̃ and ,1g lµ - f ,s s s( )q q¢ can also
be treated as a function of w̃ and λ which reads
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Equation (118) shows that the wavelength scaling of
Dxs

2∣ ( )∣w at a fixed scaled energy w̃ depends on the form of
dx(p) and thus on the target, as discussed in [61]. Following
the idea of QRS theory [46] as discussed in section 2.3 we can
get rid of the target-dependent transition dipole and only
study the wavelength scaling of the returning electron wave
packet. For convenience here we define the wave packet
W ( )w as the HHG yield P ( )w divided by the photo-
recombination cross section ( )s w
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Then the electron wave packet of a particular quantum–orbit
follows (assuming Ipw  )
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For very long wavelength we can expect that 0g  and
,s s( )q q¢ converges to its classical counterpart , ,c c( )q q¢ thus

F ,s ( ˜ )w l will reduce to a wavelength independent factor Fs̃ ( ˜ )w

which reads
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Therefore in the region of sufficiently long wavelength the
electron wave packet follows

W E F . 123s s
1

0
2( ˜ ) ˜ ˜ ( ˜ ) ( )w l w wµ -

Figure 17 shows the λ scaling of the electron wave
packet for both short and long quantum orbits at three w̃
values. From equation (121), at a fixed scaled energy ,w̃
W F , .s s

1 ( ˜ )l w lµ - For 2.0l μm, the scaling law deviates
from ,1l- indicating some dependence of F ,s ( ˜ )w l on λ. From
0.8 μm to 2.0 μm the wave packet drops quickly, especially
for the short orbits at energies 1.2.w̃ = On the other hand, as
the wavelength increases beyond about 2.4 μm, one can
observe a rough 1l- scaling law for both long and short orbits
and for all w̃ values. This 1l- dependence is predicted by
equation (123). This general behavior has been confirmed by
the TDSE calculations for different atoms [131].

Next we study the profile of electron wave packet as a
function of .w̃ For convenience, we define a scaled wave
packet as W W .s s˜ l= According to equation (121), Ws˜ has a λ
dependent profile F , .s˜ ( ˜ )w w l As λ increases, equation (123)
predicts that this profile will converge to a universal form

F .s˜ ˜ ( ˜ )w w The convergence of L1 and S1 wave packets is
shown in figure 18. It can be shown that the wave packets of

Figure 17. Wavelength scaling of the electron wave packet of the
long and short orbit in the first return, at (a) 2.8w̃ = (b) 2.0w̃ =
(c) 1.2.w̃ = Other parameters are the same as in figure 14.
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higher order quantum orbits also converge in a similar fash-
ion. One can observe that S1 wave packet converges some-
what slower than L1, which is consistent with the behavior of
ionization time for S1 and L1 orbits (see figure 14(a)). The
agreement with the ‘classical limit’ (dot-dashed curve) gets
worse near the cutoff. This is probably due to the influence of
the artificial divergence imposed by the saddle-point
approximation. We further note that, except very close to the
cutoff, the ratio of the contributions from the short to long
orbits decreases, as the wavelength increases, before it
eventually converges to the ‘classical limit’. A similar trend
has been found in the TDSE results reported in [131], where
the convergence to a universal limit was found as soon asa-
bove 3l » μm.

Figure 19 shows the factor Fs̃ ( ˜ )w for each quantum–orbit
up to the third return. Fs̃ ( ˜ )w for S1 orbit decreases rapidly
from higher plateau to lower plateau, while Fs̃ ( ˜ )w for other
orbits are relatively more flat. We can deduce that for very
long wavelengths L1 is the dominant orbit to the total wave
packet, and higher order returns, especially the S2 orbit, also
have considerable contribution. The role of higher order
returns discussed here is in good agreement with the obser-
vation in [132–134].

We can also approximately derive the wavelength scaling
law at a fixed absolute photon energy ω in the long wave-
length region. For that purpose, we first approximately fit the
factor Fs̃ ( ˜ )w as FS1

3.7˜ ( ˜ ) ˜w wµ for the short orbit and
FL1

0.8˜ ( ˜ ) ˜w wµ for the long orbit, see figure 19. Using
equation (123), we get for the long orbit

W U , 124L p1
1 1.8 1 1.8 4.6( ) ˜ ( )w l w l lµ µ µ- - - -

and for the short orbit

W U . 125S p1
1 4.7 1 4.7 10.4( ) ˜ ( )w l w l lµ µ µ- - - -

Note that, by definition equation (120), at a fixed absolute
photon energy ω, the wavelength scaling of HHG yield Ps ( )w
is the same as the scaling of electron wave packet given in
equations (124) and (125). Since HHG at single atom level is
mostly dominated by the long orbit L1 (see figure 19), the
scaling law for the total HHG yield (from all quantum orbits)
is only slightly different from equation (124). In fact, the
scaling law 4.2l- was obtained in [131] for λ in 3.0 6.0[ ]-
μm, when the wave packet, as a function of w̃ scales as
approximately .1.2l- In the truly long wavelength limit we
haveW ,1( ˜ )w lµ - (see equation (123) and also the discussion
in [131]), which would lead to a scaling W 4( )w lµ - for a
fixed absolute energy ω. Note that the apparent discrepancy,
as compared to the scaling law of 5 6( )l- - reported earlier
[61, 132, 135] has been mostly resolved [136] as due to the
different definitions for HHG yield used in these papers as
compared to [131] and the present paper. Indeed, their
definition, i.e., HHG yield per unit time, differs from ours by
a factor of T .1 1lµ- -

The universal wave packet in the long wavelength limit
as given by equations (123) and (122) and its approximate
fitting shown in figure 19 can be used as simple estimates for
realistic HHG simulation with mid-infrared lasers. Although
the analysis presented here is for a monochromatic driving
laser, it can also be performed, in principle, for the case of
short pulses.

4. Macroscopic effect on HHG in the gas medium

To simulate experimental HHG measurements, propagation
of the fundamental and high-harmonic fields in the medium
needs to be considered, and further propagation of XUV pulse
after it exits the gas medium should also be taken into
account. In this section we briefly describe our theoretical

Figure 18. The electron wave packet of (a) long orbit and (b) short
orbit at different wavelengths. Other parameters are the same as in
figure 14. Wave packets have been rescaled by a factor of λ in order
to show the convergence. The dot-dashed black curve shows the
factor F .s˜ ˜ ( ˜ )w w

Figure 19. The factor Fs̃ ( ˜ )w given in equation (122) for different
quantum orbits up to the third return.
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framework for the macroscopic treatment of HHG and illus-
trate some results. The (microscopic) induced dipole con-
sidered in the previous sections enters the Maxwell’s wave
equation as the source term. We remark that under certain
conditions the concept of returning electron wave packet can
be extended to macroscopic case [137]. In other words, the
macroscopic HHG signal can be presented as a product of a
macroscopic wave packet (MWP) and photo-recombination
cross section [137].

4.1. Theoretical approach

4.1.1. Propagation of the fundamental laser field. In an
ionizing gas medium, a driving infrared laser is affected by
plasma defocusing, diffraction, refraction, and nonlinear self-
focusing. The evolution of laser pulse in such a medium is
governed by the three-dimensional (3-D) Maxwell’s wave
equation (in SI units) [138–142]
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where E r z t, ,1( ) is the transverse electric field of the laser
pulse with the central frequency .0w In cylindrical coordi-
nates, z ,2 2 2 2 =  + ¶ ¶^ where z is the axial propagation
direction. The effective refractive index effh of the gas
medium can be written as
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The first term i10 1 1h d b= + - accounts for refraction ( 1d )
and absorption ( 1b ) by the neutral atoms, the second term
accounts for the optical Kerr nonlinearity which depends
linearly on laser intensity I t ,( ) and the third term accounts for
the free electrons, expressed in terms of plasma frequency,

t e n t m ,p
2

p 0 e
1 2( ) [ ( ) ( )]w e= where me and e are the mass

and charge of an electron, respectively, 0e is the permittivity
of free space, and n te ( ) is the density of free electrons. The
absorption due to the ionization of the gas medium is
expressed as [138, 143]
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where t( )g is the ionization rate, Ip the ionization potential,
and n t0 ( ) the density of remnant neutral atoms.

The small absorption effect (β1) on the fundamental laser
field caused by neutral atoms is usually neglected. With only
the real terms in the refractive index ,effh equation (126) can

be written as
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By going to a moving coordinate frame (z z¢ = and
t t z c¢ = - ) and neglecting E z2

1
2¶ ¶ ¢ since the z′ depen-

dence of the electric field is very slow, we obtain [144]
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We apply Fourier transform to eliminate the temporal
derivative in equation (130). In the frequency domain, the
equation becomes
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where F̂ is the Fourier transform operator acting on the
temporal coordinate.

The plasma frequency r z t, ,p ( )w ¢ ¢ depends on the free-
electron density n te ( )¢ which can be calculated from

n r z t N r z d, , 1 exp , , ,

134
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where N0 is the initial neutral atom density, and r z, ,( )g t¢ is
the ionization rate calculated by Ammosov-Delone-Krainov
(ADK) theory [78, 145]. The refraction coefficient δ1,
depending on the pressure and temperature of the gas
medium, is obtained from the Sellmeier equation [146,
147]. The second-order refractive index ,2h also depending on
gas pressure, can be calculated through third-order suscept-
ibility ,3( )c which can be measured from experiments [148–
151]. Note that the relationship between 2h and 3( )c in Koga
et al [152] differs from that in Boyd [153] since the latter is
derived by using time-averaged intensity of the optical field.

The time profile of the fundamental laser pulse at the
entrance of a gas jet (z zin¢ = ) is usually assumed to be
cosine-squared or Gaussian, and the spatial dependence is
truncated Bessel [154–157], truncated Gaussian [158, 159], or
Gaussian, while the pressure distribution within the
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interaction region can be assumed as uniform, Gaussian or
Lorentzian according to the experimental conditions. As
presented in [137], when both the gas pressure and laser
intensity are low, the source term in equation (126) can be
taken as zero, and the fundamental laser field is not modified
through the gas medium.

Assuming a Gaussian beam in space, its electric field
E r z,g ( )¢ is given by
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Here E0 is the laser peak field at the focus, b w2 0
2

0p l= is
the confocal parameter, where w0 is the beam waist at the
focus and flaser is the laser geometric phase (‘Gouy’ phase in
general). The fundamental laser pulse can be approximately
written in analytical form [137, 139]:
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where cej represents the carrier-envelope phase. If the
temporal envelope is assumed to be cosine-squared function
[137], then
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where pt is the total duration of the laser pulse and is equal to
2.75 times ,wt the full width at half maximum (FWHM) of
laser’s intensity. One can also take the Gaussian envelope in
time,
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4.1.2. Propagation of the high-harmonic field. The 3-D
propagation equation of the high-harmonic field is described
in [138, 139, 144, 160]
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where P r z t, ,( ) is the polarization caused by the applied
optical field E r z t, , .1( ) In this equation, the free-electron
dispersion is neglected because the plasma frequency is much
smaller than the frequencies of high harmonics. Again going
to a moving coordinate frame and neglecting E z ,2

h
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equation (139) becomes
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We eliminate the temporal derivative by Fourier trans-
form. In the frequency domain it becomes
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where

E r z F E r z t, , , , , 142h h[ ]˜ ( ) ˆ ( ) ( )w¢ = ¢ ¢

and
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The source term on the right-hand side of equation (141)
describes the response of the medium to the laser field
and includes both linear and nonlinear terms. It is
convenient to separate the polarization field into linear and
nonlinear components, P r z E r z, , , ,1

h˜( ) ( ) ˜ ( )( )w c w w¢ = ¢ +
P r z, , ,nl˜ ( )w¢ where the linear susceptibility 1 ( )( )c w includes
both linear dispersion and absorption through its real and
imaginary parts, respectively. The nonlinear polarization term
P r z, ,nl˜ ( )w¢ can be expressed as

P r z F N n r z t D r z t, , , , , , , 144nl 0 p{ }˜ ( ) ˆ ( ) ( ) ( )⎡⎣ ⎤⎦w¢ = - ¢ ¢ ¢ ¢

where n r z t, ,e ( )¢ ¢ is calculated from equation (134), and
D r z t, ,( )¢ ¢ is the single atom induced dipole moment caused
by the fundamental driving laser field.

The refractive index n 1 1
0( ) ( )( )w c w e= + [153] is

related to atomic scattering factors by
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where r0 is the classical electron radius, λ is the XUV
wavelength, N0 is again the initial neutral atom density, and f1
and f2 are atomic scattering factors which can be obtained
from [161, 162]. Note that h ( )d w and h ( )b w account for the
dispersion and absorption of the medium on the high
harmonics, respectively.

Finally equation (141) can be written as
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where the nonlinear polarization as the source of the
harmonics is explicitly given. After the propagation in the
medium, we obtain the near-field harmonics at the exit face of
the gas jet (z zout¢ = ).

The two key propagation equations, i.e., equations (131)
and (146), are solved using a Crank-Nicholson routine for
each value of ω. For a typical experimental setup, such as a
1 mm long gas jet located after a focused laser with the beam
waist of tens of μm, the parameters used in the calculations
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are 200 ∼ 300 grid points along the radial direction and 400
grid points along the longitudinal direction.

4.1.3. Far-field harmonic emission. Experimentally, harmonics
are not measured at the exit face of a gas medium, as shown in
figure 20. They may go through a slit, an iris or a pinhole, or
reflected by a mirror before they reach the detector. Far-field
harmonics in free space can be obtained from near-field
harmonics through a Hankel transformation [139, 163–165]

E r z ik
E r z

z z
J

krr

z z

ik r r

z z
rdr

, ,
, ,

exp
2

, 147

h
f

f f
h

f
0

f

f

2
f
2

f

( )
( )

( )
˜ ( )

( )

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

òw
w

=-
¢

- ¢ - ¢

´
+

- ¢

where J0 is the zero-order Bessel function, zf is the far-field
position from the laser focus, rf is the transverse coordinate in
the far field, and the wave vector k is given by k c.w=
Using equation (147), we can also calculate the divergence of
high harmonics. Assuming that harmonics in the far field are
collected from an extended area, the power spectrum of the
macroscopic harmonics at zf is obtained by integrating
harmonic yields over the area

S E x y z dx dy, , , , 148h h
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where xf and yf are the Cartesian coordinates on the
plane perpendicular to the propagation direction, and rf =

x y .f
2

f
2+

Note that detailed information on the experimental setup
is involved in equation (148). To quantitatively simulate the
experimental HHG spectra, not only the laser parameters such
as intensity, duration, wavelength, spot, and so on, are
required, but also the setup parameters in the experiment, for
example, the size and location of a slit.

4.2. Phase matching conditions

For efficient generation of a high-order harmonic, its phase
front should match with the phase front of the fundamental
laser pulse. Due to the spatiotemporal variation of laser
intensity in the medium, phase matching is complicated in
space and time. The phase mismatch Δ kq for the qth

harmonic can be written as [154]
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Here kq and k0 are wave vectors of the harmonic and the
fundamental laser fields, respectively. Since coherence length
is proportional to the inverse of phase mismatch, efficient
harmonic generation calls for creating conditions of minimum
phase mismatch in the gas medium. There are four major
source terms in equation (149): geometric phase (diffraction),
free electron dispersion, neutral atom dispersion (refraction),
and induced-dipole phase. Each term will be discussed in the
following. Here we omit the time dependence of the phase
matching, and take z z .= ¢

4.2.1. Geometric dispersion. When an intense laser is focused
into a small region in space, it introduces a geometric phase (or
‘Gouy’ phase). The corresponding phase mismatch for the
generated harmonic is written as

k k r z qk r z, , . 150q geo q geo geo, , 0,( ) ( ) ( )D = -

Here we only consider on-axis (r=0) phase matching for a
Gaussian beam, and assume that the fundamental laser and
harmonic beams have the same geometrical phase, Δ kq, geo
can be written as
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where b is the confocal parameter, which has been defined in
equation (135).

4.2.2. Induced dipole phase. The phase of high harmonic has
strong dependence on laser intensity. Laser intensity variation
in space results in longitudinal and transverse gradients of this
phase. The contribution to the phase mismatch is

K . 152q dip q dip, , ( )j= 

Here the intrinsic dipole phase jq, dip is the action accumulated
by an electron during its excursion in the laser field, which is
finally recombined with the atomic ion to emit the qth
harmonic. To first order, this phase can be expressed as

I, 153q dip i
q

, ( )j a= -

where I is the instantaneous laser intensity. The proportional
constant i S L,a = depends on ‘short’ (S) or ‘long’ (L) trajectory.
For the harmonics in the plateau region, 1i S

qa » ´= 10−14 rad
cm W2 and 24i L

qa » ´= 10−14 rad cm2 W [82, 166–168].
At the cut-off, these two trajectories merge into one, and

13.7i S L
q

,a » ´= 10−14 rad cm2 W.

Figure 20. Typical configuration for measuring the HHG in the far
field. Adapted from [55].
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Consider the on-axis phase mismatch of a Gaussian beam
it can be written as follows:
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where I0 is the laser peak intensity at the focus.

4.2.3. Plasma or free electron dispersion. Harmonic
generation is initiated by ionization. However, only a small
fraction of the ionized electrons could be drive back to
recombine with the parent ion to emit high energy photons.
The rest are free electrons in the gas medium which will
modify the refractive index. The phase mismatch caused by
the presence of free electrons is
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where n r z t, ,e ( ) is the spatiotemporal dependent electron
density. In equation (155), free-electron dispersion for the
harmonic field is neglected because the frequencies of high
harmonics are much higher than the plasma frequency.

4.2.4. Neutral atom dispersion. Any conversion medium for
harmonic generation exhibits dispersion. The refractive index
of the fundamental infrared laser is different from the high
harmonics. The phase mismatch is
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where n r z t, ,0 ( ) is the neutral atom density, qq 1l l= the
wavelength of the qth harmonic, 1a the atomic polarizability
at the fundamental wavelength λ0. Here f1 is the real part of
the atomic scattering factor f f if1 2= + [161, 162] at the
harmonic wavelength λq, the imaginary part f2 is related to the
absorption length Labs by L r n r z t f2 , , .abs q

1
0 0 2( )l=- In the

present phase mismatch analysis, we don’t include the Kerr
nonlinearity since it is a higher order effect.

4.3. Illustrative examples: comparison of simulations with
experiments

We will show three examples, two of which the fundamental
field is not much modified (Ar case and aligned N2 case), and
one in which it is severely reshaped (Xe case), as the pulse
propagates in the gas medium. The single-atom harmonic
response is calculated using the QRS model. In the QRS
calculation, the returning electron wave packet is obtained
from the SFA. The transition dipole for Ar is calculated in a
single active electron approximation using Muller’s model
potential [169]. For Xe, the photorecombination cross section
is taken from the relativistic random-phase approximation
(RRPA) [170] which includes multielectron correlation effect.

For N2 molecules the transition dipoles are obtained from the
package developed by Lucchese [171]. In the following
subsections we give these examples to show how well the
experimental harmonic spectra can be successfully repro-
duced by simulations based on the theory presented.

4.3.1. Macroscopic HHG spectra of Ar. We show the
measured and simulated HHG spectra of Ar in figure 21.
Experimental harmonics were produced by a 0.5-mm-long
gas jet, which was located a few mm’s after the laser focus.
Harmonics emitted from the exit plane of gas jet are further
propagated 24 cm and reached a vertical slit with a width of
100 μm, see figure 20. For a 1200- (1360-) nm laser in the
experiment, the beam waist at the focus is estimated to be
47.5 (52.5) μm, and the pulse duration is ∼ 40 (∼50) fs. To
reach the best overall fit with experimental data, laser
intensity and gas pressure used in the simulations are
adjusted. For the 1200 nm laser, peak intensity for the
experiment (theory) is 1.6 (1.5) × 1014 W cm−2, and gas
pressure is 28 (84) Torr. For the 1360 nm laser, the
corresponding intensity and pressure are 1.25 (1.15) ×1014

W cm−2 and 28 (56) Torr, respectively.
In the upper frame of figure 21, the vertical axis is the

transverse spatial dimension, and the horizontal axis is photon
energy. The experimental and theoretical spectra for the
1200 nm case are normalized at photon energy of 77 eV, i.e.,
the 75th harmonic (H75). There is a general agreement
between the two spectra except for ‘up-down’ asymmetry in
the experimental spectra, which is due to the asymmetric laser

Figure 21. HHG spectra of Ar generated by long-wavelength lasers.
Upper frame: Spatial distribution of harmonic emission versus
photon energy in the far field by a 1200 nm laser. Lower frame:
Comparison of experimental (red lines) and theoretical (green lines)
HHG yields integrated over the vertical dimension for 1200 nm
(upper curves) and 1360 nm (lower curves) lasers. Other laser
parameters are given in the text. Adapted from [55].
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beam profile. The ‘famous’ Cooper minimum is clearly seen
in both experimental and theoretical spectra. Harmonic yields
integrated over the vertical dimension are compared in the
lower frame of figure 21. The HHG spectra for the 1360 nm
pulse are also shown. In both cases, there is a good agreement
(in the envelope of the spectrum) over the 30–90 eV region
between theory and experiment.

Detailed discussions about other properties, such as the
chirp and angular divergence of the harmonics, as well as the
macroscopic wave packet and scaling of the efficiency of
harmonic yields versus wavelength, can be found in [56].

4.3.2. Macroscopic HHG spectra of Xe. We show the
measured and simulated HHG spectra of Xe in figure 22.
Looking at the experimental data, one of the most striking
features in figure 22(a) is the emergence of quasi-continuous
harmonic spectrum as the laser intensity is increased. These
continuous spectra extend over a broad range of photon
energy from the cutoff at about 100 eV down to very low
energy of 20–30 eV. Simulations showed that these
continuum spectra indeed are capable of producing isolated
attosecond pulses if proper spatial and spectral filters are
applied [172, 173]. We also note that saturation occurs in

the observed spectra, where further increase of input
laser intensity does not change the HHG spectrum much.
This is clearly seen for laser intensities above about
2 × 1014 Wcm−2 in figure 22(a). Another striking feature
is the broad enhancement in the HHG yield observed near
100 eV. This well-known enhancement is attributed to the
partial photoionization cross section of Xe from 5p which is
modified by the strong inter-channel coupling with
photoionization from the 4 d shell of Xe. Such coupling can
be included only if electron correlation is appropriately
included in the theory [174].

In figure 22(b) theoretical harmonic spectra for four peak
laser intensities after propagation through the gas jet are
shown. In the simulation, the experimental parameters
including, the jet size (1 mm), the slit opening of the
spectrometer (190 μm), the distance of the slit from the gas
jet (455 mm), and the laser wavelength and pulse duration
(1825 nm and 14 fs), are used. The calculated spectra have
been averaged over the CEP depenence. The simulations
indeed show transition to a quasi-continuous spectrum from
the ‘apparent’ cutoff down to about 30 eV, as the laser
intensity is increased, in agreement with the experimental
finding. The saturation effect observed in the experiment is
also reproduced by the simulation. Note that single-atom
simulations [172] alone would not be able to explain these
observations. The quasi-continuum and saturation observed in
the spectra are all attributable to significant reshaping of the
input laser pulses in the medium, in particular by the plasma
defocusing due to high degrees of ionization.

In the simulation, the broad harmonic enhancement near
100 eV is reproduced by feeding theoretical photoionization
transition dipole calculated from many-body perturbation
theory [170] into the QRS. With the QRS theory, one can
bypass the complexity of formulating a strong field theory
that also includes many-electron correlation effect. By taking
advantage of the factorization feature of the QRS, the strong
field effect is reflected in the returning electron wave packet
which is mostly a single-electron process, whereas the strong
many-electron correlation effect is reflected in the recombina-
tion transition dipole moment. This ‘divide and conquer’
strategy not only makes the calculation much easier, it also
offer the interpretation of the observed HHG spectra much
more transparent.

4.4. Wavelength scaling of high-order harmonics after
including macroscopic propagation

To study wavelength scaling of harmonic yields in the
laboratory, ideally one has to fix all other parameters that may
affect the efficiency of HHG. One also needs to decide if the
scaling is with respect to a given photon-energy region or the
total HHG yield. In single-atom simulation, the laser para-
meters can be easily fixed. However, this is not the case in
real experiments. Here we define a single parameter that
describes the efficiency of harmonic generation. It is the ratio
between the output energy (total harmonic energy) with
respect to the input energy (fundamental laser energy) for
different laser wavelengths. In the example shown below, we

Figure 22. Measured (a) and simulated (b) HHG spectra of Xe
generated by 1825 nm lasers for different laser intensities, where
I0 = 1014 Wcm−2. Laser duration is 14 fs. In the experiment, CEP
was not stabilized, and theoretical spectra are averaged over random
values of the CEP. Adapted from [172].
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fix laser intensity, duration, and beam waist. Gas-jet length,
position, and pressure are also kept the same. We only vary
the laser wavelength from 0.8 to 1.6 μm. The detailed para-
meters can be found in [56].

For single-atom harmonic generation, the input energy is
set to be the same for 800-, 1200-, and 1600 nm lasers. The
total harmonic yield is obtained by integrating the spectra from
20 eV up which is then taken as the total output energy. the
resulting harmonic output then follows ,3.5 0.5l-  as shown in
figure 23. It is generally known that phase-matching condition
is more difficult to meet if longer wavelength lasers are used to
drive the HHG; thus the HHG efficiency decreases further with
increasing wavelength. For macroscopic harmonic generation,
since the laser intensity is fixed at the center of the gas jet and
the laser is focused before the gas jet, thus the input energies
for the three wavelengths are different. They are calculated to
be at the ratios of 1.0: 1.13: 1.31, for the 800-, 1200-, and
1600 nm lasers in this example. We assume that all the har-
monics emitted in the near field are collected. From our cal-
culation, we found that HHG yield integrated from 20 eV up
scales like ,8.5 0.5l-  as shown in figure 23. For harmonics that
are useful for applications, they are often collected by placing a
slit in the far field. This would further reduce the scaling, like

,10.2 0.2l-  see figure 23, since harmonics generated by longer
wavelength lasers are more divergent.

When considering the propagation of harmonics in the
gas medium, it is easy to understand that phase matching
condition for different quantum orbits are quite different
[138]. Although higher order return orbits have considerable
contribution to single atom harmonics, because they accu-
mulate a relatively large phase in the continuum and they are
more sensitive to laser intensity, their net contribution to the
macroscopic harmonics becomes negligible after propagation.
In figure 24 we separate the contributions from short orbit
(S1), long orbit (L1) and higher return orbits (up to the third)
to the macroscopic HHG yield. We used the induced dipole
calculated from the QO method as the source term in the

propagation equation. The HHG yield is defined as the inte-
grated harmonic field intensity right at the rear face of the gas
jet. The 0.8 μm case shown in figure 24(a) is well understood:
as the gas jet is placed after the laser focus, the short orbit
(S1) is effectively selected, the long orbit only contributes
near the cutoff. For longer wavelengths phase matching
becomes more sensitive to experimental setup. Simulations
for a typical setup using a tightly focused 1.6 μm laser beam
are shown in figure 24(b) and (c), with the gas jet placed at
z = 1 mm and 3.5 mm after the laser focus, respectively. For
z= 1 mm the long orbit dominates the HHG yield. Higher
order returns contribute mainly below about 50 eV
( U I1.5 p p+ ), which indicates that this contribution comes
mostly from the second return. Good phase matching is
achieved in the z 3.5 mm= case, which resembles the

Figure 23. Wavelength dependence of the total integrated HHG
yields above 20 eV. The results shown (from top to bottom) are for
single-atom HHG, and macroscopic HHG in the near field and in the
far field. The harmonic yield is normalized according to the input
energy. Adapted from [56].

Figure 24.Macroscopic HHG yield after propagating in an Ar gas jet
of 1 mm thick placed after the laser focus. The laser pulse has a
cosine-squared envelope with 30 cycles total duration, CEP = 0.
(a) 0.8 μm laser with beam waist 25 μm, the center of the gas jet is at
z = 2 mm where the peak intensity is 2.0 10 W cm14 2´ - (Up =
12 eV). (b) 1.6 μm laser with beam waist 36 μm, the center of the gas
jet is at z = 1 mm where the peak intensity is 1.0 10 W cm14 2´ -

(U 24p = eV). (c) the center of the gas jet is at z 3.5 mm,= other
parameters are the same as in (b). (b) and (c) are adapted from [131].
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0.8 μm, z = 2 mm case above. Here, the HHG spectrum
shows clear harmonic peaks but the cutoff is somewhat
reduced. The short orbit dominates the total yield and there is
hardly any signature from long orbits and higher order
returns. Note that higher order returns may be important in
studying sub-cycle dynamics at the single atom level and in
interpreting the interference structures in angle-resolved
photoelectron distributions [175]. However in the case of
phase-matched high harmonic generation, high-order returns
are not important.

We recall that at single atom level the HHG yield scales
unfavorably with increased laser wavelength, as discussed in
section 3.2. The situation gets even worse for the short orbits,
which are typically weaker than long orbits, especially at
lower energies, say below, 2Up. Nevertheless, good phase
matching tends to select short orbits. Therefore it is very
challenging to obtain efficient macroscopic harmonic emis-
sion with long wavelength driving field. In this respect, it is
quite tempting to enhance the short orbits contribution by
using a synthesized laser waveform. This has been suggested
in [176] and will be discussed in section 5.2.

5. Extension of QRS to molecular targets and other
applications

5.1. Application to HHG from molecules

The QRS can be extended to molecular targets in a straight-
forward manner. Again, the electron wave packet can be
obtained from the SFA or its modifications for each fixed-in-
space molecule. If a reference atom is used, one also needs
to know the alignment dependent ionization rates (see
section 2.5). Photo-recombination (or photoionization) dipole
can be calculated using molecular photoionization packages
such as ePolyScat [177, 178]. Although there is no formal
derivation of the QRS for molecules, the model has been
tested by comparison with TDSE results for molecular ion,
H2

+ [48]. The model has also been well tested against various
experiments for aligned linear molecules [11, 12, 46, 51, 55–
58, 179] as well as polyatomic molecules [52–54]. Extensions
for different polarizations and large-amplitude vibrating
molecules have also been reported [51, 180, 181]. Other
applications of the QRS include, for example, [49, 67, 182–
186]. In fact, so far only the QRS theory has been so exten-
sively applied to HHG from molecular targets and compared
to experimental observations.

As an illustration we just show one example which has
been carefully studied experimentally: the HHG spectra of
perpendicularly aligned N2 molecules by a 1200 nm laser
pulse, see figure 25 (see, [58]). The pulse duration (FWHM)
is ∼ 44 fs, laser is focused 3 mm before the 1 mm long gas jet,
and the beam waist at the focus is ∼ 40 μm. In the far field
(24 cm after the gas jet), there is a vertical slit with a width of
100 μm (see an example on figure 20). Laser intensities
estimated in figures 25(a)–25(c) are 0.65, 1.1, and 1.3, in
units of 1014 W cm−2, respectively. The main features in the
spectra are the deep minima at 38.2 eV and 40.4 eV, at the

two lower intensities in figures 25(a) and 25(b), respectively.
The minimum disappears at the higher intensity in
figure 25(c). From the simulations, we found that the inten-
sities (in the center of the gas jet) of 0.75, 0.9, and 1.1 to
coincide with the experimental HHG cutoff as indicated in the
figure. Other parameters are closely matched to the experi-
mental ones. The HHG spectra from the simulation and
experiment are normalized at the cutoff. For the two lower
intensities in figures 25(a) and (b), we include harmonics
initiated from the σ orbital (the HOMO) only. Both the shape
and the precise positions of the minima of the spectra are
reproduced by the simulation. At the higher intensity in
figure 25(c), we include HHG from both the σ and π orbitals
(the HOMO and HOMO-1). A very good agreement between
theory and experiment (correct shape and no minimum in the
spectrum) is achieved. If only the σ orbital is included, the
theory could not be made to reproduce the correct spectral
shape. It would also predicted a minimum in the spectrum

Figure 25. Comparison of experimental (red lines) and theoretical
(green lines) HHG spectra of aligned N2. Harmonic driving laser
is a 1200 nm one , and the pump-probe angle α = 90°. Laser
intensities in the simulations are indicated in the figure where
I0 = 1014 Wcm−2. Alignment degree is cos2 qá ñ = 0.60. Other laser
and setup information is given in the text. In the simulations, only σ
orbital is included in (a) and (b), and both σ and π orbitals are
included in (c). Spectral minima are indicated by the arrows.
Adapted from [58].
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which was not seen in the experiment. To generate the the-
oretical results, photoionization transition dipole matrix ele-
ments, including the amplitude and phase, from all orientation
angles of fixed-in-space N2 molecules over the covered
photon energy range of 25 to 70 eV are calculated. In fact,
these same matrix elements are used in the QRS theory
independent of whether the molecules are isotropically dis-
tributed or parallel aligned with respect to laser’s polarization.
In fact, even if the laser’s wavelength and/or intensity are
changed, the calculations of HHG at the single-molecule level
would require the calculations of new returning electron wave
packets only. Additional experiments on N2 molecules have
been reported widely in the literature, see [6, 8, 10, 184, 185,
187–193], and the QRS theory has been used to interpret
these observations [46, 51, 55, 56, 179, 185].

5.2. Application to laser waveform synthesis for enhancement
of HHG yields

One of the main goals in HHG research is to create bright
coherent table-top light source from the XUV to soft X-rays.
Since HHG cutoff scales as U I3.2 ,p 0

2l~ one might expect
two simple ways to reach high energy photons: One is to
increase laser intensity I0, the second is to increase its
wavelength. However, it is clear that one cannot increase laser
intensity too much due to the ground state depletion and the
excess free electrons in the medium which would destroy
good phase matching. Nor can one just increase the wave-
length alone. From the analysis in section 3 and [61, 131, 132,
135], the unfavored wavelength scaling means that harmonic
yields would diminish drastically as the wavelength is
increased. One may try to increase the target density (or
pressure), which in fact has been implemented in the wave-
guide setup by the JILA group [68, 69]. Nevertheless, there is
an optimal range for target pressure in any medium [69] that
prevents further enhancement. While enhancement of mac-
roscopic HHG yield may be achieved by adjusting phase
matching conditions, the enhancement factor so far is not
large enough to overcome the difficulty of generating useful
high harmonics toward the soft x-ray region [194, 195],
except probably only for application with condensed medium
targets.

Recently we have demonstrated [176] that by combining
just two or three lasers of different colors, the HHG yields can
be enhanced by two or more orders of magnitude, as com-
pared to the single color one without the increase of the total
pulse energy. The principle of this waveform synthesis is
shown in figure 26(a), where we compare the electric fields of
the optimized two-color waveform and the single-color one
(the fundamental) in one optical cycle of the fundamental
laser. With a sinusoidal single color laser pulse, from the QO
theory, harmonics are generated within one optical cycle by a
long-trajectory or a short-trajectory electron. Harmonics from
the long-trajectory electrons are stronger but they do not
phase match well in the gas medium. Thus the strategy is to
generate a new waveform which would generate more short-
trajectory harmonics. This should be done by keeping the free
electron density in the medium nearly constant to avoid

plasma defocusing and excessive phase mismatching. The
optimized waveform is derived by adjusting the relative phase
and amplitude of each of the driving lasers with the constraint
that the total ionization yield is set at a prescribed level and
that harmonics from the short trajectory electrons be stronger
than from the long trajectory ones while the cutoff energy is
more or less fixed. Using genetic algorithm, such an opti-
mized waveform can be readily obtained. In each iteration,
the single atom harmonic spectra are calculated using the
QRS. In figure 26(a) an example of such an optimized
waveform is shown. It is found that the instantaneous electric
field for short trajectory electrons in the optimized waveform
is enhanced by 50%, resulting in an increase of ionization rate
by about one hundred fold due to the exponential increase of
tunneling ionization rate (see, for example, figure 12(c) for
the case of hydrogen). Figure 26(b) shows the enhancement
of single-atom harmonic spectra generated from the optimized
waveform. This example illustrates how the factorization
feature of the QRS is useful for identifying the optimal
waveform since the calculation of harmonic spectra for each
optical field for a given target amounts to the calculation of
the returning electron wave packet only. The latter can be

Figure 26. (a) Electric field of a single color (SC) and optimal two-
color lasers. The filled (empty) circles correspond to the ionization
and recombination times for the short (long) trajectory at returning
electron energy of U2 .p The inset shows electric fields vs returning
electron energy from long and short trajectories for the two cases. (b)
An example of the harmonic spectra from SC and optimal two-color
waveform at the single atom level, illustrating the enhancement over
an order of magnitude. Adapted from [176].

32

J. Phys. B: At. Mol. Opt. Phys. 49 (2016) 053001 Tutorial



carried out within the SFA which is computationally very
efficient. Additional recent works on waveform synthesis can
be found in our recent publications [176, 196, 197].

5.3. Application to high-energy photoelectrons and to
nonsequential double ionization

Although we mainly focus on HHG in this Tutorial, the
concept of returning electron wave packet applies to other
rescattering phenomena such as HATI and NSDI as well.
Instead of photo-recombining as in the HHG process, in
HATI, the returning electron is elastically scattered from the
parent ion [17, 26, 27, 45], and in NSDI it is inelastically
scattered from the ion by kicking out another electron [17,
28–31, 198]. Methods for calculating the returning electron
wave packets based on the SFA are quite similar and have
been described before [12, 30, 199]. Briefly, for HATI from
an atomic target, the photoelectron momentum distribution
D k,( )q can be expressed as

D k W k k, , , 157r r r( ) ( )( ) ( )q s q=

where k ,r r( )s q is the electron-parent ion elastic differential
cross section (DCS) at the scattering momentum kr and
scattering angle θr. Assuming that z axis is parallel to the laser
polarization axis, the detected momentum k and the scattering
momentum are related by

k k A kcos cos 158z r r r ( )q q= = - 

k k ksin sin . 159y r r ( )q q= =

Here Ar is the vector potential at the moment of recollision.
Equation (158) shows that upon recollision, the electron
changes its direction and gains a momentum Ar- along laser
polarization direction after it has exited the laser field. Only
the backscattered electrons can be well described by the QRS,
since forwardly rescattered low energy electrons will interfere
with direct tunnel ionized electron. As the laser wavelength
increases, the direct electron distribution will be more
localized along the laser polarization, thus the range of
validity of the QRS will be increased towards smaller
scattering angles. The wave packet can be calculated within
the SFA [12, 199]. Similar to the HHG process, it can also be
calculated and analyzed in terms of short and long trajectories
within the QO theory [27]. The same returning electron wave
packet can be used for the NSDI processes [12, 30, 200].

The simple relationship in equation (157) allows accurate
extraction of elastic DCS from laser experiments [45, 201–
204] for backscattered electrons. More important application
is the retrieval of real-space structures from molecules.
Nevertheless, retrieval of real-space molecular structures from
the DCS is difficult since it is an inverse scattering problem.
At low energies, accurate theoretical DCS can only be
obtained by full quantum-mechanical calculations. For-
tunately, simplification comes for large momentum transfer
collisions, where elastic scattering amplitudes can be calcu-
lated as due to coherent contribution from each atom in a
molecule, as in the independent-atom model (IAM). This fact
has been utilized in the proposed laser-induced electron dif-
fraction (LIED) technique [205] for HATI electrons to

retrieve the molecular bond lengths, in a similar manner to the
conventional electron diffraction. Experimentally, this can be
achieved by using a mid-infrared laser with a relative long
wavelength (above about 2 μm), so that the returning electron
cutoff energy ( I0

2l~ ) can be greatly increased. In fact, LIED
experiment has been used with the wavelength of about 2 mm
to extract the molecular bond length in N2 and O2 by Blaga
et al [206]. Quite recently, extraction of two bond lengths in
aligned C H2 2 has also been reported by Pullen et al [207]
using 3.1 mm laser with 160 kHz repetition rate.

It is expected that LIED can be performed to retrieve
structure information from dynamically evolving targets in
the near future. Nevertheless, the HATI yields drop quickly
with increased laser wavelength. It is therefore highly desir-
able to optimize the laser waveform to enhance the signals, as
in case of HHG.

6. Summary and outlook

In this Tutorial we have presented detailed description of the
SFA and one of its modifications, the QRS, with the focus on
high-order harmonics generated by mid-infrared lasers. For
long wavelength driving lasers, the saddle point approxima-
tion that is used to derive the QO theory from the SFA
becomes more accurate. From the QO theory, classical con-
cepts for quantities such as ionization and recombination
time, long and short trajectory electrons, single and multiple
returns, etc., can all be isolated with their own semiclassical
phases. Thus contribution to the amplitude and phase of the
harmonic dipole at a given energy from each orbit can be
separated. Within the QO, it is further shown that harmonic
dipole in the energy domain can be factorized. This factor-
ization allows the extraction of a returning electron wave
packet which largely depends only on the laser, and a
recombination dipole term which depends only on the target.

The concept of a returning electron wave packet is at the
heart of the QRS theory. It combines the ionization and
propagation steps in the standard three-step model and
therefore contains all the nonlinear physics of the HHG pro-
cess. Since electron-laser interaction is included ‘exactly’ in
the SFA, the electron wave packet obtained from the SFA is
accurate whenever the electron-ion core interaction is weak,
i.e., during the propagation step. In the third step, recombi-
nation occurs near the ion core and thus the SFA is not
accurate. In the QRS this part is replaced by accurate transi-
tion dipole. The latter is a one-photon process and computa-
tional packages for atomic and molecular photoionization are
available, which can include elaborate electron correlation
effect in a many-electron system. This simple QRS approach
allows HHG simulation to be performed even for complex
polyatomic molecules [52–54] which are otherwise hardly
tractable.

In this Tutorial we did not present many examples of
comparing the QRS theory with experimental HHG data. The
interested readers are directed to the original publications
mentioned in the text. The QRS is a rescattering model, thus it
also applies to HATI and NSDI processes. There are still
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many areas in strong field physics where the SFA or its
extensions have been used but were not covered in this
Tutorial. For example, HHG and other rescattering phenom-
ena may be driven by elliptically polarized, or by two
orthogonal linearly polarized pulses. In attosecond physics,
XUV pulses may be used to generate photoelectrons in the
presence of a moderately intense infrared laser. The SFA and
its extensions have been found to be useful for studying such
problems and it was at the heart of the theory behind the
characterization of the phase of single attosecond pulses,
called FROG-CRAB [208, 209]. As laser technology con-
tinues to advance toward longer wavelength and higher
repetition rates, and for better waveform manipulation, ample
opportunities lie ahead for continuing discovery in HHG and
other strong-field rescattering phenomena. It will not be sur-
prising to find that the simple SFA and its extensions con-
tinues to play an important role for understanding potentially
very complicated nonlinear phenomena.
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