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We calculated the charge-transfer cross sections for O8++H collisions for energies from 1 eV/amu to
2 keV/amu, using the recently developed hyperspherical close-coupling method. In particular, the discrepancy
for electron capture to then=6 states of O7+ from the previous theoretical calculations is further analyzed. Our
results indicate that at low energies(below 100 eV/amu) electron capture to then=6 manifold of O7+ becomes
dominant. The present results are used to resolve the long-standing discrepancies from the different elaborate
semiclassical calculations near 100 eV/amu. We have also performed the semiclassical atomic orbital close-
coupling calculations with straight-line trajectories. We found the semiclassical calculations agree with the
quantal approach at energy above 100 eV/amu, where the collision occurs at large impact parameters. Calcu-
lations for Ar8++H collisions in the same energy range have also been carried out to analyze the effect of the
ionic core on the subshell cross sections. By using diabatic molecular basis functions, we show that converged
results can be obtained with small numbers of channels.
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I. INTRODUCTION

Electron-capture processes involving impurity gaseous at-
oms are pivotal in the study of the atomic processes in a
controlled fusion reactor. Electron transfer from an H atom
to highly charged ions is considered to be one of the rate-
determining processes in plasma heating by neutral
hydrogen-beam injection. For this reason, many investiga-
tions have been carried out to understand the cross sections
for the charge transfer between atomic hydrogen and highly
charged ions.

Numerous experimental and theoretical studies of charge-
transfer cross sections for slow O8++H collisions have been
performed since the early 1980s. The experimental data of
Meyer et al. [1], Dijkamp et al. [2] and Panovet al. [3]
reported total electron-capture cross sections for energies
above 1 keV/amu. These data, which agree with each other
to within about a factor of 2, are in good agreement with the
total electron cross sections obtained by close-coupling cal-
culations, using either the two-center atomic-orbitalsAOd
expansion method(Fritsch and Lin[4]) or the molecular-
orbital sMOd expansion method(Shipseyet al. [5] and of
Kimura and Lane[6]). In particular, the experimental data of
Meyer et al. are in close agreement with the calculation of
Fritsch and LinsAOd. However, this general agreement in
the total cross section fails to reveal the significant discrep-
ancies in the reported partial electron-capture cross sections
among the theories. While electron capture occurs primarily
to the n=5 states of O7+ for collision energies above
1 keV/amu, the theoretical predictions for partial cross sec-
tions below 1 keV/amu differ drastically. In the AO calcu-
lation of Fritsch and Lin, it was found that the dominant
electron capture proceeds to then=5 states, and partial cross
sections to then=6 states decrease rapidly with decreasing
collision energies. This is in sharp contrast with the calcula-
tions carried out by Shipseyet al., where they performed

calculations using molecular orbitals as basis functions
modified with electron translational factors. They predicted
that then=6 states of O7+ are predominantly populated for
collision energy below 100 eV/amu. A similar calculation
performed by Kimura and Lane, also using molecular orbit-
als as basis functions and some form of electron translational
factors, however, obtained results similar to Fritsch and Lin,
i.e., then=5 cross section remains the dominant one. More-
over, a relatively more recent calculation by Richter and
Solov’ev [7], who used the so-called hidden crossing theory
based on the adiabatic molecular energies in the complexR
plane, providesn=5 andn=6 partial cross sections below
1 keV/amu, in reasonable agreement with Shipseyet al.

The discrepancies among these elaborate calculations are
indeed rather disconcerting. Looking into more details
among the theoretical models, the AO calculation of Fritsch
and Lin used 46 atomic orbitals, while Shipseyet al. used
33 MOs, and Kimura and Lane used 30 MOs. The calcula-
tion of Richter and Solov’ev used all the MOs with united-
atom quantum numbersn less than 11, i.e., 220 states, and
take into account 146 branch points. Thus all the calculations
include all the dominant asymptoticn=5 andn=6 channels
of O7+. One may want to attribute the discrepancy among the
three calculations based on the MOs to different electron
translational factors, but this is not obvious since if this is the
case the discrepancy would occur at higher collision energies
rather than at lower energies. Besides the basis set, one ad-
ditional complication which is expected to be more impor-
tant at lower collision energies is the possible trajectory ef-
fect in these semiclassical calculations. In some of these
calculations curved trajectories were used, while in others
trajectories were straight lines. In the semiclassical approxi-
mation, the effective interaction potential between the two
heavy particles is not uniquely defined. This too may lead to
a discrepancy among the theories. To resolve these discrep-
ancies, a full quantal calculation is desirable.
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In this paper, we employed the recently developed hyper-
spherical close-coupling methodsHSCCd [8] to examine this
collision system. The HSCC method is formulated similarly
to the perturbed stationary-statesPSSd approximation, but
without the well-known difficulties[9,10] in that approach.
No additional assumptions are needed beyond the truncation
of the number of adiabatic channels included in the calcula-
tions. Electron-capture cross sections were calculated from
1 eV/amu up to 2 keV/amu. We confirm that the HSCC
results are in better agreement with those of Shipseyet al.
and of Richter and Solov’ev near 100 eV/amu. Thus we con-
clude that the AO results of Fritsch and Lin, and the MO
calculations of Kimura and Lane, are likely incorrect. In ad-
dition, we have also performed AO calculations using the
same basis set[i.e., O7+ sn=4,5,6d and Hs1sd] employed by
Fritsch and Lin, but using straight-line trajectories instead of
curved trajectories, at energies above 100 eV/amu. The
present AO results are in agreement with Shipseyet al. and
Richter and Solov’ev. A larger basis set calculation withn
=7 orbitals has also been employed to ensure for conver-
gence. We found that the contribution of capture inton=7
cross sections is merely 1%, thus it appears that the problem
with Fritsch and Lin was in the use of curved trajectories.
The origin of the discrepancy from Kimura and Lane is not
clear.

We have also performed HSCC calculations for Ar8++H
collisions in the same energy region. This is to examine the
core effect for low-energy charge-transfer cross sections. In
Sec. II we briefly outline the hyperspherical close-coupling
theory and the results are presented and discussed in Sec. III.
A final conclusion is given in Sec. IV.

II. THE DIABATIC HYPERSPHERICAL
CLOSE-COUPLING METHOD

We employ in this study the hyperspherical close-
coupling method recently developed by Liuet al. [8]. This
method has been proven successful in previous applications
[8,11–14] to ion-atom collisions involving systems with one
electron and two heavy nuclei(or positive ions with closed-
shell electrons). This method has been described in detail in
Ref. [8]. Thus we present here only a brief overview and the
recent modification to the diabatic basis functions of the
HSCC method only.

The collision complex, O8++H, is considered a three-
particle system consisting of an electron, a proton, and O8+.
For Ar8++H, the Ar8+ is considered a frozen core. The sys-
tem is described by mass-weighted hyperspherical coordi-
nates. In the “molecular” frame, the first Jacobi vectorr1 is
chosen to be the vector from O8+ to H+, with a reduced mass
m1. The second Jacobi vectorr2 goes from the center of mass
of O8+ and H+ to the electron, with a reduced massm2. The
hyperradiusR and the hyperanglef are defined as

R=Îm1

m
r1

2 +
m2

m
r2

2, s1d

tan f =Îm2

m1

r2

r1
, s2d

wherem is arbitrary. Another angle,u, is defined as the angle
between the two Jacobi vectors. Whenm is chosen equal to

m1, the hyperradiusR is very close to the internuclear dis-
tance between O8+ and H+. For Ar8+ we treat it as an inert
ionic core described by a model potential taken from the
early work of Abdallahet al. [15]. The model potential has
the form

VAr7+srd = −
1

r
f8 + s10 + 5.5rde−5.5rg. s3d

We first introduce the rescaled wave function

CsR,V,v̂d = csR,V,v̂dR3/2 sin f cosf, s4d

then the Schrödinger equation takes the form

S−
1

2

]

] R
R2 ]

] R
+

15

8
+ HadsR;V,v̂d − mR2EDC = 0, s5d

whereV;hf ,uj, andv̂ denotes the three Euler angles of the
body-fixed frame with respect to the space-fixed frame.Had
is the adiabatic Hamiltonian. The detailed form of the equa-
tions can be found in Liuet al. [8].

To solve Eq.(5), we expand the rescaled wave function in

terms of normalized and symmetrized rotation functionD̃,
and body-frame adiabatic basis functionsFmIsR,Vd,

CsR,V,v̂d = o
n

o
I

FnIsRdFnIsR,VdD̃IMJ

J sv̂d, s6d

wheren is the channel index,J is the total angular momen-
tum, I is the absolute value of the projection ofJ along the
body-fixedz8 axis andMJ is the projection along the space-
fixed z axis. Within this approach, a set of adiabatic channel
functions and potential curves are first obtained, which serve
as the basis for the expansion(6). For collisions involving
many channels, we chose to diabatize curves with sharp
avoided crossings with the aim of removing channels which
do not couple strongly to the channels of interest. Such a
procedure has been developed recently and applied to proto-
nium formation inp̄+Hs1sd collisions [16].

The adiabatic and diabatic representations are related by a
unitary transformationFD=CFA, where FA and FD are
adiabatic and diabatic channel functions, respectively, andC
is the unitary transformation matrix. It is well known[17,18]
that if the transformation matrix is chosen as the solution of
the linear equation

CP+
dC

dR
= 0, s7d

where the matrixP is given byPij =−kFi
Aud/dRuF j

Al, then in
the diabatic representation all the nonadiabatic coupling
terms will vanish. This full diabatic procedure has two draw-
backs. First, the matrix elementsPij have to be calculated
accurately over the whole range ofR, which is difficult to do
especially in the avoided crossing region. Second, the result-
ing diabatic curves often deviate too much from the adiabatic
potential curves, such that the simplicity of the adiabatic pic-
ture can be lost. In the HSCC method as presented in[8], we
adopted the smooth/slow-variable discretizationsSVDd tech-
nique of Tolstikhinet al. [19]. In this approach the nonadia-
batic coupling matrixP is not calculated, as these couplings
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are implicitly included in the overlap matrix between the
channel functions. Within the same spirit, our goal is to per-
form diabatization using only the overlap matrix elements.

In order to solve this problem and avoid the calculation of
nonadiabatic couplings, we choose to approximate the de-
rivative with respect to the hyperradius in Eq.(7) by doing a
simple difference. ThePij matrix elements are then given by

Pij <
fkFi

AsRduF j
AsRdl − kFi

AsRduF j
AsR+ DRdlg

DR
s8d

and become proportional to the difference of two overlaps of
adiabatic functions at two neighboring points. Similarly, the
derivative of theC matrix with respect to hyperradius is
replaced bydCij /dR<CijsR+DRd−CijsRd /DR. By substitut-
ing these approximations into Eq.(7), we obtain a simple
equation for theC matrix,

CijsR+ DRd < o
k

CiksRdkFk
AsRduF j

AsR+ DRdl. s9d

TheC matrix atR+DR is then given by the product of theC
matrix atR with the overlaps of adiabatic functions at points
R andR+DR. Note that the summation in Eq.(9) runs over
all channels. This is required to diabatize all the adiabatic
potential curves over the whole space of the adiabatic basis.
However, our goal is to diabatize only curves with sharp
avoided crossings, where usually a small number of channels
are involved. Thus we limit the summation in Eq.(9) to these
channels. To do so we use a criterion based on the value of
the overlaps appearing in Eq.(9). More specifically, we
choose to diabatize between two channelsm and j when their
overlap at two neighboring points is larger than some param-
etera,

ukFm
AsRk+1dF j

AsRkdlu.a, s10d

in a given region of the hyperradial space. The smaller the
parametera, the more diabatic the final potential curves. In
the present calculations,a was chosen equal to 0.2 andDR
was set to 0.1 a.u. The diabatization procedure starts at large
distances, where we choose the initial condition forC to be
equal to the identity matrix. This means that at large dis-
tances, adiabatic and diabatic representations are identical.
We then rewrite Eq.(9) as

CijsRkd < o
m

CimsRk+1dkFm
AsRk+1duF j

AsRkdl, s11d

where the summation overm is limited by Eq. (10). This
equation is used to propagate theC matrix down toR=0.
Once the diabatic basis is obtained, further implementation
of diabatic HSCC is straightforward with the adiabatic chan-
nel functions being replaced by the diabatic ones. Equation
(5) has to be solved for each partial waveJ until a converged
cross section is reached. Using the numerical procedure in-
troduced in Liuet al. [8], such calculations can be easily
carried out for many partial waves.

III. RESULTS AND DISCUSSION

In this paper we apply the HSCC methods to calculate the
charge-transfer cross sections for O8++Hs1sd collisions. Fig-

ure 1(a) presents the adiabatic hyperspherical potential
curves included in the calculation forR up to 24 a.u. All 33
channels fromI =0,1,2, and 3,that dissociate into then=5
and 6 O7+ manifolds, are included. For clarity, onlyI =0 and
I =1 components are shown. In Fig. 1(b), thediabaticcurves
for the dominant channels for this collision at low energies
are shown, including twoI =0 channels and oneI =1 channel
each from then=5 andn=6 manifolds. Even though these
are hyperspherical potential curves they are practically iden-
tical to the Born-Oppenheimer potential curves.

In Fig. 2(a) we show the partial electron-capture cross
sections from 50 eV/amu to 2 keV/amu from the present
HSCC calculation. The solid lines are for calculations using
the seven channels indicated in Fig. 1(b), while the stars are
for calculations carried out using all 33 channels. For then
=5 cross sections, the seven-channel calculation is adequate
for the whole energy range. For the weaker capture to the
n=6 channels at energies above 100 eV/amu, the seven-
channel results are slightly smaller. We can compare the
present values with previous results. They agree well with
the 33-state molecular calculation by Shipseyet al. The AO
calculation of Fritsch and Lin performed in 1984 provides
n=5 cross sections in agreement with other calculations, but
their n=6 cross sections are substantially smaller as the col-
lision energy is decreased. In this early calculation, a curved
trajectory was introduced to describe the motion of the two
heavy particles. To understand the origin of the discrepancy,
we carried out the AO calculations using straight-line trajec-
tories. Then=5 andn=6 cross sections from the new AO
calculations, as shown in Fig. 2(a), are in reasonable agree-

FIG. 1. (a) Hyperspherical adiabatic potential curves for OH8+

that dissociate to O7+ sn=5,6d manifolds. For clarity, onlyI =0
(solid) and I =1 (dashed) curves are shown.(b) Dominant seven
diabatic potential curves.
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ment with Shipseyet al. This raises the doubt about the
curved-trajectory calculations carried out by Fritsch and Lin.
Errors could come from an inappropriate effective potential
used to describe the curved trajectory for electron capture to
the n=6 states. On the other hand, the good agreement be-
tween straight-line trajectory AO and quantal HSCC results
may be attributed to the fact that the collision is dominated at
large impact parameters, where the trajectory effect is less
significant.

In Fig. 2(b) we present then=5 andn=6 cross sections
from 1 eV/amu to 2 keV/amu. It shows clearly that then
=6 cross sections dominate below 100 eV/amu. The inset
which shows the “rate constant,” defined to be the relative
velocity times cross section, reaches a constant at energies
below about 20 eV/amu. Thus the dominantn=6 cross sec-
tions show the Langevin behavior, i.e., the cross section var-
ies like 1/v at low energies, wherev is the relative collision
velocity.

We now compare the total electron-capture cross section
with the experimental data of Meyeret al. [1] and the earlier
theoretical results, as shown in Fig. 3. Note that the AO
calculation of Fritsch and Lin, and the MO-based calculation
of Kimura and Lane, are in best agreement with the experi-

ment. However, the results from the present HSCC, and the
present AO calculations and the 33-state MO calculations of
Shipseyet al., do all suggest that the total capture cross
sections are somewhat higher, especially in the low-energy
end of Fig. 3.

In Fig. 4 we analyze the nature of the states populated in
the n=6 manifold at the collision energies of 10, 100, and
2000 eV/amu. We emphasize that these calculations were
carried out with only seven diabatic channels and, as shown
in Fig. 2, these seven channels can account for the totaln
=5 and n=6 capture cross sections adequately. This is in
strong contrast to the earlier MO-based calculations, where a
large number of MOs were used in the calculation to “en-
sure” convergence. On the top frame at 10 eV/amu, we note
that the dominant charge-transfer channel is theI =0, 6-1
channel(the lowest from theI =0 channels in then=6 mani-
fold). It accounts for most of the transition probabilities.
Thus, at low energies the collision can be approximated as a
two-channel problem. TheI =0, 6-2 channel contributes less
than 1%, while theI =1, 6-1 channel contributes less than
5%. Note that electron capture occurs mostly at large impact
parameters of about 12–17 a.u., indicating that the avoided
crossing nearR=17 a.u. is the main mechanism for charge
transfer at this range of energy. At 100 eV/amu, theI =1, 6-1
channel has about the same cross section as from theI =0,
6-1 channel, indicating that rotational coupling is very im-
portant in this energy region. Note that theI =0, 6-2 channel
and theI =1, 6-1 channel both have relatively larger contri-
butions to the cross section from small impact parameters
near 2 a.u. at this energy, but the total cross section still
comes mostly from the large impact parameters. At
2 keV/amu, the highest energy used in the present quantal
HSCC calculation, the threen=6 channels included in the
calculation have nearly comparable contributions to then
=6 cross section. Clearly, this indicates that electron capture

FIG. 2. (a) Partial charge-transfer cross sections for O8+

+Hs1sd collision as functions of collision energy. Note that the solid
symbols are forn=5 and the open symbols are forn=6. HSCC7,
present seven-channel results; HSCC33, present 33-channel results;
MO-SGB, MO results by Shipseyet al. [5]; AO, present AO re-
sults; AO-FL, AO results by Fritsch and Lin[4]. (b) Similar to (a)
except for lower range of collision energy. The inset in(b) shows
n=6 charge-transfer cross section times velocity vs the collision
energy.

FIG. 3. Total electron-capture cross sections for O8++Hs1sd col-
lision. Theoretical results:s—d denotes the present results of
HSCC; s¯d the results of Kimura and Lane(Ref. [6]); s−−−d the
results of Shipseyet al. (Ref. [5]); sLd the results of AO expansion
with curved-line trajectory by Fritsch and Lin(Ref. [4]); sDd the
present AO expansion with straight-line trajectory. Experimental
results are from Meyeret al. (Ref. [1]).
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is not ending up in specific states but rather is fairly well
distributed. This means that at this high energy the seven-
channel calculation is not quite adequate for then=6 cross
sections, as shown in Fig. 2.

In Fig. 5 we compare then=5 electron-capture probabili-
ties from the seven-channel and 33-channel HSCC calcula-
tions with the result from the semiclassical AO calculations
at E=400 eV/amu and 2 keV/amu. In carrying out the AO
calculation, straight-line trajectories were used, while the
HSCC calculation in principle has included all the possible
trajectory effect. Clearly the agreement is quite good and the
collision occurs at large impact parameters, suggesting that
the effect from a curved trajectory is small. The impact pa-
rameter dependence also shows basically a seven-channel
calculation is adequate over a large energy range for the
dominant channels, and in the higher-energy region either the
atomic orbitals or the molecular orbitals can be used as basis
functions to describe the electronic motion. Note that we
have employed diabatic molecular curves in the HSCC cal-
culations, thus the unimportant channels can be removed eas-
ily from the calculation.

We next investigate the collision between Ar8+ and Hs1sd.
This system has been investigated at higher collision ener-
gies [20], but here we consider collision energies below
2 keV/amu only to examine to what extent the collision dy-
namics is modified by the fact that the excitedn=6 andn
=5 states of Ar7+ are no longer degenerate. In Fig. 6(a) the

I =0 and I =1 adiabatic hyperspherical potential curves are
shown. The inset zooms into the avoided crossing region of
the entrance channel with then=6 states.

We diabatize the sharp avoiding crossings of the entrance
channel with then=6 states and the resultingI =0 diabatic
curves are shown in Fig. 6(b). Note that the entrance channel
and then=5 channels do not cross. Comparing Figs. 1 and 5,
we notice that for the potential curves in O8++H, the n=5
and n=6 groups are well separated, and for Ar8++H the n
=5 andn=6 curves are more evenly distributed. The cross-
ings of the entrance channel with then=6 states occur over a
broad range ofR.

In Fig. 7 we show the calculatedn=5 andn=6 electron-
capture cross sections, using 21 molecular states: 11 states of
n=5 and 6 withI =0, and 10 states ofn=5 and 6 withI =1.
At higher energies we have used 33 molecular states to con-
firm that a smaller 21 states are adequate to get converged
result. Comparing Fig. 7 with Fig. 2, we note that the relative
importance ofn=5 andn=6 cross sections follow a similar
pattern. At low energies the capture is predominantly to the
n=6 states. The inset in Fig. 7 shows that rate constant for
then=6 states does not show the Langevin limit until at less
than about 1 eV/amu. Furthermore, then=5 cross section,
instead of dropping monotonously with decreasing energy,
actually curves up below 1 eV/amu. These two “anomalies”
are due to our arbitrary separation of cross sections inton
=5 andn=6. Clearly the energy levels for the two manifolds
are not well separated and the grouping inton=5 andn=6
has no real significance.

In Fig. 8, we show the subshell cross sections in terms of
the relative collision velocities. Note that at higher velocity

FIG. 4. The evolution of thebPcapsbd vs b with respect to the
collision energies.s−−−d ands¯d denote the first twoI =0 channels
in then=6 manifold ands—d represents the lowestI =1 channel in
the n=6 manifold for O8++Hs1sd collisions. Note that the 5 and
100 scaling factors only apply to the first panel.

FIG. 5. Comparison of the quantal HSCC and present semiclas-
sical straight-line trajectory AO results forbPcap for then=5 mani-
fold for O8++Hs1sd collisions at a collision energy ofE
=400 eV/amu(top) and 2 keV/amu(bottom).
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the subshell cross sections within a given manifold are rela-
tively comparable. As the collision velocity is decreased, the
relative importance of the different subshells changes. The
result shows that the diabatic crossing for 6s near 12 a.u.
(see Fig. 6) and the avoided crossings with 5f and 5g are the
most efficient in transferring the electron to these states. Be-
cause 5f and 6s states are both well populated at the low
velocities, there is no simple Langevin limit probably until at
even much lower energies.

IV. CONCLUSIONS

In this paper, the newly developed hyperspherical close-
coupling method sHSCCd has been used to calculate
electron-capture cross sections for O8++H and Ar8++H col-
lisions in the energy range from 1 eV/amu to 2 keV/amu.
For O8++H we were motivated by the long-standing discrep-
ancy between the different elaborate theoretical cross sec-
tions. While all these earlier calculations show good agree-
ment in the total cross section and in then=5 cross section,
there have been marked differences in then=6 channels,
especially at energies below about 100 eV/amu.

Using the HSCC theory, where the motion of the heavy
particles is described quantum mechanically, we carried out
the calculations from 1 eV/amu to 2 keV/amu—covering
the energy region where the controversy exists. Our results
agree with those from the molecular approaches of Shipsey
et al. and Richter and Solov’ev. We believe that the early
result of Fritsch and Lin using the AO basis, and of Kimura

FIG. 6. (a) Hyperspherical adiabatic potential curves for ArH8+,
which dissociate into Ar7+sn=5,6d. Only I =0 (solid) and I =1
(dashed) channels are shown. The inset gives a zoom in ofn=6
curves near a series of avoided crossings in the range ofR
=10–20 a.u.(b) Hypersphericaldiabaticpotential curves. For clar-
ity, only I =0 curves are shown.

FIG. 7. Partial charge-transfer cross sections for the Ar8+

+Hs1sd collision system as functions of collision energy. HSCC21,
present 21-channel results; HSCC33, present 33-channel results.
Note that the solid and open symbols denote then=5 andn=6,
respectively. The inset shows then=6 charge-transfer cross section
times velocity vs the collision energy.

FIG. 8. State selective charge-transfer cross sections for the
Ar8++Hs1sd collision system as functions of collision velocity.
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and Lane using the MO basis, were incorrect.
To unravel the origin of the discrepancy, we carried out a

new AO calculation and as shown in Fig. 2, the new calcu-
lations are in agreement with the present HSCC, with Ship-
seyet al. and with Richter and Solov’ev. In the present AO
calculation we use straight-line trajectories, while in Fritsch
and Lin, a curved trajectory was used. Thus we suspect that
the error in the latter was due to the use of a curved trajec-
tory for capture to then=6 states, which occurs at very large
internuclear distances. For the discrepancy from Kimura and
Lane, we cannot offer any reasonable explanation. Note that
the present HSCC calculation also shows that with the use of
diabatic basis functions, the O8++H collision system is rather
simple, and calculations using only seven channels are al-
ready adequate for the whole energy range covered. This is
in strong contrast to the earlier calculations, where the em-

phasis was to use a much larger molecular basis. The latter of
course is needed at higher energies.

We have also performed Ar8++H calculations to elucidate
the difference between these two systems due to the core
structure of the projectile. There are no experimental data in
the low-energy region investigated in the present paper, but
we are confident that the cross sections presented in this
paper are reliable.
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