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I. COLLINEAR MODEL OF H+
2

We consider a collinear model of H+
2 with the Hamiltonian [1, 2] (in atomic units)

H0(z, R) = −1
2

∂2

∂z2
− 1

2µ

∂

∂R2
+ V (z, R), (1)

where z is the distance from the electron to the center of mass of the two nuclei, R is the internuclear separation, and
µ is the reduced mass of the two nuclei. We use a soft core potential for the Coulomb interaction

V (z, R) =
1√

R2 + εn

− 1√
(z − 0.5R)2 + εe

− 1√
(z + 0.5R)2 + εe

, (2)

where ε = 0.03 and εe = 1.0 are softening parameters. Here we have neglected the terms related to the small ratio
of the electron mass to that of the nuclei. For cases of mass-scaled H+

2 with mass of hydrogen of Mp = 1836 and
heavier, considered in this paper, this approximation leads to unnoticeable differences in the calculated HHG spectra.
The interaction between the molecule and a laser field is written as

HI(z, t) = zE(t). (3)

We approximate the initial total wavefunction as a product of the nuclear and the electronic wavefunctions in the
spirit of the Born-Oppenheimer (BO) approach as

Ψ(z, R, t = 0) = χ(R)Φ(z; R). (4)

We have checked that this approximation leads to unnoticeable differences in the calculated HHG spectra. In this
paper we limit ourselves with the case when the initial state is in the ground electronic potential curve. We numerically
solve this time-dependent Schrödinger equation (TDSE) using the split-operator method with sine functions [3]. It
can be carried out efficiently with the Fast-Fourier Transformation (FFT). The total wavefunction at any moment in
time can be calculated numerically by repeatedly applying the split-operator on the initial wavefunction. Once the
total wavefunction is obtained for any moment in time, the induced dipole and HHG spectrum can be calculated using
the standard procedures [4]. Typically we use an electron spatial box of Lz = 400 a.u. and a nuclear box of LR = 20
a.u. with up to 1024 and 512 grid points, respectively. To avoid artificial reflection due to the finite box size, we use
absorbing mask functions [4] for both electronic and nuclear coordinates. The TDSE for the case of frozen nuclei is
solved in a similar manner.

We show in Fig. S1 a comparison of the HHG spectra from the exact TDSE and the model [by using Eqs. (1) and
(2) of the main paper] for the case of v = 1 and v = 2 vibrational states. Here the mass of “hydrogen” is chosen to be
4Mp, with Mp being the mass of a proton. An 6-cycle, sine-squared envelope laser pulse of 800-nm wavelength with
an intensity of 2.5× 1014 W/cm2 is used in our calculations. This comparison indeed show good agreements between
the two methods. We comment that the approximation in which the nuclei are fixed at the equilibrium geometry,
does not agree with the “exact” TDSE solution. This fact has be noticed earlier [2].

A similar comparison is shown in Fig. S2 for the case of a vibrational wave packet at two different time delays of
τD = 0.125T and 0.75T between the preparation and beginning of the probe laser pulse. Here T is the vibrational
period of the mass-scaled H+

2 . The initial wave packet is prepared at t = 0 as a linear combination of v = 0, 1, and 2
vibrational states with the coefficients of 0.8, 0.5, and 0.332, respectively, and propagates freely afterward until the
probe laser is turned on. Again the results from the two methods are nearly indistinguishable.
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FIG. S1: (Color online) Comparison of the HHG spectra from the TDSE and the model using Eqs. (1) and (2) of the main
paper for a v = 1 (a) and v = 2 (b) vibrational states. The “hydrogen” atom mass is 4Mp.
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FIG. S2: (Color online) Comparison of the HHG spectra from the TDSE and the model for a time delay of 0.125T (a) and
0.75T (b). The “hydrogen” atom mass is 16Mp.

II. EVOLUTION OF THE N2O4 NUCLEAR WAVE PACKET

In our simulation the dipole polarizability was calculated by using Gaussian package [5], within the density functional
theory with the B3LYP exchange-correlation functional and the aug-cc-pVTZ basis set. For the equilibrium geometry,
the calculated polarizabilities are 21.8, 48.7 and 56.6 (in atomic units) for αxx, αyy, and αzz, respectively, which agree
quite well with an earlier theoretical calculation by Goebel et al. [6]. The potential energy curves as a function of N-N
internuclear distance RNN are calculated using Molpro package [7]. We assume relaxation of all structural parameters
other than RNN . For the N2O4 cation the structural parameters are assumed to be the same as for the neutral. Our
potential energy curves are in reasonably good agreement with that of Li et al. [8]. To simulate the influence of the
pump and probe laser pulses on the vibrational wave packet, we solve Eq. (2) of the main paper, in which N2O4 is
treated as an effective diatomic molecule with an effective mass scaled by a factor of 0.7. We note that the same
scaling factor was also used by Li et al. [8] in order to match the experimental vibrational frequency of the symmetric
stretch mode. In our calculation a laser intensity of 2× 1013 W/cm2 (1.5× 1014 W/cm2) and a duration of 30 fs (20
fs) are used for the pump (probe) pulse. Both pump and probe are of 800-nm wavelength.

We show in Fig. S3(a) and S3(b) the temporal evolution of the N2O4 nuclear wave packet during the pump and
probe pulses, respectively. In Fig. S3(b) the probe pulse is delayed by 70 fs with respect to the pump pulse. These
results were obtained from the numerical solution of the Eq. (2) of the main paper. As can be seen from the figure,
the probe pulse (which is much more intense than the pump pulse) has much stronger effect on the nuclear dynamics,
especially near the end of the probe pulse. Equivalently, we found that vibrational states up to v = 2 are populated
(for more that about 5%) after the pump pulse. However, states up to v = 15 are populated near the peak of the
probe pulse. In order to understand the behavior in Fig. 4(a) of the main paper, one needs to analyze the nuclear
distribution near the peak of probe pulse, when the HHG production is most efficient. We show in Fig. S3(c) the
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FIG. S3: (Color online) Temporal evolution of N2O4 nuclear wave packet during the pump (a) and probe (b). The probe is
delayed by 70 fs with respect to the pump. (c) Nuclear distribution at the peak of the probe pulse for different pump-probe
time delays of 95 fs and 165 fs. For a reference, the distribution at the peak of the probe pulse from the initial v = 0 state (i.e.,
without the pump) is also shown. See text for other laser parameters.

nuclear distribution at the peak of the probe pulse for different time delays of 95 fs and 165 fs, when the HHG yields
are close to the first minimum and the first maximum, respectively [see Fig. 4(a) of the main paper]. For a reference
we also plot the distribution for the case when no pump is used. Clearly, the minimum (maximum) in HHG yield is
associated with a nuclear distribution at smaller (larger) RNN .
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