

Dark Matter Halo Mass Correction in Mock Universe Simulations

Weston Schwartz Kansas State University REU

Introduction/Motivation:

- Widespread Homogeneity to Cosmic Webs
 - Unknown as to how transition happened
- Simulations can help
- Full Physics Simulation (FPS) vs. Dark Matter Only Simulations (DMOS)
- Full physics is a lot....but just gravity?

Image provided by NASA: Wilkinson Microwave Anisotropy Probe June 28, 2016

Image provided by Millennium Simulation Project; Springel V., et al

Motivating Literature

- Based on one of the five papers produced from IllustrisTNG project
 - "First Results from the IllustrisTNG simulations: Matter and Galaxy Clustering" (Springel, V. et al., Monthly Notices of the Royal Astronomical Society, Volume 475, pg 676-698, (2017))
- IllustrisTNG: Successor to the pre-existing Illustris Suite
 - Larger (TNG300) Higher Resolution (TNG50) Updated Cosmology (TNG100)
 - Each FPS has an identical DMOS counterpart
- Results: FPS Strongly Correspond to Extant Observations

Theory

- IllustrisTNG FPS shown to be successful
- DMOS shown to be systematically skewed
- Systematic Correction Given DMOS results, can we reconstruct FPS results?
 - Plot FPS v. DMOS
 - Assume a map $f: F \to D$ with inverse $f^{-1}: D \to F$
 - Find transformation s.t. $\exists \text{ map } g: D \rightarrow D' = F$
 - Assessment: Direct Comparison
- Apply to other simulations
 - AbacusSummit (DMOS designed to meet cosmological requirements of Dark Energy Spectroscopic Instrument (DESI) Survey)
 - Apply found transformation
 - Assessment: Find Correlation Function* $(\xi(r))$ before and after transformation

*Correlation Function: "Given a galaxy of mass *M*, what's the probability of finding another galaxy a distance *r* away?"

KANSAS STATE

Methods

BRUARY 1625

IllustrisTNG

- To construct sought after map, we plot relevant data points on an FPS v. DMOS scatter plot
- Find line of best fit
- Mix of linear algebra and trigonometry to correct trend
 - Full Rotation
 - DMOS Rotation
 - Drop Method

AbacusSummit:

- Apply Correction Methods
- Halo Occupancy Distribution (HOD) module

Data Collection/Analysis

- Both Simulations provided data via website or Globus file transfer site
- Same Cosmologies; Planck 2018 ACDM
- Same Red-Shift; z = 0.1 (z = 0 would be present day)
- Analysis done using Python modules produced by IllustrisTNG team and AbacusSummit Team
 - IllustrisTNG:
 - subhalo_matching_to_dark.py is used to assign each FPS subhalo to a corresponding DMOS subhalo with similar properties
 - AbacusSummit:
 - AbacusHOD module is used to imbed baryonic matter in DMOS results
 - NOT a DMOS to FPS conversion
 - "Given this distribution of dark matter halos, we expect baryonic matter to be distributed in these places"

Results: IllustrisTNG

• Full Rotation

 $\begin{bmatrix} \cos \left(\theta \right) & \sin \left(\theta \right) \\ -\sin \left(\theta \right) & \cos \left(\theta \right) \end{bmatrix}$

Source: Plots made by Weston Schwartz

Results: IllustrisTNG (Cont.)

• DMOS Rotation:

$$\begin{bmatrix} 1 & 0 \\ -\sin\left(2\theta\right) & \cos\left(2\theta\right) \end{bmatrix}$$

Where $\theta = \arctan(a) - \frac{\pi}{4}$

Source: Plots and matrix made by Weston Schwartz

Results: IllustrisTNG (Cont.)

• Drop Method

 $drop = \sqrt{3F^2 + D^2 - 2FC\cos\left(\theta\right)}$

Where $C^2 = F^2 + D^2$,

F = FPS Data Point,

and D = DMOS Data Point

Source: Plots and eq. made by Weston Schwartz

Results: Correcting the Correction

- Realized these correction methods are still dependent on FPS data
- Had to reformulate:

$$drop = D - D \sqrt{\frac{1 - \sin(2\theta)}{1 + \sin(2\theta)}}$$

Where D is a Data Point and
$$\theta = \tan^{-1} (slope) - \frac{\pi}{4}$$

$$D' = D\left[\cos\left(2\theta\right) - \sqrt{\frac{\sin^2\left(2\theta\right) - \sin^3\left(2\theta\right)}{1 + \sin\left(2\theta\right)}}\right]$$

Equations by Weston Schwartz

Results: AbacusSummit

- Without Correction:
 - Over estimated number of pairs are small distances
 - Underestimated for larger distances
- With Correction:
 - More Gradual Descent
 - Follows a quasi-power law
 - Corresponds to IllustrisTNG results

Found, on average, DMOS produces halo masses ~15% higher than FPS

Discussion/Future Work

- Novel methods of correcting halo masses seem to be successful for simulations using Planck 2018 Λ CDM cosmologies at redshift z = 0.1
- Correction methods applied to DMOS and then were ran through HOD module
- Apply correction method to HOD module itself (?)

Future Work

- Determining the θ dependence for the correction function
- Generalize this method
- Find Corrections for other halo variables (position, velocity, luminosity, etc.)

Conclusion

- Mock Universe Simulations:
 - Invaluable to understanding large scale structure formation
 - Helps understand overall structure of the Universe
 - Dark Matter
- Successful FPS reproduction via modified DMOS data
- Modification methods offers possibility of optimizing modules such as AbacusHOD
- More efficient Mock Universe Simulations

Acknowledgements

Thank you to:

- National Science Foundation
- K-State Physics Department and Faculty
- Kim Coy, Dr. Loren Greenman, Dr. J.T. Laverty, Dr. Lado Samushia

"This material is based upon work supported by the National Science Foundation under Grant No. #2244539. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation."

Questions?

