A Median Statistics

Estimate of the Distance to

 M87August 5, 2022
Kansas Statè University Physics REU 2022

College"of Arts \& Sciences Department of Phyșics

Cosmology

Study of the universe's structure, content, and evolution on the largest scales

Distances are very important in Cosmology

- Why do we want to know distances?
- To calculate physical characteristics of objects...
- ... so we can do Cosmology!
- Why do we want the distance to M87?
- Extend distance framework
- Study further clusters
- Study M87

The Virgo Cluster,
home to

Statistics in Cosmology

- We characterize our data with a central estimate:
- Ex: Mean, median, mode, weighted mean
- Intrinsic Gaussianity

The distribution of data is not always Gaussian!

- Solution: Mean Median Statistics
- Median statistics provides an accurate central estimate without assuming Gaussianity
- The price (larger error bars) is worth it

Velocity-Distance Relation among Extra-Galactic Nebulae.

Procedure

Calculating the Median

True median (TM): the median of the dataset as the number of measurements N goes to infinity

The probability that the TM falls between measurements M_{i} and M_{i+1} is:

$$
P=\frac{2^{-N} N!}{i!(N-i!)}
$$

Error distribution

Number of measurements at that
"distance" from the central estimate

Number of standard deviations away from central estimate

The Kolmogorov-Smirnov Test (KS Test)

The KS test measures the similarity between an empirical error distribution and a given continuous probability distribution (in this case, the Gaussian) by calculating a p-value

What does the KS test tell us?

p-value: the probability that we can reject the hypothesis that the data do not come from the tested distribution

Why is this helpful?

How does scaling work?

We divide the error distribution by S and increment S from 0 to 10 until we optimize p .

Best fit scaling makes the distribution wider \rightarrow errors may have been underestimated

Dataset

Clustering of Local Group Distances: Publication Bias or Correlated Measurements? VI. Extending to Virgo Cluster Distance
Richard de Grijs and Giuseppe Bono 2020 ApJS 2463

7922 hits for "M87" in the NASA/Astrophysics Data System

Dataset A

Error Distribution	Gaussian p -value
Median	$<.001$
Weighted Mean	$<.001$

Error Distribution	Gaussian p-value	Scale Factor
Median	.805	2.194
Weighted Mean	.619	2.336

Unscaled p value is low + optimal p requires high scaling \rightarrow errors may have been overestimated

Dataset B

Error Distribution	Gaussian p -value
Median	.470
Weighted Mean	.089

Error Distribution	Gaussian p -value	Scale Factor
Median	.998	1.291
Weighted Mean	.992	1.791

Unscaled p value is low + optimal p requires high scaling \rightarrow errors may have been overestimated

Recommended values

Dataset A: $d=31.08_{-0.05}^{+0.04}($ stat $) \rightarrow 16.44 \pm 0.53 \mathrm{Mpc}($ median $)$
Dataset B: $d=31.00_{-0.08}^{+0.05}($ stat $) \rightarrow 15.92 \pm 0.48 \mathrm{Mpc}($ median $)$ distance in $p c=10^{\frac{d}{5}+1}$
De Grijs \& Bono: $d=31.03 \pm 0.14$ (stat) $\rightarrow 16.07 \pm 1.03 \mathrm{Mpc}$ (mean)

Conclusions

- Median statistics is a powerful alternative to mean statistics when the distribution of error-affected measurements is non-Gaussian
- Refine distance framework to more distant clusters

Fornax
~19 Mpc

Coma
~99 Mpc

Acknowledgements-Thank you!

Dr. Bharat Ratra, Nicholas Rackers, Dr. Bret Flanders, Dr. Loren Greenman, Kim Coy Kansas State University The National Science Foundation

Kansas State

U N I V E R S I T Y
College of Arts \& Sciences

Citations

J. Richard Gott III, Michael S. Vogeley, Silviu Podariu, \& Bharat Ratra (2001). Median Statistics, H_{0}, and the Accelerating Universe. The Astrophysical Journal, 549(1), 1-17.

Richard de Grijs, \& Giuseppe Bono (2019). Clustering of Local Group Distances: Publication Bias or Correlated Measurements? VI. Extending to Virgo Cluster Distances. The Astrophysical Journal Supplement Series, 246(1), 3.

Hubble, Proceedings of the National Academy of Sciences, 1929, 15, 168

