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Abstract

The two-dimensional momentum distributions of high-energy photoelectrons generated in the
above-threshold ionization of atoms by intense laser pulses are analysed as resulting from the
elastic backscattering of laser-induced returning electrons. Using this quantitative rescattering
theory, we show that the returning electron wave packets are entirely determined by the
properties of the laser pulses, including the absolute value of the carrier-envelope phase (CEP).
We then present a robust method to precisely retrieve the absolute phase of few-cycle pulses
by analysing separately the CEP dependence of the electron spectra emitted on the left and on
the right directions along the laser polarization axis. In addition, our approach offers the
possibility of measuring the laser peak intensity and pulse duration with an estimated error of a
few per cent.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The electric field of a laser pulse can be written in general
in the form of E(t) = E0(t) cos(ωt + φ), where E0(t) is the
amplitude, φ is the carrier-envelope phase (CEP) and ω/2π

is the mean frequency. Recent advance in laser technology
has made it possible to generate few-cycle pulses, such that
the time variation of the electric field pulses can be controlled
by manipulating the CEP [1]. For these very short pulses,
experimental evidence of the influence of the absolute phase
has been manifested in the emission direction of electrons from
atoms [2], in high-harmonic generation (HHG) [3], in non-
sequential double ionization yield [4] and in the asymmetric
dissociative ionization of D2 molecules [5, 6]. CEP-stabilized
laser pulses have permitted the generation of attosecond pulses
by means of HHG [7–9], and have a high potential for
applications in many other fields such as the coherent control

of molecular dynamics. However, while experimentally the
relative CEP can be fixed, direct measurement of the absolute
value of the CEP itself still relies on theoretical simulations.

Several techniques have been proposed to measure the
absolute phase of few-cycle laser pulses. Apolonski et al
[10] studied the photoemission dependence of a gold surface
on the CEP and obtained a qualitative agreement with the
simulations [11]. Recently, the observation of half-cycle
cut-offs in HHG spectra has been used to retrieve the CEP
[12]. However, most of CEP measurements, as well as
theoretical works, have been so far based on the analysis
of above-threshold ionization (ATI) electron spectra in the
strong field ionization of atomic species [13–22]. One of the
first measurements of the absolute phase was implemented by
Paulus and coworkers [23], where the asymmetry of electrons
emerging in the left versus in the right directions (or up
versus down) is determined as the CEP is varied. The
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absolute value of the CEP is evaluated by comparing the
measured left–right asymmetry of the integrated high-energy
ATI electrons against classical calculations. Subsequently,
Tong et al [24] calculated the electron spectra from solving the
time-dependent Schrödinger equation (TDSE). By comparing
with the electron spectra measured in [23], it was concluded
that the original experimental CEP should be shifted by 0.15π .
A thorough discussion of the dependence of electron energy
spectra on the CEP can be found in [25]. In this review, the
authors describe the different methods employed to measure
the CEP. For the stereo-ATI method, the confusing behaviour
of the left/right total electron yield asymmetry on pulse
duration, laser intensity and atomic species is emphasized,
and the advantages of the high-energy electron dependence
over the CEP are highlighted.

Recently, Kling et al [26] reported energy- and angle-
resolved ATI spectra generated by phase-stabilized few-cycle
pulses on argon, krypton and xenon atomic targets using the
velocity-map imaging (VMI) technique, where electrons are
projected onto a two-dimensional position-sensitive detector.
The left–right asymmetry of the ATI spectra of Ar has been
evaluated versus the kinetic energy of the photoelectrons and
compared to calculations based on solving the TDSE and by
using the strong field approximation. Since experimental
electron spectra are always obtained over the laser focus
volume, theoretical calculations have to be carried out with
many laser intensities in order to generate electron spectra that
can be directly compared to experiments. To carry out so many
TDSE calculations becomes quite time consuming and not
very practical. Furthermore, in a typical laser experiment, the
peak laser intensity and pulse duration (measured in terms of
the full width at half-maximum (FWHM) of the intensity) are
also not accurately characterized. Thus, the calibration of the
absolute CEP should be accompanied with the determination
of the pulse duration and peak intensity. In a recent letter
[27], we have proposed an alternative method of analysing the
high-energy ATI electron (HATI) spectra. Using the data from
Kling et al [26], we were able to show that the absolute CEP,
the peak laser intensity and the pulse duration can be accurately
retrieved to within a few per cent and that the retrieval method
is very efficient.

To retrieve the absolute CEP, in [27], two renovations
were suggested. First, instead of examining the left/right
asymmetry of the electron spectra with the change of the
CEP, the high-energy peak or the cut-off energy of the left
or of the right electron spectra (integrated over 10◦ about the
polarization axis) versus the CEP is examined. Second,
the theoretical HATI electron spectra are calculated using
the recently developed quantitative rescattering theory (QRS)
[28–30]. Using the QRS, the calculations of HATI spectra
speed up by a factor of few hundreds to thousands as compared
to solving the TDSE, but with comparable accuracy. Thus,
many repetitive calculations can be carried out to generate
electron spectra (including volume integration) to identify
laser parameters that best fit the experimentally measured
spectra. The application of this new method for retrieving
the laser parameters from the data of Kling et al has been
presented in [27]. In this paper, we present the details of the
theoretical analysis.

To make this paper self-contained, in section 2 we
first summarize the recently developed QRS model. This
model states that the HATI electron momentum spectra can
be expressed as the product of a returning electron wave
packet with the backscattered differential elastic scattering
cross sections between the target ion and the free returning
electrons. We will use a simplified version of this model
where the returning electron wave packet is obtained from the
second-order strong field approximation. In section 3 we show
how the rescattering wave packet directly reflects the change
of the CEP. This fact can then be used in section 4 as the basis
for the new method of retrieving the CEP from the electron
momentum spectra, including how the laser focus volume
affects the electron energy spectra. Section 5 summarizes
this paper.

2. Theoretical models for high-energy ATI electrons

2.1. High-energy ATI electrons and rescattering model

Considerable understanding of HATI spectra from atoms has
been achieved since 1990s [31–33]. Qualitatively, they are
understood based on the rescattering model [34, 35]. In
this model, electrons that are released earlier by tunnelling
ionization may be driven back by the laser field to recollide
with the target ion. The plateau electrons are due to elastic
large-angle backscattering of the returning electrons by the
target ion [31–33]. This qualitative rescattering picture has
been recently put in a quantitative form by us [28–30].
Based on accurate results by solving the TDSE, it has been
demonstrated that the high-energy photoelectron momentum
distribution I (p, θ) can be written in the form

I (p, θ) = W(pr)σ (pr, θr ), (1)

where σ(pr, θr) is the elastic differential cross section (DCS)
between ‘free’ electrons with the ion in the absence of the
laser field. Here, pr and θr are the momentum and the
scattering angle of the ‘incident’ free electron, respectively,
and W(pr) is interpreted as the returning electron wave packet
(RWP) before it is backscattered. Equation (1) thus states
that the dependence of the high-energy electron distribution
over the laser parameters is solely included in the RWP. The
momentum p (with magnitude p and angle θ with respect
to the polarization axis) of the photoelectron is related to the
momentum pr right after backscattering by the vector potential
Ar p̂z at the time of the collision via

p = pr − Ar p̂z. (2)

Atomic units are used in the above equation and the rest of this
paper unless otherwise noted. In the above equation, Ar =
A(tr) is the instantaneous magnitude of the vector potential at
the time tr of the recollision, and the last term corresponds to
the drift momentum the electron gains as it further propagates
in the linearly polarized laser field (direction p̂z) to the laser-
free region. In terms of momentum components along the
polarization direction and the direction perpendicular to it,
equation (2) is written as

p cos θ = ±pr cos θr − Ar (3)
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p sin θ = pr sin θr , (4)

where the positive sign in equation (3) refers to the left side
(p < 0) and the negative sign to the right side (p > 0) of the
2D momentum distribution. These equations show that high-
energy electron momentum is obtained only when the electron
is scattered into the backward direction where θr > 90◦.

According to classical calculation for an electron in a
monochromatic laser field [34], electrons which are tunnel
ionized near the peak electric field and recollide with the ion
core at a time where the vector potential is at its peak value,
A0, will have a maximum returning energy of Er = p2

r

/
2 =

3.17Up where the ponderomotive energy is Up = A2
0

/
4. Thus,

the maximum returning electron momentum is pr = 1.26A0.
The validity of equation (1) was first established using

I (p, θ) calculated from solving the TDSE for rare gas
atoms within the single active electron approximation [30].
Experimentally, equation (1) has been used to extract the
elastic scattering cross sections from laser-generated HATI
spectra using long pulses (100 fs) [36] as well as short pulses
(8 fs) [37], and the derived DCSs from the experiments
were shown to be in good agreement with the theoretically
calculated DCSs.

In actual experiments, the accurate value of A0 is
not generally known. By restricting pr = 1.26A0, the
applicability of equation (1) is quite limited. In [29],
equation (1) was extended to returning electrons which have
momentum less than 1.26A0. In fact, for electrons which
return to the parent ion with Ar < A0, we relate the momentum
pr of the recolliding electrons to the vector potential Ar by
pr = 1.26|Ar |. For high-energy electrons beyond 10Up, we
use pr = p − A0 since the maximum vector potential is A0.

With these generalizations, we first check the validity
of equation (1) using I (p, θ) calculated from solving the
TDSE for a model one-electron atom in a laser field. The
one-electron atom is described by a model potential V (r).
The differential cross section σ(pr, θr ) of a free electron with
momentum pr by such a potential V (r) can be accurately
calculated [38]. For each θ , one can extract a returning wave
packet W(pr) = I (p, θ)/σ (pr, θr ). If equation (1) is valid, as
has been shown for HATI electrons, then the extracted W(pr)

should be independent of θ . Thus, we can then interpret W(pr)

as the returning electron wave packet. Note that W(pr) is
derived from photoelectron spectra at the end of the laser pulse;
thus, it contains interference due to wave packets generated at
different half cycles that end up with identical photoelectron
momentum.

2.2. Second-order strong field approximation

Equation (1) which was established based on TDSE
calculations confirms that accurate HATI spectra can indeed
be written as the product of a RWP with the DCS between free
electrons with target ions. To obtain a RWP, one still needs
to solve the TDSE; thus, equation (1) itself does not save the
computational effort. An alternative method is to calculate
the HATI momentum spectrum using the second-order strong
field approximation [39]. This theory is identical to the so-
called improved strong field approximation used by Milos̆ević

and coworkers [40, 41]. Starting with the standard strong
field approximation and including only the first two terms
of the perturbation expansion, one can write the probability
amplitude of detecting an electron with momentum p as

f (p) = f (1)(p) + f (2)(p), (5)

where the first term

f (1)(p) = −i
∫ ∞

−∞
dt〈χp(t)|Hi(t)|�0(t)〉 (6)

corresponds to the standard SFA, or SFA1, and the second
term (SFA2) is

f (2)(p) = −
∫ ∞

−∞
dt

∫ t

−∞
dt ′

∫
dk〈χp(t)|V |χk(t)〉

×〈χk(t
′)|Hi(t

′)|�0(t
′)〉. (7)

In these expressions,

Hi(t) = r · E(t) (8)

is the laser–electron interaction, in length gauge and in dipole
approximation, and the electric field E(t) of the laser pulse is
chosen to be linearly polarized along the z-axis:

E(t) = E0a(t) cos(ωt + φ)ẑ, (9)

where φ is the CEP. The envelope function is taken as

a(t) = cos2

(
πt

T

)
(10)

for the time interval (−T/2, T /2), and zero elsewhere, and T
is the total duration of the pulse and is related to the FWHM
of the intensity, or the pulse duration τ , by τ = T/2.75.
The functions χp(t) are the usual Volkov states describing
free electrons in the laser field and �0(t) is the ground state
wavefunction. In the numerical integration of f (2)(p), an
additional damping factor e−αr is introduced in the model
potential to avoid the singularity in the integrand. We choose
α = 2 and checked that the magnitude of f (2) slightly varies
with this value, but not the shape. For HATI electrons, only the
second term f (2)(p) is important. The integral is calculated
within the saddle point approximation for the integration with
respect to k, as described in [42]. The electron momentum
distribution is given by I (p, θ) = |f (p)|2.

2.3. Quantitative rescattering theory

In an earlier paper, Chen et al [39] showed that the HATI
electron momentum spectrum calculated using SFA2 can also
be written in a separable form as equation (1) except that
the DCS is given by the first-order Born approximation. In
figures 1(a) and (b), we compare the DCS calculated from
exact quantum mechanical scattering waves and from the first
Born approximation for electrons with momentum pr colliding
with the Xe+ target. The DCS obtained from the first Born
theory is clearly incorrect. In figures 1(c) and (d), we compare
the RWP on the ‘left’ side obtained for a five-cycle laser
pulse at a peak intensity of 1.0 × 1014 W cm−2 with a mean
wavelength of 800 nm, and a CEP is equal to zero and π/2,
respectively. One can see that the RWPs from SFA2 and from
the TDSE are quite similar (the peak height from SFA2 has
been normalized to the peak height from the TDSE), except
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Figure 1. Elastic differential electron–ion scattering cross sections at large angles calculated using scattering waves (a) and first Born
approximation (b) for Xe+ and different incident momenta. Comparison of the ‘left’ returning wave packets extracted from the TDSE and
SFA2 calculations for xenon atoms by a five-cycle laser pulse with a peak intensity of 1.0 × 1014 W cm−2 a mean wavelength of 800 nm,
and a carrier-envelope phase sets to zero (c) and π/2 (d).

(a) (b)

(c)

Figure 2. High-energy (above 4Up) photoelectron 2D momentum distribution (log-scale) calculated within the TDSE (a), the QRS theory
(b) and SFA2 (c), for atomic xenon by a five-cycle laser pulse at a peak intensity of 1.0 × 1014 W cm−2 with a mean wavelength of 800 nm,
and a carrier-envelope phase equals to zero.

that the RWP from SFA2 has a 4% shift to lower momentum.
This shift is due to the neglect of the attractive interaction of the
returning electron by the ion core in SFA2, with the main error
coming from the neglect of the Coulomb interaction between
the returning electron and the ion core. The good agreement
between the two RWPs shows that the returning wave packet is
dominated by the laser field, and this RWP can be conveniently
calculated using SFA2. To simplify the computational effort,
we thus proposed the quantitative rescattering theory (QRS)
where we first calculate I (p, θ) using SFA2; we then replace
the incorrect DCS from the first Born approximation by the

‘exact’ DCS calculated using quantum mechanical scattering
waves. The validity of such an approach has been documented
in [28, 29]. In figures 2(a) and (b), we compare the HATI
spectra obtained from the QRS model with that from solving
the TDSE directly. The two spectra indeed look very similar
(on the logarithmic scale). On the other hand, the spectrum
from SFA2 is not adequate (see figure 2(c)). We mention that
the computer time for solving the TDSE is a few hundred to
thousand times longer than for SFA2, for each set of laser
parameters. Using the QRS model, we obtain HATI spectra
with accuracy comparable to that from the TDSE but with
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Figure 3. Temporal evolutions of electric fields and vector potentials for five-cycle laser pulses at a peak intensity of 1.0 × 1014 W cm−2,
with a wavelength of 800 nm, and carrier-envelope phases of φ = 0 (a) and φ = π/2 (c). Electron wave packets extracted from SFA2 for the
left and right sides for φ = 0 (b) and φ = π/2 (d). In (b) and (d), the vertical arrows indicate the expected peak electron momenta when the
electrons return to the corresponding peak vector potentials shown by identical labels in (a) and (c). The horizontal arrows indicate the
relative tunnel ionization rates when electrons are ionized near the peak electric fields shown by identical labels in (a) and (c).

great saving in computer time. In fact, we can further improve
the QRS by empirically shifting the RWP to higher momentum
by a few per cent. Besides simplifications in the calculations,
the QRS model states that for the relative yields of the HATI
electrons, all the nonlinear laser properties are contained in
the RWP which can be easily calculated from the second-
order strong field approximation, while the structure factor
of the target atom is all contained in the differential elastic
scattering cross sections. The target structure will affect
the RWP only through an overall normalization due to the
dependence of the tunnelling ionization rate on the binding
energy and wavefunction of the initial state.

3. CEP dependence of the wave packets and electron
spectra

According to the QRS theory, the relative RWP contains all
the information about the laser parameters. We thus analyse
how the RWP depends on the CEP. In figures 3(a) and (c) we
show the scaled electric field and vector potential of a five-
cycle pulse, for a mean wavelength of 800 nm, for φ = 0
(a cosine pulse) and φ = π/2 (a sine pulse), respectively.
In each case, the peak positions of the electric field and the
vector potential are labelled. According to the classical theory,
electrons that are released by tunnel ionization near the peak
electric field of each half-cycle of a laser may return to the
ion about three quarters of an optical cycle later, when the
electric field is near zero or when the vector potential is near
the peak. Quantum mechanically, we thus expect a wave
packet whose strength is related to the magnitude of the peak
electric field, and the electron’s momentum is related to the

peak vector potential at the time of return. In figure 3(b) we
show the wave packets on the ‘left’ and on the ‘right’ sides
calculated for φ = 0 from the QRS model or, equivalently,
from SFA2. In figure 3(b), the arrows labelled Ai and Bi

(i = 1, 2) indicate the expected peak momenta of electrons
according to pr = 1.26|Ar |, where Ar is the corresponding
peak vector potentials shown by identical labels in figure 3(a).
Note that B2 would appear outside the range of the figure.
In figure 3(b), the horizontal arrows (L1, L2, R1) indicate the
relative tunnelling ionization rates when electrons are ionized
near the peak electric fields, shown by identical labels in
figure 3(a).

We comment that the wave packets shown in figure 3(b)
are ‘derived’ from the photoelectron spectra at the end of the
laser pulse; thus, electrons generated from different half-cycles
may interfere if they have the same momentum. Consider the
outermost peak of the right RWP; it shows no interference
since only electrons which return to the core near B1 can reach
such high momentum. For the ‘left’ RWP, oscillations appear
because electrons released near L2 and L1 and returning at
A2 and A1, respectively, may interfere. Since the ionization
yield near L2 is much smaller, no significant peak appears near
A2 in the left RWP, except for contributing to the interference
features.

The same analysis can be applied to identify the outermost
peaks of the left and right RWPs for the sine pulse, as shown
in figures 3(c) and (d).

We also note that there are secondary peaks that cannot
be identified with the peak vector potentials, e.g. the second
outermost peak in each wave packet. These secondary peaks
are due to the interference of electrons following short and
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Figure 4. Electron wave packets extracted from the left (a) and right (b) sides for a laser pulse with a peak intensity of 1.0 × 1014 W cm−2,
pulse duration of five cycles, mean wavelength of 800 nm and different carrier-envelope phases. The arrows indicate the expected peak
momenta from the peak vector potentials of the half-cycles responsible for the wave packet for the different absolute phases. (c), (d)
Corresponding high-energy photoelectron spectra determined by means of the QRS model for xenon atoms. The spectra are calculated by
integrating over a cone of 10◦ along the laser polarization axis.

long trajectories (in the classical context) which have been
examined extensively in the context of high-order harmonic
generation. For the CEP analysis, we usually focus only on
the outermost peak of each wave packet.

From the above examples it is clear that the momentum
distribution of the RWP evolves smoothly with the change
of the CEP, as shown in figures 4(a) and (b), where only the
outermost portion of each wave packet is displayed. For each
of the left wave packets displayed in figure 4(a), the value of
the peak momentum increases smoothly with the CEP, but the
strength of the peak decreases. However, the peak positions for
the last two CEPs at φ = 0.75 and 1.0π do not change much,
meaning a loss of accuracy if one would like to retrieve the
CEP from such data. However, for the CEP in this region, the
peak positions on the right wave packets change rapidly with
an increase of the CEP (see figure 4(b)). Due to the symmetry,
a shift of π in the CEP would induce the same results, but
the left and right sides are interchanged. In figures 4(a) and
(b), we show with arrows the peak momentum obtained from
pr = 1.26|Ar |, where Ar is the peak vector potential of the
half-cycle which is responsible for the wave packet with the
CEP indicated. For the outermost peak, they agree well with
the actual wave packet extracted from the QRS model. This is
similar to the half-cycle cut-off observed in the HHG spectra
from few-cycle pulses [12].

Since the RWP is not measured directly in experiments,
one has to retrieve the CEP from the electron momentum
spectra. Instead of examining the whole 2D electron
momentum spectrum, in figures 4(c) and (d) we compare the
electron yield integrated over an angular range of 10◦ around
the polarization axis, for electrons detected on the ‘left’ and

the ‘right’, where the electron momentum spectra I (p, θ) were
calculated using the QRS model. Note that the electron spectra
resemble the RWPs with a clear shift of the peak momentum
position as the CEP is varied.

4. Retrieval of the absolute CEP phase

4.1. Single intensity spectra

Using electron spectra similar to figures 4(c) and (d), we show
in figure 5(a) how the peak position of the electron energy
spectra integrated over 10◦ along the polarization axis changes
with the pulse duration. Clearly the slope is quite steep for
the short pulse and much flatter for the long pulse, as shown
for pulses with an FWHM of 4.9, 6.5 and 8.0 fs, respectively.
These curves are obtained from the electron spectra on the
‘left’ using Xe atoms as the target, with lasers of a mean
wavelength of 800 nm, and electron energies are expressed in
units of Up. In figure 5(a), we note that for a CEP close to
π , the curves are quite flat. It becomes more difficult to read
out the CEP from the electron spectra on the ‘left’. However,
if the peak positions are read from the ‘right’ wave packet,
as shown in the lower right of figure 5(a), the slope becomes
steeper and thus a precise CEP can be retrieved. In figure 5(a),
the CEP is shown only for the range of 0 and π . Clearly, for a
CEP between π and 2π , the curves shown in figure 5(a) repeat
except that ‘left’ and ‘right’ are interchanged.

In figure 5(b), we present the peak energies, normalized
to Up, as a function of the CEP for a five-cycle laser pulse and
two intensities. The normalized peak positions are shown to
be independent of the intensity such that the slope of the peak
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Figure 5. Left and right peak energies (normalized to Up) as a function of the carrier-envelope phase: (a) for xenon atoms by an 800 nm
laser pulse with a peak intensity of 1.0 × 1014 W cm−2 and different pulse durations, (b) for xenon atoms by a five-cycle laser pulse with a
mean wavelength of 800 nm and different peak intensities, (c) for xenon and argon atoms by a laser pulse with a 4.9 fs pulse duration and
other parameters as in (a). (d) Peak positions for different ranges of angular integration. The parameters are identical to figure 4(c) for
xenon atoms.

energies versus the CEP is governed by the pulse duration only.
As the momentum of the returning wave packet scales with the
vector potential, the peak positions are indeed expected to scale
with Up.

According to the QRS, the RWP is essentially independent
of the target if the same laser parameters are used. Since the
peak energies are governed by the peak momentum of the
wave packets, we thus expect the peak positions to be nearly
independent of the target used. This is the case as illustrated
in figure 5(c) for Xe and Ar atoms. Finally, while the peak
position of the electron spectra varies slightly with the range
of angular integration, the slope of the peak position versus
the CEP stays the same (see figure 5(d)).

The results from figure 5 clearly indicate that the relative
shift of the peak electron energy depends on the absolute CEP
of the laser pulse. The amount of shift depends on how the
envelope function of the vector potential changes as the CEP of
the laser is changed. Thus the behaviour of the slopes shown
in figure 5(a) is very general, independent of the target, peak
intensity or the mean wavelength, if the electron energy is
scaled with respect to Up and the FWHM of the laser is scaled
with respect to the optical period. We comment that analysing
electron spectra from SFA2 calculations gives similar results,
but the QRS model increases the accuracy of the method.

In figure 5 we follow the peak position of the electron
spectra from the left or from the right sides separately, instead
of using the left/right asymmetry. This allows us to focus on
quantities which evolve smoothly with the change of the CEP
and for easy interpolation.

4.2. Volume effects

The above analysis relies on electron spectra generated by
a single laser intensity. Experimentally, electron spectra are
obtained from a focused laser beam, with the intensity varying
in space. Thus to retrieve the CEP from experimental data,
theoretical calculations must be carried out to account for the
volume integration [43, 44]. Assuming a Gaussian spatial
distribution of the laser intensity, the volume of an isointensity
shell is given by

V = πzRw2
0

[
4(c1 − c2)

3
+

2
(
c3

1 − c3
2

)
9

− 4

3
[tan−1(c1) − tan−1(c2)]

]
, (11)

where 2w0 is the 1/e diameter of the focal spot, zR = πw2
0

/
λ

is the Rayleigh range of the focus and cj = [(i0 − Ij )/Ij ]1/2,
with I0 being the laser peak intensity and Ij the intensity of
the shell j . In figures 6(a) and (b), we show the volume-
integrated high-energy photoelectron spectra on the left and
right sides (integrated over 10◦ along the polarization axis) for
a peak intensity of 1 × 1014 W cm−2, and the other parameters
as in figures 4(c) and (d). Although the contrast is less
pronounced when volume effects are included, the shift of the
peak energy with the CEP clearly persists. Thus, the method
presented in the previous section can still be safely used
to accurately determine the absolute value of the CEP from
volume-integrated theoretical or experimental data [27].

We performed similar calculations for argon atoms.
The volume-integrated photoelectron spectra are shown in
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Figure 6. Left (a) and right (b) high-energy photoelectron spectra integrated over the interaction volume as a function of the
carrier-envelope phase for xenon atoms by a five-cycle laser pulse with a peak intensity of 1.0 × 1014 W cm−2 and a mean wavelength of
800 nm. The spectra are from integrating over 10◦ along the laser polarization axis.
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Figure 7. Left (a) and right (b) volume-integrated high-energy photoelectron spectra as a function of the CEP for argon atoms by a 800 nm
five-cycle laser pulse with a peak intensity of 1 × 1014 W cm−2. The spectra are from integrating over 10◦ along the laser polarization axis.
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Figure 8. Volume-integrated high-energy photoelectron spectra on the left side for xenon (a) and argon (b) atoms for different angular
ranges of integration along the laser polarization axis. The laser peak intensity is 1 × 1014 W cm−2 with a pulse duration of five cycles and a
wavelength of 800 nm. The CEP is set to zero.

figures 7(a) and (b) as a function of the CEP for the left and
right sides. Unlike the xenon results, the high-energy argon
spectra (integrated over 10◦ around the polarization axis) do
not display clean maximum, but each spectrum shows a clear
cut-off. By analysing the change of the cut-off energy versus
the CEP, the absolute phase of the laser pulse can be retrieved.
The results in figures 6 and 7 were obtained for electrons
integrated over 10◦ around the polarization axis. In figure 8,
we show how the electron spectra change with the angle of
integration for CEP = 0. For the Xe target, the peak position
remains quite pronounced for an angular integration range
from 10 to 40◦. For the Ar target, the cut-off energy is more
pronounced for an angular integration range from 10 to 20◦.
For larger angles, the cut-off energy becomes less clear. For

the purpose of retrieving the CEP of the laser pulses, the xenon
atom is clearly a better target.

5. Conclusions

In conclusion, we have studied the two-dimensional
momentum distribution spectra of high-energy photoelectrons
in the above-threshold ionization of atoms by few-cycle laser
pulses. We have shown that the momentum distributions can
be described, on a quantitative basis, as the product of a
laser-induced returning electron wave packet by the elastic
differential cross section between the target ion and free
electrons. Thanks to this quantitative rescattering theory, we
have demonstrated a robust method to accurately retrieve the
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absolute phase of few-cycle laser pulses. Our method relies
on the analysis of high-energy photoelectron spectra emitted
in the left and in the right directions separately. We have
shown that the yield and the peak energy of these electrons
are determined by the laser’s electric field and its vector
potential, respectively, such that the shift of the peak energy
with the carrier-envelope phase can be analysed to determine
the absolute CEP. Furthermore, the quantitative rescattering
theory is much more efficient than TDSE calculations in
that it allows a rapid and accurate determination of the peak
energies (or cut-off energies); thus, a laser focus volume effect
can be included in the simulation in order to compare with
experimental spectra. As demonstrated recently [27], this
method provides an appealing tool to precisely determine the
laser peak intensity, pulse duration and the absolute CEP phase
simultaneously, with an expected error of a few per cent.
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[17] Milos̆ević D B, Paulus G G and Becker W 2003 Opt. Express

11 1418
[18] Chelkowski S, Bandrauk A and Apolonski A 2004 Opt. Lett.

29 1557
[19] Chelkowski S, Bandrauk A D and Apolonski A 2004 Phys.

Rev. A 70 013815
[20] Peng L-Y and Starace A F 2007 Phys. Rev. A 76 43401
[21] Peng P-Y, Pronin E A and Starace A F 2008 New J. Phys.

10 025030
[22] Liao Q, Lan P, Yang Z and Li Y 2008 Opt. Express 16 6455
[23] Paulus G G, Lindner F, Baltus̆ka A, Goulielmakis E, Lezius M

and Krausz F 2003 Phys. Rev. Lett. 91 253004
[24] Tong X M, Hino K and Toshima N 2006 Phys. Rev. A

74 031405(R)
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