Comparison of Analysis for H_2^+

Brant Abeln

Drake University, Des Moines, IA

June 18, 2009

(中) (문) (문) (문) (문)

Outline

Basics Analysis Comparisons Conclusions

Basics

Overview Details

Analysis

Exact Continuum states Fourier Transform Quanities

Comparisons

Dissociation KER Asymmetry

Conclusions

< 🗗 🕨

(신문) (신문)

Overview Details

1-D problem

Brant Abeln Comparison of Analysis for H₂⁺

Overview Details

1-D problem

Protons aligned with the electric field

Brant Abeln Comparison of Analysis for H₂⁺

▲口 → ▲圖 → ▲ 国 → ▲ 国 → □

Overview Details

1-D problem

- Protons aligned with the electric field
- Dissociation into H+p or p+H

イロン 不同と 不同と 不同と

Overview Details

1-D problem

- Protons aligned with the electric field
- ▶ Dissociation into H+p or p+H
- Born-Oppenheimer approximation neglecting nuclear rotation

イロト イヨト イヨト イヨト

Overview Details

1-D problem

- Protons aligned with the electric field
- ▶ Dissociation into H+p or p+H
- Born-Oppenheimer approximation neglecting nuclear rotation
- Frank-Condon averaging

★ E ► ★ E ►

Overview Details

Parameters

Pulse

Brant Abeln Comparison of Analysis for H₂⁺

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Overview Details

Parameters

Pulse

•
$$E(t) = E_0 e^{-(t/\tau)^2} \cos(\omega t + \varphi)$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Overview Details

Parameters

Pulse

•
$$E(t) = E_0 e^{-(t/\tau)^2} \cos(\omega t + \varphi)$$

Wavelength: 790 nm

▲口 → ▲圖 → ▲ 国 → ▲ 国 → □

Overview Details

Parameters

Pulse

- $E(t) = E_0 e^{-(t/\tau)^2} \cos(\omega t + \varphi)$
- Wavelength: 790 nm
- ► *τ_{FWHM}*: 5 fs

▲口 → ▲圖 → ▲ 国 → ▲ 国 → □

Э

Overview Details

Parameters

Pulse

- $E(t) = E_0 e^{-(t/\tau)^2} \cos(\omega t + \varphi)$
- Wavelength: 790 nm
- *τ*_{FWHM}: 5 fs
- ▶ Intensity: 10¹⁴ W/cm²

イロト イヨト イヨト イヨト

Overview Details

Parameters

Pulse

- $E(t) = E_0 e^{-(t/\tau)^2} \cos(\omega t + \varphi)$
- Wavelength: 790 nm
- ▶ *τ_{FWHM}*: 5 fs
- ▶ Intensity: 10¹⁴ W/cm²
- First 19 vibrational states

イロト イヨト イヨト イヨト

Overview Details

Potentials

Details

Vibrational States

Comparison of Analysis for H₂⁺

Exact Continuum states Fourier Transform Quanities

 Project wavefunction onto the nuclear continuum energy eigenstates

Э

Exact Continuum states Fourier Transform Quanities

- Project wavefunction onto the nuclear continuum energy eigenstates
- Two atomic channels to produce KER specrtum

イロン イヨン イヨン イヨン

Exact Continuum states Fourier Transform Quanities

- Project wavefunction onto the nuclear continuum energy eigenstates
- Two atomic channels to produce KER specrtum
- Integrate KER spectrum for P_A, P_B

イロト イヨト イヨト イヨト

Exact Continuum states Fourier Transform Quanities

Analysis of Continuum States-Theory

$$\Psi(R,t) = \sum_{n} \alpha_{b_n}(t) \Psi_{b_n}(R) + \Psi_c(R,t)$$

Exact Continuum states Fourier Transform Quanities

Analysis of Continuum States-Theory

$$\Psi(R,t) = \sum_{n} \alpha_{b_n}(t) \Psi_{b_n}(R) + \Psi_c(R,t)$$

$$<\Psi_{b_m}(R)|\Psi(R,t)>=lpha_{b_m}(t)$$

Exact Continuum states Fourier Transform Quanities

Analysis of Continuum States-Theory

$$\Psi(R,t) = \sum_{n} \alpha_{b_n}(t) \Psi_{b_n}(R) + \Psi_c(R,t)$$

$$<\Psi_{b_m}(R)|\Psi(R,t)>=lpha_{b_m}(t)$$

$$\Psi_c(R,t) = \Psi(R,t) - \sum_n < \Psi_{b_n}(R) |\Psi(R,t) > \Psi_{b_n}(R)$$

Exact Continuum states Fourier Transform Quanities

Analysis of Continuum States-Cont.

 $\Psi_M^c(R,r,t) = F_g^c(R,t)\Phi_g(R;r) + F_u^c(R,t)\Phi_u(R;r)$

・ロト ・回ト ・ヨト ・ヨト

3

Exact Continuum states Fourier Transform Quanities

Analysis of Continuum States-Cont.

$$\Psi_M^c(R,r,t) = F_g^c(R,t)\Phi_g(R;r) + F_u^c(R,t)\Phi_u(R;r)$$

Exact Continuum states Fourier Transform Quanities

Analysis of Continuum States-Cont.

$$\Psi_M^c(R,r,t) = F_g^c(R,t)\Phi_g(R;r) + F_u^c(R,t)\Phi_u(R;r)$$

$$P \to \infty$$

$$\Phi_{g,u}(R \to \infty; r) = \frac{\Phi_A(r) \pm \Phi_B(r)}{\sqrt{2}}$$

$$\Psi_M^c(R, r, t) = F_g^c(R, t) \left[\frac{\Phi_A(r) + \Phi_B(r)}{\sqrt{2}} \right] + F_u^c(R, t) \left[\frac{\Phi_A(r) - \Phi_B(r)}{\sqrt{2}} \right]$$

$$\implies F_{A,B} = \frac{1}{\sqrt{2}} (F_g^c \pm F_u^c)$$

Exact Continuum states Fourier Transform Quanities

Fourier Transform

$$ilde{\Psi}^{A,B}(k) = rac{1}{\sqrt{2\pi}}\int \Psi_A(R) e^{-ikR} dR$$

Brant Abeln Comparison of Analysis for H₂⁺

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

Exact Continuum states Fourier Transform Quanities

Fourier Transform

$$\begin{split} \tilde{\Psi}^{A,B}(k) &= \frac{1}{\sqrt{2\pi}} \int \Psi_A(R) e^{-ikR} dR \\ \tilde{\Psi}^{A,B}(k) &= \frac{1}{\sqrt{2\pi}} \int \left[\frac{F_g^c(R) \pm F_u^c(R)}{\sqrt{2}} \right] e^{-ikR} dR \end{split}$$

Brant Abeln Comparison of Analysis for H₂⁺

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

Exact Continuum states Fourier Transform Quanities

Fourier Transform

$$\begin{split} \tilde{\Psi}^{A,B}(k) &= \frac{1}{\sqrt{2\pi}} \int \Psi_A(R) e^{-ikR} dR \\ \tilde{\Psi}^{A,B}(k) &= \frac{1}{\sqrt{2\pi}} \int \left[\frac{F_g^c(R) \pm F_u^c(R)}{\sqrt{2}} \right] e^{-ikR} dR \\ \tilde{\Psi}^{A,B}(E) &= \sqrt{\frac{\mu}{k}} \tilde{\Psi}^{A,B}(k) \end{split}$$

Brant Abeln Comparison of Analysis for H₂⁺

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

Exact Continuum states Fourier Transform Quanities

Fourier Transform

$$\begin{split} \tilde{\Psi}^{A,B}(k) &= \frac{1}{\sqrt{2\pi}} \int \Psi_A(R) e^{-ikR} dR \\ \tilde{\Psi}^{A,B}(k) &= \frac{1}{\sqrt{2\pi}} \int \left[\frac{F_g^c(R) \pm F_u^c(R)}{\sqrt{2}} \right] e^{-ikR} dR \\ \tilde{\Psi}^{A,B}(E) &= \sqrt{\frac{\mu}{k}} \tilde{\Psi}^{A,B}(k) \\ P_{A,B} &= \int \tilde{\Psi}^{A,B*}(E) \tilde{\Psi}^{A,B}(E) dE \end{split}$$

・ロン ・四シ ・ヨン ・ヨン 三日

Exact Continuum states Fourier Transform Quanities

Dissociation (What percent is breaking apart?)

Brant Abeln Comparison of Analysis for H₂⁺

イロン イヨン イヨン イヨン

Э

Exact Continuum states Fourier Transform Quanities

- Dissociation (What percent is breaking apart?)
- KER (At what energies does it break apart?)

Brant Abeln Comparison of Analysis for H₂⁺

イロト イヨト イヨト イヨト

Exact Continuum states Fourier Transform Quanities

- Dissociation (What percent is breaking apart?)
- KER (At what energies does it break apart?)
- Asymmetry (Does the electron tend to go in one direction?)

$$\blacktriangleright A = \frac{P_A - P_B}{P_A + P_B}$$

イロト イヨト イヨト イヨト

Dissociation KER Asymmetry

Dissociation Data					
Method	φ/π	P_A	PB	Total _D	Total _A
$\int \frac{dP_{A,B}}{dE} dE$	0.00	0.10916	0.22367	0.33283	-0.34406
	0.25	0.10788	0.21953	0.32742	-0.34100
	0.50	0.10964	0.21930	0.32894	-0.33336
	0.75	0.11388	0.22366	0.33755	-0.32523
	1.00	0.11451	0.22367	0.33819	-0.32278
$\int \left \frac{F_g^c \pm F_u^c}{\sqrt{2}} \right ^2 dR$	0.00	0.10889	0.22395	0.33284	-0.34568
	0.25	0.10793	0.21981	0.32774	-0.34137
	0.50	0.11018	0.21959	0.32977	-0.33178
	0.75	0.11457	0.22396	0.33852	-0.32314
	1.00	0.11506	0.22395	0.33900	-0.32121
$\int \left FT \left[\frac{F_g^c \pm F_u^c}{\sqrt{2}} \right] \right ^2 dE$	0.00	0.10862	0.22340	0.33202	-0.34571
	0.25	0.10765	0.21925	0.32690	-0.34139
	0.50	0.10988	0.21899	0.32887	-0.33177
	0.75	0.11427	0.22337	0.33764	-0.32311
	1.00	0.11478	0.22340	0.33819	-0.32118

(日) (四) (注) (注) (注) (注)

Dissociation KER Asymmetry

KER

・ロン ・四 と ・ ヨ と ・ モ と

Dissociation KER Asymmetry

KER

・ロ・・ (日・・ (日・・ (日・)

Dissociation KER Asymmetry

KER-Zoomed

・ロン ・四と ・ヨン ・ヨン

Э

Dissociation KER Asymmetry

Percent Difference KER

Percent Difference KER

(1日) (日) (日)

Э

Brant Abeln Comparison of Analysis for H₂⁺

Dissociation KER Asymmetry

Percent Difference KER - Zoomed

Percent Difference KER

Э

Dissociation KER Asymmetry

Asymmetry

2

æ

・ロン ・四と ・ヨン ・ヨン

Dissociation KER Asymmetry

0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

.0.8

æ

Asymmetry

・ロ・・ (日・・ (日・・ (日・)

Dissociation KER Asymmetry

Percent Difference Asymmetry

Percent Difference Asymmetry

Brant Abeln Comparison of Analysis for H₂⁺

イロン イヨン イヨン イヨン

Э

Many ways to compute observables

▲口 → ▲圖 → ▲ 国 → ▲ 国 → □

Many ways to compute observables

- Exact
- Fourier Transform

Many ways to compute observables

- Exact
- Fourier Transform
- Total values are similar

・ロン ・回と ・ヨン・

Many ways to compute observables

- Exact
- Fourier Transform
- Total values are similar
- Differentials are clearly different

A B >
 A B >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

★ E ► < E ►</p>