Potential Energy Surfaces for Excited States of CH_2I_2

Michael Quintieri 2023 Kansas State University Physics REU

Coulomb Explosion

#tps://pubchem.ncbi.nlm.nih.gov/compound/diiodomethane# section=3D-Conformer

- This method investigates molecules, like CH_2I_2 , by breaking them.
- In this case, a "pump" photon with a wavelength of 200 nanometers excites the molecule.
- An infrared "probe" breaks the molecule.
- The pieces are examined.

Theory Connection

- Coulomb Explosion Imaging looks at the products.
- The theorist tries to match models to the experimental results.
 - How do the results come about?
- My project was to describe the excited state dynamics of CH₂I₂.

Potential Curves

- A geometric parameter is plotted against potential energy.
- The bond is at equilibrium at the lowest point.
- Excited states can have different equilibrium bond lengths, or be unbound.

Schrödinger Equation

 $E\Psi = H\Psi$ $E\Psi = (kinetic + potential)\Psi$ $E\Psi = (\Sigma p^2/2m_e + \Sigma q_1q_2/r^2)\Psi$

- Solving the molecular Schrödinger equation.
- The potential term is a Coulomb potential.

- Molpro solves the equation!
- Fed the geometry into Molpro to optimize electron orbitals and potential.
- Varied the geometry to make a curve.
 - Changed bond lengths.
- Increased the number of excited states in Molpro.

Results: One Bond

Results: One Bond

Potential Energy Curves for CH2I2, One Bond

8

Results: One Bond

Potential Energy Curves for CH2I2, One Bond

Results: Two Bonds

Potential Energy Curves for CH2I2, Two Bonds

10

Results: Two Bonds

In Summary...

- The goal of this research was to characterize the excited states of CH₂I₂, up to an energy of 200 nm.
- This was accomplished by the creation of potential energy surfaces.
- Bond lengths were varied, and the minimum possible potential was recorded for each length.

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. #2244539. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation

13

Any Questions?