Cleaning coulomb explosion data via random coincidence subtraction

Mason Clark

James R. Macdonald Laboratory, Department of Physics, Kansas State University Manhattan, KS 66506, USA

Coulomb Explosion Imaging

- Ionize a sample
 - Remove an electron from each atom
 - Repel each other

Coulomb Explosion Imaging

- Atoms now have charge and fall to the detector via the electric field
- Observe when and where the ions hit the detector
 - Get momenta

Pitzer, M., Fehre, K., Kunitski, M., Jahnke, T., Schmidt, L., Schmidt-Böcking, H., Dörner, R., Schöffler, M. Coulomb Explosion Imaging as a Tool to Distinguish Between Stereoisomers. J. Vis. Exp. (126), e56062, doi:10.3791/56062 (2017).

Sulfur Dioxide

Smaller Molecule

3-fold Coincidence for $SO_2 \rightarrow S+ O+ O+$

- "Complete Channel"
- Momentum conservation
- Easy to cut randoms

 Leads to "clean" images

3-fold Coincidence for $SO_2 \rightarrow S+ O+ O+$

- "Complete Channel"
- Momentum conservation
- Easy to cut randoms

 Leads to "clean" images

Larger Molecule

File:Isoxazole-3D-balls.png. (2020, October 30). *Wikimedia Commons*. Retrieved 19:53, July 21, 2023 from https://commons.wikimedia.org/w/index.php?title=File:Isoxazole-3D-balls.png&oldid=507693222.

4-fold Coincidence Plot for Isoxazole H+ C+ N+ O+ Channel

 "Incomplete Channel" Only getting 1/2 of the • ions, so can't find momentum conservation • No clear coincidence line

Harder to remove bad data in incomplete channels

 "Incomplete Channel" Only getting 1/2 of the • ions, so can't find momentum conservation • No clear coincidence line

Incomplete Channels are less clean

Sulfur Dioxide

Isoxazole

Newton Plot for Isoxazole C₃H₃NO H+ C+ N+ O+ Channel

Ζ

N+

x

- Plotting momenta from the Coulomb Explosion
- Not plotting hydrogens
- Oxygen as reference and xdirection
- Nitrogen to define plane
- Dots are carbons

Motivation

Are the structures real or from **Germiness**?

Motivation

Are the structures real or from **Germiness**?

 Probability of carbons being here?

Motivation

Are the structures real or from **Germiness**?

- Probability of carbons being here?
- Probability of them being way out to the center & top right?

Remove "bad data" by identifying its components.

Modeling the Bad/Random Data Points

Contributions:

- Ionized more than one sample
 - Measured another molecule's ion
 - lonized the whole molecule or just part
 - More likely because high power is needed for Isoxazole breakup
- Residual Gasses
 - $\circ~$ Ex. H20 in the chamber
 - Not perfect vacuum

How many ways could this infiltrate our data?

How many ways can "Bad Data" be permutated among the four measured ions?

- T is a good datapoint (True)
- F is an incorrect datapoint (False)
- TTTF = first three ions are correct but the 4th is wrong.
- Combinations of ways an event could be invalid are:
 - If one is wrong: TTTF, TTFT...
 - If two are wrong: TTFF, TFFT...
 - If three are wrong: TFFF, FTFF...
 - All wrong: FFFF

Modeling by Coincidence Shifting

What does it look like if the 2nd ion came from another source?

i.e. Incorrect Datapoint (False)

Event #	lon 1	lon 2	lon 3	lon 4
1	Х, Ү, Т	Х, Ү, Т	Х, Ү, Т	Х, Ү, Т
2	Х, Ү, Т	Х, Ү, Т	Х, Ү, Т	Х, Ү, Т
3	Х, Ү, Т	Х, Ү, Т	Х, Ү, Т	Х, Ү, Т
4	Х, Ү, Т	Х, Ү, Т	Х, Ү, Т	Х, Ү, Т
5	Х, Ү, Т	Х, Ү, Т	Х, Ү, Т	Х, Ү, Т

Modeling by Coincidence Shifting

Events are independent of each other, so it is replaced by a random lon 2 data point

Event #	lon 1	lon 2	lon 3	lon 4
1	Х, Ү, Т	Х, Ү, Т	Х, Ү, Т	Х, Ү, Т
2	Х, Ү, Т	Х, Ү, Т	Х, Ү, Т	Х, Ү, Т
3	Х, Ү, Т	Х, Ү, Т	Х, Ү, Т	Х, Ү, Т
4	Х, Ү, Т	Х, Ү, Т	Х, Ү, Т	Х, Ү, Т
5	Х, Ү, Т	Х, Ү, Т	Х, Ү, Т	Х, Ү, Т

Modeling by Coincidence Shifting

Prob. replaced by residual gas

Prob. replaced by not fully ionized sample

Prob. replaced by fully ionized sample

Event #	lon 1	lon 2	lon 3	lon 4
1	Х, Ү, Т	Х, Ү, Т	Х, Ү, Т	Х, Ү, Т
2	Х, Ү, Т	Х, Ү, Т	Х, Ү, Т	Х, Ү, Т
3	Х, Ү, Т	Х, Ү, Т	Х, Ү, Т	Х, Ү, Т
4	Х, Ү, Т	Х, Ү, Т	Х, Ү, Т	Х, Ү, Т
5	Х, Ү, Т	Х, Ү, Т	Х, Ү, Т	Х, Ү, Т

Include all permutations of invalid events -> Model is complete!

Uncorrected Data

Corrected

24

Uncorrected Data

Corrected

- Effective method for sharpening incomplete channel images & plots
- Helps determine real structures
- Can account for secondary molecules and some residual gasses
- Background terms are non-isotropic

Future outlook

- Shifting model is biased towards fully ionized contributions
 - Good data that is shifted == bad data from second fully ionized sample
 - Data: 70% good data
 - Model: >70% fully ionized contributions
 - Means it's better at this, but worse at others
- More likely that one is wrong than all four
- Applying this to more incomplete channel experiments
 - Ex. May work best with messy data with ions that include lots of residual gas points

Acknowledgements

Daniel Rolles, Zane Phelps, Sanduni Kudagama, Tu Nguyen, Huynh Van Sa Lam, Keyu Chen & All members of the JRML Team

Also thank you to Kim Coy and Loren Greenman!

This material is based upon work supported by the National Science Foundation under Grant No. #2244539. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Questions?

- Can you correct things other than newton plots?
- What do you mean "the model is biased towards secondary contributions"?
- Could you go back to that one slide?

Bias Towards Total Ionization

Original Data

Prob. residual gas

Prob. not fully ionized sample

Prob. separate fully ionized sample

Prob. original fully ionized sample

Model

Prob. replaced by residual gas

Prob. replaced by not fully ionized sample

Prob. its from a separate fully ionized sample

Bias Towards Total Ionization

Original Data

Prob. residual gas

Prob. not fully ionized sample

Prob. separate fully ionized sample

Prob. original fully ionized sample

Scaled Down Model

- Still subtracts randoms, but it is more effective at removing separate fully ionized samples.
- Fundamental issue if you expect zero secondary fully ionized samples

Corrected KER

Corrected Psum

PxPy (no x-100 ΡŽ 0 reference) -100

200

100

-100

-200

-200

-100

0

Px.

ã. 0

Isoxazole: Channel H+ C+ N+ O+ PxPy (no x-reference)

Isoxazole: Channel H+ C+ N+ O+ PxPz

PxPz

200

100

0

-200

-100

PyPz

Isoxazole: Channel H+ C+ N+ O+ PyPz

Corrected Gated 4-Fold Coincidence

Projections in region where we want the peak to trough ratio

Normalized Py projection in region where we want the peak to trough ratio

Over-Subtraction

Uncorrected Data

Model

"Corrected"

Subtracts too much and leave negative counts, which make no physical sense (points < 0 not plotted)

Plotting the negative counts, we see that there are regions with lots of negative points.

Scale down to reduce negative points

It's okay if one tiny square is negative, so long as the average is ~0

Scalar Change for Reduced Negatives

Scalar = 0.1, too much subtraction

Scalar = 0.0303, just enough

X and Y – TOF Gating

Hydrogen isn't plotted, so no adjustment is seen

Hydrogen Offset

Original

